Skip to main content
Top
Published in: BMC Infectious Diseases 1/2024

Open Access 01-12-2024 | Research

Spatio-temporal spread and evolution of Lassa virus in West Africa

Authors: Xia Wang, Xianwei Ye, Ruihua Li, Xiaodong Zai, Mingda Hu, Shaoyan Wang, Hongguang Ren, Yuan Jin, Junjie Xu, Junjie Yue

Published in: BMC Infectious Diseases | Issue 1/2024

Login to get access

Abstract

Background

Lassa fever is a hemorrhagic disease caused by Lassa virus (LASV), which has been classified by the World Health Organization as one of the top infectious diseases requiring prioritized research. Previous studies have provided insights into the classification and geographic characteristics of LASV lineages. However, the factor of the distribution and evolution characteristics and phylodynamics of the virus was still limited.

Methods

To enhance comprehensive understanding of LASV, we employed phylogenetic analysis, reassortment and recombination detection, and variation evaluation utilizing publicly available viral genome sequences.

Results

The results showed the estimated the root of time of the most recent common ancestor (TMRCA) for large (L) segment was approximately 634 (95% HPD: [385879]), whereas the TMRCA for small (S) segment was around 1224 (95% HPD: [10301401]). LASV primarily spread from east to west in West Africa through two routes, and in route 2, the virus independently spread to surrounding countries through Liberia, resulting in a wider spread of LASV. From 1969 to 2018, the effective population size experienced two significant increased, indicating the enhanced genetic diversity of LASV. We also found the evolution rate of L segment was faster than S segment, further results showed zinc-binding protein had the fastest evolution rate. Reassortment events were detected in multiple lineages including sub-lineage IIg, while recombination events were observed within lineage V. Significant amino acid changes in the glycoprotein precursor of LASV were identified, demonstrating sequence diversity among lineages in LASV.

Conclusion

This study comprehensively elucidated the transmission and evolution of LASV in West Africa, providing detailed insights into reassortment events, recombination events, and amino acid variations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Okokhere P, Colubri A, Azubike C, et al. Clinical and laboratory predictors of Lassa fever outcome in a dedicated treatment facility in Nigeria: a retrospective, observational cohort study. Lancet Infect Dis. 2018;18(6):684–95.CrossRefPubMedPubMedCentral Okokhere P, Colubri A, Azubike C, et al. Clinical and laboratory predictors of Lassa fever outcome in a dedicated treatment facility in Nigeria: a retrospective, observational cohort study. Lancet Infect Dis. 2018;18(6):684–95.CrossRefPubMedPubMedCentral
2.
go back to reference Asogun DA, Adomeh DI, Ehimuan J, et al. Molecular diagnostics for lassa fever at Irrua specialist teaching hospital, Nigeria: lessons learnt from two years of laboratory operation. PLoS Negl Trop Dis. 2012;6(9):e1839.CrossRefPubMedPubMedCentral Asogun DA, Adomeh DI, Ehimuan J, et al. Molecular diagnostics for lassa fever at Irrua specialist teaching hospital, Nigeria: lessons learnt from two years of laboratory operation. PLoS Negl Trop Dis. 2012;6(9):e1839.CrossRefPubMedPubMedCentral
3.
go back to reference Bell-Kareem AR, Smither AR. Epidemiology of Lassa Fever. Curr Top Microbiol Immunol. 2023;440:87–109. Bell-Kareem AR, Smither AR. Epidemiology of Lassa Fever. Curr Top Microbiol Immunol. 2023;440:87–109.
4.
go back to reference Auperin DD, Romanowski V, Galinski M, et al. Sequencing studies of pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA. J Virol. 1984;52(3):897–904.CrossRefPubMedPubMedCentral Auperin DD, Romanowski V, Galinski M, et al. Sequencing studies of pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA. J Virol. 1984;52(3):897–904.CrossRefPubMedPubMedCentral
5.
go back to reference Forni D, Sironi M. Population structure of Lassa Mammarenavirus in West Africa. Viruses 2020;12(4):437. Forni D, Sironi M. Population structure of Lassa Mammarenavirus in West Africa. Viruses 2020;12(4):437.
6.
go back to reference Manning JT, Forrester N, Paessler S. Lassa virus isolates from Mali and the Ivory Coast represent an emerging fifth lineage. Front Microbiol. 2015;6:1037. Manning JT, Forrester N, Paessler S. Lassa virus isolates from Mali and the Ivory Coast represent an emerging fifth lineage. Front Microbiol. 2015;6:1037.
9.
go back to reference Olayemi A, Cadar D, Magassouba N, et al. New hosts of the lassa virus. Sci Rep. 2016;6:25280. Olayemi A, Cadar D, Magassouba N, et al. New hosts of the lassa virus. Sci Rep. 2016;6:25280.
10.
go back to reference Ehichioya DU, Dellicour S, Pahlmann M, et al. Phylogeography of lassa virus in Nigeria. J Virol. 2019;93(21):e00929–19. Ehichioya DU, Dellicour S, Pahlmann M, et al. Phylogeography of lassa virus in Nigeria. J Virol. 2019;93(21):e00929–19.
11.
go back to reference Wiley MR, Fakoli L, Letizia AG, et al. Lassa virus circulating in Liberia: a retrospective genomic characterisation. Lancet Infect Dis. 2019;19(12):1371–8.CrossRefPubMed Wiley MR, Fakoli L, Letizia AG, et al. Lassa virus circulating in Liberia: a retrospective genomic characterisation. Lancet Infect Dis. 2019;19(12):1371–8.CrossRefPubMed
12.
13.
go back to reference Sevilla N, de la Torre JC. Arenavirus diversity and evolution: quasispecies in vivo. Curr Top Microbiol Immunol. 2006;299:315–35.PubMedPubMedCentral Sevilla N, de la Torre JC. Arenavirus diversity and evolution: quasispecies in vivo. Curr Top Microbiol Immunol. 2006;299:315–35.PubMedPubMedCentral
14.
go back to reference Riviere Y, Oldstone MB. Genetic reassortants of lymphocytic choriomeningitis virus: unexpected disease and mechanism of pathogenesis. J Virol. 1986;59(2):363–8.CrossRefPubMedPubMedCentral Riviere Y, Oldstone MB. Genetic reassortants of lymphocytic choriomeningitis virus: unexpected disease and mechanism of pathogenesis. J Virol. 1986;59(2):363–8.CrossRefPubMedPubMedCentral
15.
go back to reference Lukashevich IS. Generation of reassortants between African arenaviruses. Virology. 1992;188(2):600–5.CrossRefPubMed Lukashevich IS. Generation of reassortants between African arenaviruses. Virology. 1992;188(2):600–5.CrossRefPubMed
16.
17.
go back to reference Hallam HJ, Hallam S, Rodriguez SE, et al. Baseline mapping of Lassa fever virology, epidemiology and vaccine research and development. NPJ Vaccines. 2018;3:11. Hallam HJ, Hallam S, Rodriguez SE, et al. Baseline mapping of Lassa fever virology, epidemiology and vaccine research and development. NPJ Vaccines. 2018;3:11.
18.
go back to reference Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20(4):1160–6.CrossRefPubMed Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20(4):1160–6.CrossRefPubMed
19.
go back to reference Lanfear R, von Haeseler A, Woodhams MD, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4.CrossRefPubMedPubMedCentral Lanfear R, von Haeseler A, Woodhams MD, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4.CrossRefPubMedPubMedCentral
20.
go back to reference Li W, Jaroszewski L, Godzik A. Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics. 2001;17(3):282–3.CrossRefPubMed Li W, Jaroszewski L, Godzik A. Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics. 2001;17(3):282–3.CrossRefPubMed
21.
go back to reference Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214.
22.
go back to reference Ayres DL, Cummings MP, Baele G, et al. BEAGLE 3: improved performance, scaling, and usability for a high-performance computing library for statistical phylogenetics. Syst Biol. 2019;68(6):1052–61.CrossRefPubMedPubMedCentral Ayres DL, Cummings MP, Baele G, et al. BEAGLE 3: improved performance, scaling, and usability for a high-performance computing library for statistical phylogenetics. Syst Biol. 2019;68(6):1052–61.CrossRefPubMedPubMedCentral
23.
go back to reference Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci. 1986;17:57–86.MathSciNet Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci. 1986;17:57–86.MathSciNet
24.
go back to reference Flouri T, Jiao X, Rannala B, et al. A bayesian implementation of the multispecies coalescent model with introgression for phylogenomic analysis. Mol Biol Evol. 2020;37(4):1211–23.CrossRefPubMed Flouri T, Jiao X, Rannala B, et al. A bayesian implementation of the multispecies coalescent model with introgression for phylogenomic analysis. Mol Biol Evol. 2020;37(4):1211–23.CrossRefPubMed
25.
go back to reference Penny D, Drummond AJ, Ho SYW, et al. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4(5):e88.CrossRef Penny D, Drummond AJ, Ho SYW, et al. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4(5):e88.CrossRef
27.
go back to reference Bielejec F, Baele G, Vrancken B, et al. Sprea D3: interactive visualization of spatiotemporal history and trait evolutionary processes. Mol Biol Evol. 2016;33(8):2167–9.CrossRefPubMedPubMedCentral Bielejec F, Baele G, Vrancken B, et al. Sprea D3: interactive visualization of spatiotemporal history and trait evolutionary processes. Mol Biol Evol. 2016;33(8):2167–9.CrossRefPubMedPubMedCentral
28.
go back to reference Martin DP, Varsani A, Roumagnac P, et al. RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evolution. 2021;7(1):veaa087. Martin DP, Varsani A, Roumagnac P, et al. RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evolution. 2021;7(1):veaa087.
29.
go back to reference Lole KS, Bollinger RC, Paranjape RS, et al. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol. 1999;73:152–60.CrossRefPubMedPubMedCentral Lole KS, Bollinger RC, Paranjape RS, et al. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol. 1999;73:152–60.CrossRefPubMedPubMedCentral
31.
32.
go back to reference Oloniniyi OK, Unigwe US, Okada S, et al. Genetic characterization of Lassa virus strains isolated from 2012 to 2016 in southeastern Nigeria. PLoS Negl Trop Dis. 2018;12(11):e0006971.CrossRefPubMedPubMedCentral Oloniniyi OK, Unigwe US, Okada S, et al. Genetic characterization of Lassa virus strains isolated from 2012 to 2016 in southeastern Nigeria. PLoS Negl Trop Dis. 2018;12(11):e0006971.CrossRefPubMedPubMedCentral
33.
go back to reference Charrel RN, de Lamballerie X, Emonet S. Phylogeny of the genus Arenavirus. Curr Opin Microbiol. 2008;11(4):362–8.CrossRefPubMed Charrel RN, de Lamballerie X, Emonet S. Phylogeny of the genus Arenavirus. Curr Opin Microbiol. 2008;11(4):362–8.CrossRefPubMed
35.
36.
go back to reference Cao J, Zhang G, Zhou M, et al. Characterizing the Lassa virus envelope glycoprotein membrane proximal external region for its role in fusogenicity. Virol Sin. 2021;36(2):273–80.CrossRefPubMed Cao J, Zhang G, Zhou M, et al. Characterizing the Lassa virus envelope glycoprotein membrane proximal external region for its role in fusogenicity. Virol Sin. 2021;36(2):273–80.CrossRefPubMed
37.
go back to reference Ngo N, Henthorn KS, Cisneros MI, et al. Identification and mechanism of action of a novel small-molecule inhibitor of arenavirus multiplication. J Virol. 2015;89(21):10924–33.CrossRefPubMedPubMedCentral Ngo N, Henthorn KS, Cisneros MI, et al. Identification and mechanism of action of a novel small-molecule inhibitor of arenavirus multiplication. J Virol. 2015;89(21):10924–33.CrossRefPubMedPubMedCentral
38.
go back to reference Sayed SB, Nain Z, Khan MSA, et al. Exploring lassa virus proteome to design a multi-epitope vaccine through immunoinformatics and immune simulation analyses. Int J Pept Res Ther. 2020;26(4), 2089–2107. Sayed SB, Nain Z, Khan MSA, et al. Exploring lassa virus proteome to design a multi-epitope vaccine through immunoinformatics and immune simulation analyses. Int J Pept Res Ther. 2020;26(4), 2089–2107.
39.
go back to reference Glushakova SE, Lukashevich IS, Baratova LA. Prediction of arenavirus fusion peptides on the basis of computer analysis of envelope protein sequences. FEBS Lett. 1990;269(1):145–7.CrossRefPubMed Glushakova SE, Lukashevich IS, Baratova LA. Prediction of arenavirus fusion peptides on the basis of computer analysis of envelope protein sequences. FEBS Lett. 1990;269(1):145–7.CrossRefPubMed
40.
go back to reference Glushakova SE, Omelyanenko VG, Lukashevitch IS, et al. The fusion of artificial lipid membranes induced by the synthetic arenavirus “fusion peptide.” Biochim Biophys Acta. 1992;1110(2):202–8.CrossRefPubMed Glushakova SE, Omelyanenko VG, Lukashevitch IS, et al. The fusion of artificial lipid membranes induced by the synthetic arenavirus “fusion peptide.” Biochim Biophys Acta. 1992;1110(2):202–8.CrossRefPubMed
41.
42.
go back to reference Coetzee CG. The biology, behaviour, and ecology of Mastomys natalensis in southern Africa. Bull World Health Organ. 1975;52(4–6):637–44.PubMedPubMedCentral Coetzee CG. The biology, behaviour, and ecology of Mastomys natalensis in southern Africa. Bull World Health Organ. 1975;52(4–6):637–44.PubMedPubMedCentral
43.
go back to reference Sironi M, de la Torre JC. The chameleonic genetics of Lassa virus. Lancet Infect Dis. 2019;19(12):1276–7.CrossRefPubMed Sironi M, de la Torre JC. The chameleonic genetics of Lassa virus. Lancet Infect Dis. 2019;19(12):1276–7.CrossRefPubMed
44.
go back to reference Mang S, Xiandan L, Xiao C, et al. The evolutionary history of vertebrate RNA viruses. Nature. 2018;556:197–202.CrossRefADS Mang S, Xiandan L, Xiao C, et al. The evolutionary history of vertebrate RNA viruses. Nature. 2018;556:197–202.CrossRefADS
45.
go back to reference Pontremoli C, Forni D, Sironi M. Arenavirus genomics: novel insights into viral diversity, origin, and evolution. Curr Opin Virol. 2019;34:18–28.CrossRefPubMed Pontremoli C, Forni D, Sironi M. Arenavirus genomics: novel insights into viral diversity, origin, and evolution. Curr Opin Virol. 2019;34:18–28.CrossRefPubMed
46.
go back to reference Redding DW, Gibb R, Dan-Nwafor CC, et al. Geographical drivers and climate-linked dynamics of Lassa fever in Nigeria. Nat Commun. 2021;12(1):5759. Redding DW, Gibb R, Dan-Nwafor CC, et al. Geographical drivers and climate-linked dynamics of Lassa fever in Nigeria. Nat Commun. 2021;12(1):5759.
47.
go back to reference Xu X, Peng R, Peng Q, et al. Cryo-EM structures of Lassa and Machupo virus polymerases complexed with cognate regulatory Z proteins identify targets for antivirals. Nat Microbiol. 2021;6(7):921–31.CrossRefPubMed Xu X, Peng R, Peng Q, et al. Cryo-EM structures of Lassa and Machupo virus polymerases complexed with cognate regulatory Z proteins identify targets for antivirals. Nat Microbiol. 2021;6(7):921–31.CrossRefPubMed
48.
go back to reference Patricio AR, Herbst LH, Duarte A, et al. Global phylogeography and evolution of chelonid fibropapilloma-associated herpesvirus. J Gen Virol. 2012;93(Pt 5):1035–45.CrossRefPubMed Patricio AR, Herbst LH, Duarte A, et al. Global phylogeography and evolution of chelonid fibropapilloma-associated herpesvirus. J Gen Virol. 2012;93(Pt 5):1035–45.CrossRefPubMed
49.
go back to reference Pond SL, Murrell B, Poon AF. Evolution of viral genomes: interplay between selection, recombination, and other forces. Methods Mol Biol. 2012;856:239–72.CrossRefPubMed Pond SL, Murrell B, Poon AF. Evolution of viral genomes: interplay between selection, recombination, and other forces. Methods Mol Biol. 2012;856:239–72.CrossRefPubMed
Metadata
Title
Spatio-temporal spread and evolution of Lassa virus in West Africa
Authors
Xia Wang
Xianwei Ye
Ruihua Li
Xiaodong Zai
Mingda Hu
Shaoyan Wang
Hongguang Ren
Yuan Jin
Junjie Xu
Junjie Yue
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2024
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-024-09200-8

Other articles of this Issue 1/2024

BMC Infectious Diseases 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine