Skip to main content
Top
Published in: BMC Medical Imaging 1/2018

Open Access 01-12-2018 | Research article

MPCaD: a multi-scale radiomics-driven framework for automated prostate cancer localization and detection

Authors: Farzad Khalvati, Junjie Zhang, Audrey G. Chung, Mohammad Javad Shafiee, Alexander Wong, Masoom A. Haider

Published in: BMC Medical Imaging | Issue 1/2018

Login to get access

Abstract

Background

Quantitative radiomic features provide a plethora of minable data extracted from multi-parametric magnetic resonance imaging (MP-MRI) which can be used for accurate detection and localization of prostate cancer. While most cancer detection algorithms utilize either voxel-based or region-based feature models, the complexity of prostate tumour phenotype in MP-MRI requires a more sophisticated framework to better leverage available data and exploit a priori knowledge in the field.

Methods

In this paper, we present MPCaD, a novel Multi-scale radiomics-driven framework for Prostate Cancer Detection and localization which leverages radiomic feature models at different scales as well as incorporates a priori knowledge of the field. Tumour candidate localization is first performed using a statistical texture distinctiveness strategy that leverages a voxel-resolution feature model to localize tumour candidate regions. Tumour region classification via a region-resolution feature model is then performed to identify tumour regions. Both voxel-resolution and region-resolution feature models are built upon and extracted from six different MP-MRI modalities. Finally, a conditional random field framework that is driven by voxel-resolution relative ADC features is used to further refine the localization of the tumour regions in the peripheral zone to improve the accuracy of the results.

Results

The proposed framework is evaluated using clinical prostate MP-MRI data from 30 patients, and results demonstrate that the proposed framework exhibits enhanced separability of cancerous and healthy tissue, as well as outperforms individual quantitative radiomics models for prostate cancer detection.

Conclusion

Quantitative radiomic features extracted from MP-MRI of prostate can be utilized to detect and localize prostate cancer.
Literature
1.
go back to reference Canadian Cancer Society’s Advisory Committee on Cancer Statistics. Canadian Cancer Statistics 2017. 2017. Technical report. Canadian Cancer Society’s Advisory Committee on Cancer Statistics. Canadian Cancer Statistics 2017. 2017. Technical report.
3.
go back to reference Schröder FH, et al.Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009; 360(13):1320–8.CrossRefPubMed Schröder FH, et al.Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009; 360(13):1320–8.CrossRefPubMed
4.
go back to reference Loeb S, et al.Systematic review of complications of prostate biopsy. Eur Urol. 2013; 64(6):876–92.CrossRefPubMed Loeb S, et al.Systematic review of complications of prostate biopsy. Eur Urol. 2013; 64(6):876–92.CrossRefPubMed
5.
go back to reference Haider MA, et al.Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol. 2007; 189(2):323–8.CrossRefPubMed Haider MA, et al.Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol. 2007; 189(2):323–8.CrossRefPubMed
6.
go back to reference Muller BG, Shih JH, Sankineni S, Marko J, Rais-Bahrami S, George A, de la Rosette JJMCH, Merino MJ, Wood BJ, Pinto P, Choyke PL, Turkbey B. Prostate Cancer: Interobserver Agreement and Accuracy with the Revised Prostate Imaging Reporting and Data System at Multiparametric MR Imaging. Radiology. 2015; May 2016. https://doi.org/10.1148/radiol.2015142818. Muller BG, Shih JH, Sankineni S, Marko J, Rais-Bahrami S, George A, de la Rosette JJMCH, Merino MJ, Wood BJ, Pinto P, Choyke PL, Turkbey B. Prostate Cancer: Interobserver Agreement and Accuracy with the Revised Prostate Imaging Reporting and Data System at Multiparametric MR Imaging. Radiology. 2015; May 2016. https://​doi.​org/​10.​1148/​radiol.​2015142818.
9.
go back to reference Ozer S, et al.Prostate cancer localization with multispectral mri based on relevance vector machines. In: Biomedical Imaging: From Nano to Macro. IEEE International Symposium On: 2009. p. 73–76. Ozer S, et al.Prostate cancer localization with multispectral mri based on relevance vector machines. In: Biomedical Imaging: From Nano to Macro. IEEE International Symposium On: 2009. p. 73–76.
10.
go back to reference Liu X, et al.Prostate cancer segmentation with simultaneous estimation of Markov random field parameters and class. IEEE Trans Med Imaging. 2009; 28(6):906–15.CrossRefPubMed Liu X, et al.Prostate cancer segmentation with simultaneous estimation of Markov random field parameters and class. IEEE Trans Med Imaging. 2009; 28(6):906–15.CrossRefPubMed
11.
go back to reference Ozer S, et al.Supervised and unsupervised methods for prostate cancer segmentation with multispectral MRI. Med Phys. 2010; 37(4):1873–83.CrossRefPubMed Ozer S, et al.Supervised and unsupervised methods for prostate cancer segmentation with multispectral MRI. Med Phys. 2010; 37(4):1873–83.CrossRefPubMed
13.
go back to reference Khalvati F, et al.A multi-parametric diffusion magnetic resonance imaging texture feature model for prostate cancer analysis. In: MICCAI Workshop on Computational Diffusion MRI: 2014. p. 79–88. Khalvati F, et al.A multi-parametric diffusion magnetic resonance imaging texture feature model for prostate cancer analysis. In: MICCAI Workshop on Computational Diffusion MRI: 2014. p. 79–88.
15.
go back to reference Leijenaar R, et al.Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2015; 62(4):441–6. Leijenaar R, et al.Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2015; 62(4):441–6.
16.
go back to reference Aerts HJWL, et al.Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014; 45(4). Aerts HJWL, et al.Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014; 45(4).
17.
go back to reference Gevaert O, et al.Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data. Radiology. 2012; 2(4):387–96.CrossRef Gevaert O, et al.Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data. Radiology. 2012; 2(4):387–96.CrossRef
18.
go back to reference Chung AG, Scharfenberger C, Khalvati F, Wong A, Haider MA. Statistical Textural Distinctiveness in Multi-Parametric Prostate MRI for Suspicious Region Detection. In: International Conference on Image Analysis and Recognition (ICIAR): 2015. p. 368–76. Chung AG, Scharfenberger C, Khalvati F, Wong A, Haider MA. Statistical Textural Distinctiveness in Multi-Parametric Prostate MRI for Suspicious Region Detection. In: International Conference on Image Analysis and Recognition (ICIAR): 2015. p. 368–76.
20.
go back to reference Wong A, Khalvati F, Haider M. Dual-Stage Correlated Diffusion Imaging. Biomedical Imaging (ISBI). In: IEEE 12th International Symposium on: 2015. p. 75–78. Wong A, Khalvati F, Haider M. Dual-Stage Correlated Diffusion Imaging. Biomedical Imaging (ISBI). In: IEEE 12th International Symposium on: 2015. p. 75–78.
24.
go back to reference Peng Y, et al.A study of T2-weighted MR image texture features and diffusion-weighted MR image features for computer-aided diagnosis of prostate cancer. In: 8670, Medical Imaging 2013: Computer-Aided Diagnosis, 86701H: 2013. https://doi.org/10.1117/12.2007979. Peng Y, et al.A study of T2-weighted MR image texture features and diffusion-weighted MR image features for computer-aided diagnosis of prostate cancer. In: 8670, Medical Imaging 2013: Computer-Aided Diagnosis, 86701H: 2013. https://​doi.​org/​10.​1117/​12.​2007979.
25.
go back to reference Litjens G, et al.Interpatient variation in normal peripheral zone apparent diffusion coefficient: effect on the prediction of prostate cancer aggressiveness. Radiology. 2012; 265(1):260–6.CrossRefPubMed Litjens G, et al.Interpatient variation in normal peripheral zone apparent diffusion coefficient: effect on the prediction of prostate cancer aggressiveness. Radiology. 2012; 265(1):260–6.CrossRefPubMed
26.
go back to reference Koh DM, et al.Diffusion-weighted mri: a new functional clinical technique for tumour imaging. Br J Radiol. 2006; 79:633–5.CrossRefPubMed Koh DM, et al.Diffusion-weighted mri: a new functional clinical technique for tumour imaging. Br J Radiol. 2006; 79:633–5.CrossRefPubMed
27.
go back to reference Glaister J, et al.Quantitative investigative analysis of tumour separability in the prostate gland using ultra-high b-value computed diffusion imaging. IEEE EMBC. 2012; 2012:420–3. Glaister J, et al.Quantitative investigative analysis of tumour separability in the prostate gland using ultra-high b-value computed diffusion imaging. IEEE EMBC. 2012; 2012:420–3.
28.
go back to reference Shafiee MJ, et al.Apparent ultra-high b-value diffusion-weighted image reconstruction via hidden conditional random fields. IEEE Trans Med Imag. 2015; 34(5):1111–24.CrossRef Shafiee MJ, et al.Apparent ultra-high b-value diffusion-weighted image reconstruction via hidden conditional random fields. IEEE Trans Med Imag. 2015; 34(5):1111–24.CrossRef
29.
go back to reference Aitkin M, Rubin DB. Estimation and hypothesis testing in finite mixture models. J R Stat Soc Ser B Methodol. 1985; 47(1):67–75. Aitkin M, Rubin DB. Estimation and hypothesis testing in finite mixture models. J R Stat Soc Ser B Methodol. 1985; 47(1):67–75.
30.
go back to reference Scharfenberger C, et al.Statistical Textural Distinctiveness for Salient Region Detection in Natural Images. In: Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference On: 2013. p. 979–986. Scharfenberger C, et al.Statistical Textural Distinctiveness for Salient Region Detection in Natural Images. In: Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference On: 2013. p. 979–986.
31.
go back to reference Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat. 1951; 22(1):79–86.CrossRef Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat. 1951; 22(1):79–86.CrossRef
32.
go back to reference Amelard R, Wong A, Clausi DA. Extracting morphological high-level intuitive features (HLIF) for enhancing skin lesion classification. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego: 2012. p. 4458–61. https://doi.org/10.1109/EMBC.2012.6346956. Amelard R, Wong A, Clausi DA. Extracting morphological high-level intuitive features (HLIF) for enhancing skin lesion classification. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego: 2012. p. 4458–61. https://​doi.​org/​10.​1109/​EMBC.​2012.​6346956.
33.
go back to reference Peng H, et al.Feature selection based on mutual information criteria of maxdependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005; 27:1226–38.CrossRefPubMed Peng H, et al.Feature selection based on mutual information criteria of maxdependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005; 27:1226–38.CrossRefPubMed
34.
go back to reference Lafferty J. Conditional random fields: Probabilistic models for segmenting and labeling sequence data: Morgan Kaufmann; 2001, pp. 282–9. Lafferty J. Conditional random fields: Probabilistic models for segmenting and labeling sequence data: Morgan Kaufmann; 2001, pp. 282–9.
35.
go back to reference He X, et al.Multiscale Conditional Random Fields for Image Labeling. In: CVPR, 2013 IEEE Conference On: 2004. p. 695. He X, et al.Multiscale Conditional Random Fields for Image Labeling. In: CVPR, 2013 IEEE Conference On: 2004. p. 695.
36.
go back to reference Chung AG, Khalvati F, Shafaiee MJ, Haider MA, Wong A. Prostate Cancer Detection via a Quantitative Radiomics-Driven Conditional Random Field Framework. IEEE Access. 2015; 3:2531–41.CrossRef Chung AG, Khalvati F, Shafaiee MJ, Haider MA, Wong A. Prostate Cancer Detection via a Quantitative Radiomics-Driven Conditional Random Field Framework. IEEE Access. 2015; 3:2531–41.CrossRef
38.
go back to reference Cuzick J, et al.Prevention and early detection of prostate cancer. Lancet Oncol. 2014; 15(11):484–92.CrossRef Cuzick J, et al.Prevention and early detection of prostate cancer. Lancet Oncol. 2014; 15(11):484–92.CrossRef
39.
go back to reference Zhang J, Khalvati F, Wong A, Haider MA. Superpixel-based Prostate Cancer Detection from Diffusion Magnetic Resonance Imaging. J Comput Vision Imaging Syst. 2015; 1(1):107. Zhang J, Khalvati F, Wong A, Haider MA. Superpixel-based Prostate Cancer Detection from Diffusion Magnetic Resonance Imaging. J Comput Vision Imaging Syst. 2015; 1(1):107.
40.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017; 42(Supplement C):60–88.CrossRefPubMed Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017; 42(Supplement C):60–88.CrossRefPubMed
Metadata
Title
MPCaD: a multi-scale radiomics-driven framework for automated prostate cancer localization and detection
Authors
Farzad Khalvati
Junjie Zhang
Audrey G. Chung
Mohammad Javad Shafiee
Alexander Wong
Masoom A. Haider
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2018
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-018-0258-4

Other articles of this Issue 1/2018

BMC Medical Imaging 1/2018 Go to the issue