Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | Typhoid Fever | Research

Comparison of 19 major infectious diseases during COVID-19 epidemic and previous years in Zhejiang, implications for prevention measures

Authors: Haopeng Li, Feng Ling, Shiyu Zhang, Ying Liu, Chongjian Wang, Hualiang Lin, Jimin Sun, Yinglin Wu

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

The global pandemic of coronavirus disease 2019 (COVID-19) has attracted great public health efforts across the world. Few studies, however, have described the potential impact of these measures on other important infectious diseases.

Methods

The incidence of 19 major infectious diseases in Zhejiang Province was collected from the National Notifiable Infectious Disease Surveillance System from January 2017 to October 2020. The entire epidemic control phase was divided into three stages. The government deployed the first level response from 24 January to 2 March (the most rigorous measures). When the outbreak of COVID-19 was under control, the response level changed to the second level from 3 to 23 March, and then the third level response was implemented after 24 March. We compared the epidemiological characteristics of 19 major infectious diseases during different periods of the COVID-19 epidemic and previous years.

Results

A total of 1,814,881 cases of 19 infectious diseases were reported in Zhejiang from January 2017 to October 2020, resulting in an incidence rate of 8088.30 cases per 1,000,000 person-years. After the non-pharmaceutical intervention, the incidence of 19 infectious diseases dropped by 70.84%, from 9436.32 cases per 1,000,000 person-years to 2751.51 cases per 1,000,000 person-years, with the large decrease in the first response period of influenza. However, we observed that the daily incidence of severe fever with thrombocytopenia syndrome (SFTS) and leptospirosis increased slightly (from 1.11 cases per 1,000,000 person-years to 1.82 cases per 1,000,000 person-years for SFTS and 0.30 cases per 1,000,000 person-years to 1.24 cases per 1,000,000 person-years for leptospirosis). There was no significant difference in the distribution of epidemiological characteristic of most infectious diseases before and during the implementation of COVID-19 control measures.

Conclusion

Our study summarizes the epidemiological characteristics of 19 infectious diseases and indicates that the rigorous control measures for COVID-19 are also effective for majority of infectious diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C, et al. Modeling infectious disease dynamics in the complex landscape of global health. Science (New York, NY). 2015;347(6227):4339.CrossRef Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C, et al. Modeling infectious disease dynamics in the complex landscape of global health. Science (New York, NY). 2015;347(6227):4339.CrossRef
2.
go back to reference Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature. 2008;451(7181):990–3.CrossRef Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature. 2008;451(7181):990–3.CrossRef
3.
go back to reference Liu K, Ai S, Song S, Zhu G, Tian F, Li H, et al. Population movement, city closure in Wuhan and geographical expansion of the 2019-nCoV pneumonia infection in China in January 2020. Clin Infect Dis. 2020;71(16):2045–51.CrossRef Liu K, Ai S, Song S, Zhu G, Tian F, Li H, et al. Population movement, city closure in Wuhan and geographical expansion of the 2019-nCoV pneumonia infection in China in January 2020. Clin Infect Dis. 2020;71(16):2045–51.CrossRef
4.
go back to reference Lai S, Ruktanonchai NW, Zhou L, Prosper O, Luo W, Floyd JR, et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature. 2020;585(7825):410–3.CrossRef Lai S, Ruktanonchai NW, Zhou L, Prosper O, Luo W, Floyd JR, et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature. 2020;585(7825):410–3.CrossRef
5.
go back to reference Siedner MJ, Harling G, Reynolds Z, Gilbert RF, Haneuse S, Venkataramani AS, et al. Social distancing to slow the US COVID-19 epidemic: Longitudinal pretest-posttest comparison group study. PLoS Med. 2020;17(8):e1003244.CrossRef Siedner MJ, Harling G, Reynolds Z, Gilbert RF, Haneuse S, Venkataramani AS, et al. Social distancing to slow the US COVID-19 epidemic: Longitudinal pretest-posttest comparison group study. PLoS Med. 2020;17(8):e1003244.CrossRef
6.
go back to reference Holt H, Talaei M, Greenig M, Zenner D, Symons J, Relton C, et al. Risk factors for developing COVID-19: a population-based longitudinal study (COVIDENCE UK). Thorax. 2021;10:1–13. Holt H, Talaei M, Greenig M, Zenner D, Symons J, Relton C, et al. Risk factors for developing COVID-19: a population-based longitudinal study (COVIDENCE UK). Thorax. 2021;10:1–13.
7.
go back to reference Liu Q, Lu P, Shen Y, Li C, Wang J, Zhu L, et al. Collateral Impact of the Covid-19 Pandemic on Tuberculosis Control in Jiangsu Province, China. Clin Infect Dis. 2020;73(3):542–4.CrossRef Liu Q, Lu P, Shen Y, Li C, Wang J, Zhu L, et al. Collateral Impact of the Covid-19 Pandemic on Tuberculosis Control in Jiangsu Province, China. Clin Infect Dis. 2020;73(3):542–4.CrossRef
8.
go back to reference Wu D, Liu Q, Wu T, Wang D, Lu J. The impact of COVID-19 control measures on the morbidity of varicella, herpes zoster, rubella and measles in Guangzhou, China. Immunity Inflam Dis. 2020;8(4):844–6.CrossRef Wu D, Liu Q, Wu T, Wang D, Lu J. The impact of COVID-19 control measures on the morbidity of varicella, herpes zoster, rubella and measles in Guangzhou, China. Immunity Inflam Dis. 2020;8(4):844–6.CrossRef
9.
go back to reference Olsen SJ, Azziz-Baumgartner E, Budd AP, Brammer L, Sullivan S, Pineda RF, et al. Decreased Influenza Activity During the COVID-19 Pandemic - United States, Australia, Chile, and South Africa, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(37):1305–9.CrossRef Olsen SJ, Azziz-Baumgartner E, Budd AP, Brammer L, Sullivan S, Pineda RF, et al. Decreased Influenza Activity During the COVID-19 Pandemic - United States, Australia, Chile, and South Africa, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(37):1305–9.CrossRef
10.
go back to reference Alene KA, Wangdi K, Clements ACA. Impact of the COVID-19 Pandemic on Tuberculosis Control: An Overview. Trop Med Infect Dis. 2020;5(3):123.CrossRef Alene KA, Wangdi K, Clements ACA. Impact of the COVID-19 Pandemic on Tuberculosis Control: An Overview. Trop Med Infect Dis. 2020;5(3):123.CrossRef
11.
go back to reference Tian M, Feng D, Chen X, Chen Y, Sun X, Xiang Y, et al. China’s rural public health system performance: a cross-sectional study. PLoS ONE. 2013;8(12):e83822.CrossRef Tian M, Feng D, Chen X, Chen Y, Sun X, Xiang Y, et al. China’s rural public health system performance: a cross-sectional study. PLoS ONE. 2013;8(12):e83822.CrossRef
12.
go back to reference Wang L, Wang Y, Jin S, Wu Z, Chin DP, Koplan JP, et al. Emergence and control of infectious diseases in China. Lancet. 2008;372(9649):1598–605.CrossRef Wang L, Wang Y, Jin S, Wu Z, Chin DP, Koplan JP, et al. Emergence and control of infectious diseases in China. Lancet. 2008;372(9649):1598–605.CrossRef
17.
go back to reference Chen W, Wang Q, Peng Z, Zhang R, Chen Q, Feng L, et al. Early containment strategies and core measures for prevention and control of novel coronavirus pneumonia in China. Zhonghua Yu Fang Yi Xue Za Zhi. 2020;54(3):239–44.PubMed Chen W, Wang Q, Peng Z, Zhang R, Chen Q, Feng L, et al. Early containment strategies and core measures for prevention and control of novel coronavirus pneumonia in China. Zhonghua Yu Fang Yi Xue Za Zhi. 2020;54(3):239–44.PubMed
22.
go back to reference Lee HH, Lin SH. Effects of COVID-19 Prevention Measures on Other Common Infections. Taiwan Emerg Infect Dis. 2020;26(10):2509–11.CrossRef Lee HH, Lin SH. Effects of COVID-19 Prevention Measures on Other Common Infections. Taiwan Emerg Infect Dis. 2020;26(10):2509–11.CrossRef
23.
go back to reference Mahdi H, Alqahtani A, Barasheed O, Alemam A, Alhakami M, Gadah I, et al. Hand Hygiene knowledge and practices among domestic hajj pilgrims: implications for future mass gatherings amidst COVID-19. Trop Med Infect Dis. 2020;5(4):160.CrossRef Mahdi H, Alqahtani A, Barasheed O, Alemam A, Alhakami M, Gadah I, et al. Hand Hygiene knowledge and practices among domestic hajj pilgrims: implications for future mass gatherings amidst COVID-19. Trop Med Infect Dis. 2020;5(4):160.CrossRef
24.
go back to reference Mohan SV, Hemalatha M, Kopperi H, Ranjith I, Kumar AK. SARS-CoV-2 in environmental perspective: Occurrence, persistence, surveillance, inactivation and challenges. Chem Eng J. 2021;405:126893.CrossRef Mohan SV, Hemalatha M, Kopperi H, Ranjith I, Kumar AK. SARS-CoV-2 in environmental perspective: Occurrence, persistence, surveillance, inactivation and challenges. Chem Eng J. 2021;405:126893.CrossRef
25.
go back to reference Wong NS, Leung CC, Lee SS. Abrupt Subsidence of Seasonal Influenza after COVID-19 Outbreak, Hong Kong. China Emerg Infect Dis. 2020;26(11):2753–5.CrossRef Wong NS, Leung CC, Lee SS. Abrupt Subsidence of Seasonal Influenza after COVID-19 Outbreak, Hong Kong. China Emerg Infect Dis. 2020;26(11):2753–5.CrossRef
26.
go back to reference Bhatt M, Soneja M, Gupta N. Approach to acute febrile illness during the COVID-19 pandemic. Drug discover Therap. 2020;14(6):282–6.CrossRef Bhatt M, Soneja M, Gupta N. Approach to acute febrile illness during the COVID-19 pandemic. Drug discover Therap. 2020;14(6):282–6.CrossRef
27.
go back to reference Amimo F, Lambert B, Magit A. What does the COVID-19 pandemic mean for HIV, tuberculosis, and malaria control? Trop Med Health. 2020;48:32.CrossRef Amimo F, Lambert B, Magit A. What does the COVID-19 pandemic mean for HIV, tuberculosis, and malaria control? Trop Med Health. 2020;48:32.CrossRef
28.
go back to reference Rogerson SJ, Beeson JG, Laman M, Poespoprodjo JR, William T, Simpson JA, et al. Identifying and combating the impacts of COVID-19 on malaria. BMC Med. 2020;18(1):239.CrossRef Rogerson SJ, Beeson JG, Laman M, Poespoprodjo JR, William T, Simpson JA, et al. Identifying and combating the impacts of COVID-19 on malaria. BMC Med. 2020;18(1):239.CrossRef
29.
go back to reference Weiss DJ, Bertozzi-Villa A, Rumisha SF, Amratia P, Arambepola R, Battle KE, et al. Indirect effects of the COVID-19 pandemic on malaria intervention coverage, morbidity, and mortality in Africa: a geospatial modelling analysis. Lancet Infect Dis. 2021;21(1):59–69.CrossRef Weiss DJ, Bertozzi-Villa A, Rumisha SF, Amratia P, Arambepola R, Battle KE, et al. Indirect effects of the COVID-19 pandemic on malaria intervention coverage, morbidity, and mortality in Africa: a geospatial modelling analysis. Lancet Infect Dis. 2021;21(1):59–69.CrossRef
30.
go back to reference Shi B, Zheng J, Xia S, Lin S, Wang X, Liu Y, et al. Accessing the syndemic of COVID-19 and malaria intervention in Africa. Infect Dis Poverty. 2021;10(1):5.CrossRef Shi B, Zheng J, Xia S, Lin S, Wang X, Liu Y, et al. Accessing the syndemic of COVID-19 and malaria intervention in Africa. Infect Dis Poverty. 2021;10(1):5.CrossRef
31.
go back to reference Inzaule SC, Ondoa P, Loembe MM, Tebeje YK, Ouma AEO, Nkengasong JN. COVID-19 and indirect health implications in Africa: Impact, mitigation measures, and lessons learned for improved disease control. PLoS Med. 2021;18(6):e1003666.CrossRef Inzaule SC, Ondoa P, Loembe MM, Tebeje YK, Ouma AEO, Nkengasong JN. COVID-19 and indirect health implications in Africa: Impact, mitigation measures, and lessons learned for improved disease control. PLoS Med. 2021;18(6):e1003666.CrossRef
Metadata
Title
Comparison of 19 major infectious diseases during COVID-19 epidemic and previous years in Zhejiang, implications for prevention measures
Authors
Haopeng Li
Feng Ling
Shiyu Zhang
Ying Liu
Chongjian Wang
Hualiang Lin
Jimin Sun
Yinglin Wu
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07301-w

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine