Skip to main content
Top
Published in: BMC Infectious Diseases 1/2019

Open Access 01-12-2019 | Antibiotic | Research article

Geographic surveillance of community associated MRSA infections in children using electronic health record data

Authors: Lilly Cheng Immergluck, Traci Leong, Khusdeep Malhotra, Trisha Chan Parker, Fatima Ali, Robert C. Jerris, George S. Rust

Published in: BMC Infectious Diseases | Issue 1/2019

Login to get access

Abstract

Background

Community- associated methicillin resistant Staphylococcus aureus (CA-MRSA) cause serious infections and rates continue to rise worldwide. Use of geocoded electronic health record (EHR) data to prevent spread of disease is limited in health service research. We demonstrate how geocoded EHR and spatial analyses can be used to identify risks for CA-MRSA in children, which are tied to place-based determinants and would not be uncovered using traditional EHR data analyses.

Methods

An epidemiology study was conducted on children from January 1, 2002 through December 31, 2010 who were treated for Staphylococcus aureus infections. A generalized estimated equations (GEE) model was developed and crude and adjusted odds ratios were based on S. aureus risks. We measured the risk of S. aureus as standardized incidence ratios (SIR) calculated within aggregated US 2010 Census tracts called spatially adaptive filters, and then created maps that differentiate the geographic patterns of antibiotic resistant and non-resistant forms of S. aureus.

Results

CA-MRSA rates increased at higher rates compared to non-resistant forms, p = 0.01. Children with no or public health insurance had higher odds of CA-MRSA infection. Black children were almost 1.5 times as likely as white children to have CA-MRSA infections (aOR 95% CI 1.44,1.75, p < 0.0001); this finding persisted at the block group level (p < 0.001) along with household crowding (p < 0.001). The youngest category of age (< 4 years) also had increased risk for CA-MRSA (aOR 1.65, 95%CI 1.48, 1.83, p < 0.0001). CA-MRSA encompasses larger areas with higher SIRs compared to non-resistant forms and were found in block groups with higher proportion of blacks (r = 0.517, p < 0.001), younger age (r = 0.137, p < 0.001), and crowding (r = 0.320, p < 0.001).

Conclusions

In the Atlanta MSA, the risk for CA-MRSA is associated with neighborhood-level measures of racial composition, household crowding, and age of children. Neighborhoods which have higher proportion of blacks, household crowding, and children < 4 years of age are at greatest risk. Understanding spatial relationship at a community level and how it relates to risks for antibiotic resistant infections is important to combat the growing numbers and spread of such infections like CA-MRSA.
Literature
1.
go back to reference Bazemore AW, Cottrell EK, Gold R, et al. “Community vital signs”: incorporating geocoded social determinants into electronic records to promote patient and population health. J Am Med Inform Assoc. 2016;23:407–12.CrossRef Bazemore AW, Cottrell EK, Gold R, et al. “Community vital signs”: incorporating geocoded social determinants into electronic records to promote patient and population health. J Am Med Inform Assoc. 2016;23:407–12.CrossRef
2.
go back to reference Gustafsson E, Ringberg H, Johansson P. MRSA in children from foreign countries adopted to Swedish families. Acta Paediatr. 2006;95:105–8.CrossRef Gustafsson E, Ringberg H, Johansson P. MRSA in children from foreign countries adopted to Swedish families. Acta Paediatr. 2006;95:105–8.CrossRef
3.
go back to reference Tirabassi M, Wadie G, Moriarty K, et al. Geographic information system (GIS) localization of community acquired MRSA soft tissue abscesses. J Pediatr Surg. 2005;40:962–6.CrossRef Tirabassi M, Wadie G, Moriarty K, et al. Geographic information system (GIS) localization of community acquired MRSA soft tissue abscesses. J Pediatr Surg. 2005;40:962–6.CrossRef
4.
go back to reference Hota B, Ellenbogen C, Hayden MK, Aroutcheva A, Rice T, Weinstein R. Community-associated methicillin resistant Staphylococcus aureus skin and soft tissue infections at a public hospital: do public housing and incarceration amplify transmission? Arch Int Med. 2007;167:1026–33.CrossRef Hota B, Ellenbogen C, Hayden MK, Aroutcheva A, Rice T, Weinstein R. Community-associated methicillin resistant Staphylococcus aureus skin and soft tissue infections at a public hospital: do public housing and incarceration amplify transmission? Arch Int Med. 2007;167:1026–33.CrossRef
5.
go back to reference Sandora T. Prevention of healthcare associated infections in children:new strategies and success stories. Curr Opin Infect Dis. 2010;23:300–5.CrossRef Sandora T. Prevention of healthcare associated infections in children:new strategies and success stories. Curr Opin Infect Dis. 2010;23:300–5.CrossRef
6.
go back to reference Klevens R, Morrison M, Nadle J, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007;298:1763–71.CrossRef Klevens R, Morrison M, Nadle J, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007;298:1763–71.CrossRef
7.
go back to reference Birkhead GS, Klompas M, Shah NR. Uses of electronic health records for public health surveillance to advance public health. Annual Rev Pub Health. 2015;36:345–59.CrossRef Birkhead GS, Klompas M, Shah NR. Uses of electronic health records for public health surveillance to advance public health. Annual Rev Pub Health. 2015;36:345–59.CrossRef
8.
go back to reference Miranda ML, Ferranti J, Strauss B, Neelon B, Califf RM. Geographic health information systems: a platform to support the ‘triple aim’. Health Aff. 2013;32:1608–15.CrossRef Miranda ML, Ferranti J, Strauss B, Neelon B, Califf RM. Geographic health information systems: a platform to support the ‘triple aim’. Health Aff. 2013;32:1608–15.CrossRef
9.
go back to reference Blatt AJ. Geospatial Medicine. Health, Science, and Place. In: Doe RK, editor. Geotechnologies and Environment Series: Springer; 2015. p. 101–10. Blatt AJ. Geospatial Medicine. Health, Science, and Place. In: Doe RK, editor. Geotechnologies and Environment Series: Springer; 2015. p. 101–10.
10.
go back to reference Bell CN, Bowie JV, Thorpe RJ Jr. Race and “hotspots” of preventable hospitalizations. J Health Dispar Res Pract. 2017;10:5. Bell CN, Bowie JV, Thorpe RJ Jr. Race and “hotspots” of preventable hospitalizations. J Health Dispar Res Pract. 2017;10:5.
11.
go back to reference Westgard B, Warren D. 240 hotspots of triple aim opportunity: identifying geographic clusters of potentially preventable emergency department visits and costs. Ann Emer Med Annals. 2014;64:S85–S6.CrossRef Westgard B, Warren D. 240 hotspots of triple aim opportunity: identifying geographic clusters of potentially preventable emergency department visits and costs. Ann Emer Med Annals. 2014;64:S85–S6.CrossRef
12.
go back to reference Horst MA, Coco AS. Observing the spread of common illnesses through a community: using geographic information systems (GIS) for surveillance. J Amer Board Fam Med. 2010;23:32–41.CrossRef Horst MA, Coco AS. Observing the spread of common illnesses through a community: using geographic information systems (GIS) for surveillance. J Amer Board Fam Med. 2010;23:32–41.CrossRef
13.
go back to reference Laranjo L, Rodrigues D, Pereira AM, Ribeiro RT, Boavida JM. Use of electronic health records and geographic information systems in public health surveillance of type 2 diabetes: a feasibility study. JMIR Pub Health Surv. 2016;2:e12.CrossRef Laranjo L, Rodrigues D, Pereira AM, Ribeiro RT, Boavida JM. Use of electronic health records and geographic information systems in public health surveillance of type 2 diabetes: a feasibility study. JMIR Pub Health Surv. 2016;2:e12.CrossRef
14.
go back to reference Spratt SE, Batch BC, Davis LP, et al. Methods and initial findings from the Durham diabetes coalition: integrating geospatial health technology and community interventions to reduce death and disability. J ClinTranslat Endocrin. 2015;2:26–36. Spratt SE, Batch BC, Davis LP, et al. Methods and initial findings from the Durham diabetes coalition: integrating geospatial health technology and community interventions to reduce death and disability. J ClinTranslat Endocrin. 2015;2:26–36.
15.
go back to reference Zhang K, McClure J, Elsayed S, Louie T, Conly J. Novel multiplex pcr assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Micro. 2005;43:5026–33.CrossRef Zhang K, McClure J, Elsayed S, Louie T, Conly J. Novel multiplex pcr assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Micro. 2005;43:5026–33.CrossRef
16.
go back to reference Naimi T, LeDell K, Como-Sabetti K, et al. Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA. 2003;290:2976–84.CrossRef Naimi T, LeDell K, Como-Sabetti K, et al. Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA. 2003;290:2976–84.CrossRef
17.
go back to reference Fridkin S, Hageman J, Morrison M, et al. Methicillin-resistant Staphylococcus aureus disease in three communities. New Engl J Med. 2005;352:1436–44.CrossRef Fridkin S, Hageman J, Morrison M, et al. Methicillin-resistant Staphylococcus aureus disease in three communities. New Engl J Med. 2005;352:1436–44.CrossRef
18.
go back to reference Groom A, Wolsey D, Naimi T, et al. Community-acquired methicillin-resistant Staphylococcus aureus in a rural American Indian community. JAMA. 2001;286:1201–5.CrossRef Groom A, Wolsey D, Naimi T, et al. Community-acquired methicillin-resistant Staphylococcus aureus in a rural American Indian community. JAMA. 2001;286:1201–5.CrossRef
19.
go back to reference Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Micro Rev. 2015;28:603–61.CrossRef Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Micro Rev. 2015;28:603–61.CrossRef
20.
go back to reference Limbago B, Fosheim G, Schoonover V, et al. Characterization of methicillin-resistant Staphylococcus aureus isolates collected in 2005 and 2006 from patients with invasive disease: a population-based analysis. J Clin Micro. 2005;47:1344–51.CrossRef Limbago B, Fosheim G, Schoonover V, et al. Characterization of methicillin-resistant Staphylococcus aureus isolates collected in 2005 and 2006 from patients with invasive disease: a population-based analysis. J Clin Micro. 2005;47:1344–51.CrossRef
21.
go back to reference Fritz S, Garbutt J, Elward A, Shannon W, Storch G. Prevalence of and risk factors for community-acquired methicillin-resistant and methicillin-sensitive Staphylococcus aureus colonization in children seen in a practice-based research network. Pediatr. 2008;121:1090–8.CrossRef Fritz S, Garbutt J, Elward A, Shannon W, Storch G. Prevalence of and risk factors for community-acquired methicillin-resistant and methicillin-sensitive Staphylococcus aureus colonization in children seen in a practice-based research network. Pediatr. 2008;121:1090–8.CrossRef
22.
go back to reference Fritz SA, Epplin EK, Garbutt J, Storch GA. Skin infection in children colonized with community-associated methicillin-resistant Staphylococcus aureus. J Inf Secur. 2009;59:394–401. Fritz SA, Epplin EK, Garbutt J, Storch GA. Skin infection in children colonized with community-associated methicillin-resistant Staphylococcus aureus. J Inf Secur. 2009;59:394–401.
23.
go back to reference Hota B, Lyles R, Rim J, et al. Predictors of clinical virulence in community-onset methicillin-resistant Staphylococcus aureus infections: the importance of USA300 and pneumonia. Clin Infect Dis. 2011;53:757–65.CrossRef Hota B, Lyles R, Rim J, et al. Predictors of clinical virulence in community-onset methicillin-resistant Staphylococcus aureus infections: the importance of USA300 and pneumonia. Clin Infect Dis. 2011;53:757–65.CrossRef
24.
go back to reference Landrum M, Neumann C, Cook C, et al. Epidemiology of Staphylococcus aureus blood and skin and soft tissue infections in the US military health system, 2005-2010. JAMA. 2012;308:50–9.CrossRef Landrum M, Neumann C, Cook C, et al. Epidemiology of Staphylococcus aureus blood and skin and soft tissue infections in the US military health system, 2005-2010. JAMA. 2012;308:50–9.CrossRef
26.
go back to reference Gorwitz R, Jernigan D, Powers J, Jernigan J. Strategies for clinical management of MRSA in the community: summary of an experts’ meeting convened by the Centers for Disease Control and Prevention. Atlanta: Centers for Disease Control and Prevention; 2006. p. 1–23. Gorwitz R, Jernigan D, Powers J, Jernigan J. Strategies for clinical management of MRSA in the community: summary of an experts’ meeting convened by the Centers for Disease Control and Prevention. Atlanta: Centers for Disease Control and Prevention; 2006. p. 1–23.
27.
go back to reference Miller L, Eells S, Taylor A, et al. Staphylococcus aureus colonization among household contacts of patients with skin infections: risk factors, strain discordance, and complex ecology. Clin Infect Dis. 2012;54:1523–35.CrossRef Miller L, Eells S, Taylor A, et al. Staphylococcus aureus colonization among household contacts of patients with skin infections: risk factors, strain discordance, and complex ecology. Clin Infect Dis. 2012;54:1523–35.CrossRef
28.
go back to reference Institute Clinical and Laboratory Standards. Performance standards for antimicrobial susceptibiity testing. Wayne: Clinical Laboratory Standards Insitute; 2008. Institute Clinical and Laboratory Standards. Performance standards for antimicrobial susceptibiity testing. Wayne: Clinical Laboratory Standards Insitute; 2008.
29.
go back to reference Jones-Webb R, Wall M. Neighborhood Racial/Ethnic Concentration, Social Disadvantage, and Homicide Risk: An Ecological Analysis of 10 U.S. Cities. J Urb Health. 2008;85:662–75.CrossRef Jones-Webb R, Wall M. Neighborhood Racial/Ethnic Concentration, Social Disadvantage, and Homicide Risk: An Ecological Analysis of 10 U.S. Cities. J Urb Health. 2008;85:662–75.CrossRef
30.
go back to reference Tsai PJ, Lin ML, Chu CM, Perng CH. Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006. BMC Public Health. 2009;9:464.CrossRef Tsai PJ, Lin ML, Chu CM, Perng CH. Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006. BMC Public Health. 2009;9:464.CrossRef
31.
go back to reference Cohen SS, Sonderman JS, Mumma MT, Signorello LB, Blot WJ. Individual and neighborhood-level socioeconomic characteristics in relation to smoking prevalence among black and white adults in the southeastern United States: a cross-sectional study. BMC Pub Health. 2011;11:877.CrossRef Cohen SS, Sonderman JS, Mumma MT, Signorello LB, Blot WJ. Individual and neighborhood-level socioeconomic characteristics in relation to smoking prevalence among black and white adults in the southeastern United States: a cross-sectional study. BMC Pub Health. 2011;11:877.CrossRef
32.
go back to reference US Census Bureau. Census 2010. Summary File 1. DP-1. Profile of General Demographic Characteristics: 2010 by block group, “Georgia”. American FactFinder. Washington D.C: U.S. Census Bureau; 2010. US Census Bureau. Census 2010. Summary File 1. DP-1. Profile of General Demographic Characteristics: 2010 by block group, “Georgia”. American FactFinder. Washington D.C: U.S. Census Bureau; 2010.
33.
go back to reference Manson S, Schroeder J, Riper DV, Ruggles S. IPUMS National Historical Geographic Information System. In: Minnesota Univ, ed. version 12.0 ed. Minneapolis: University of Minnesota; 2017. Manson S, Schroeder J, Riper DV, Ruggles S. IPUMS National Historical Geographic Information System. In: Minnesota Univ, ed. version 12.0 ed. Minneapolis: University of Minnesota; 2017.
36.
go back to reference US Census Bureau. Census 2000. Poverty thresholds for 2000 by size of family and number of related children under 18 years. Washington D.C. US Census Bureau. Census 2000. Poverty thresholds for 2000 by size of family and number of related children under 18 years. Washington D.C.
37.
go back to reference Banthin J, Selden T. Income measurement in the medical expenditure panel survey. Rockville: Agency for Healthcare Research and Quality; 2006. Banthin J, Selden T. Income measurement in the medical expenditure panel survey. Rockville: Agency for Healthcare Research and Quality; 2006.
38.
go back to reference Brewer C. Basic mapping principles for visualizing Cancer data using geographic information systems (GIS). Am J Prev Med. 2006;30:S25–36.CrossRef Brewer C. Basic mapping principles for visualizing Cancer data using geographic information systems (GIS). Am J Prev Med. 2006;30:S25–36.CrossRef
39.
go back to reference Myers D, Baer W, Choi S. The changing problem of overcrowded housing. J Am Plan Assoc. 1996;1996:6266–84. Myers D, Baer W, Choi S. The changing problem of overcrowded housing. J Am Plan Assoc. 1996;1996:6266–84.
40.
go back to reference Krieger N, Chen J, Waterman P, Soobader M, Subramanian S, Carson R. Geocoding and monitoring of US socieoeconomic inequalities in mortality and cancer incidence: does the choice of area-based measure and geographic level matter. Am J Epid. 2002;156:471–82.CrossRef Krieger N, Chen J, Waterman P, Soobader M, Subramanian S, Carson R. Geocoding and monitoring of US socieoeconomic inequalities in mortality and cancer incidence: does the choice of area-based measure and geographic level matter. Am J Epid. 2002;156:471–82.CrossRef
41.
go back to reference Talbot TO, Kulldorff M, Forand SP, Haley VB. Evaluation of spatial filters to create smoothed maps of health data. Stat Med. 2000;19:2399–408.CrossRef Talbot TO, Kulldorff M, Forand SP, Haley VB. Evaluation of spatial filters to create smoothed maps of health data. Stat Med. 2000;19:2399–408.CrossRef
42.
go back to reference Choynowski M. Maps based on probabilities. J Amer Stat Assoc. 1959;54:385–8.CrossRef Choynowski M. Maps based on probabilities. J Amer Stat Assoc. 1959;54:385–8.CrossRef
43.
go back to reference Matthews K. Spatiotemporal correlation analysis of colorectal cancer late-stage incidence, mortality, and survival: Iowa, 1999 to 2010: University of Iowa; 2018. p. 15–29. Matthews K. Spatiotemporal correlation analysis of colorectal cancer late-stage incidence, mortality, and survival: Iowa, 1999 to 2010: University of Iowa; 2018. p. 15–29.
44.
go back to reference Pickle LW, Mungiole M, Jones GK, White AA. Exploring spatial patterns of mortality: the new atlas of United States mortality. Stat Med. 1999;18:3211–20.CrossRef Pickle LW, Mungiole M, Jones GK, White AA. Exploring spatial patterns of mortality: the new atlas of United States mortality. Stat Med. 1999;18:3211–20.CrossRef
45.
go back to reference Kafadar K. Smoothing geographical data, particularly rates of disease. Stat Med. 1996;15:2539–60.CrossRef Kafadar K. Smoothing geographical data, particularly rates of disease. Stat Med. 1996;15:2539–60.CrossRef
46.
go back to reference Mungiole M, Pickle LW, Simonson KH. Application of a weighted head-banging algorithm to mortality data maps. Stat Med. 1999;18:3201–9.CrossRef Mungiole M, Pickle LW, Simonson KH. Application of a weighted head-banging algorithm to mortality data maps. Stat Med. 1999;18:3201–9.CrossRef
47.
go back to reference Langford IH. Using empirical Bayes estimates in the geographical analysis of disease risk. Area. 1994:142–9. Langford IH. Using empirical Bayes estimates in the geographical analysis of disease risk. Area. 1994:142–9.
48.
go back to reference Casper M, Kramer MR, Quick H, Schieb LJ, Vaughan AS, Greer S. Changes in the geographic patterns of heart disease mortality in the United States: 1973 to 2010. Circulat. 2016;133:1171–80.CrossRef Casper M, Kramer MR, Quick H, Schieb LJ, Vaughan AS, Greer S. Changes in the geographic patterns of heart disease mortality in the United States: 1973 to 2010. Circulat. 2016;133:1171–80.CrossRef
49.
go back to reference Vaughan AS, Quick H, Pathak EB, Kramer MR, Casper M. Disparities in temporal and geographic patterns of declining heart disease mortality by race and sex in the United States, 1973–2010. J Amer Heart Assoc. 2015;4:e002567.CrossRef Vaughan AS, Quick H, Pathak EB, Kramer MR, Casper M. Disparities in temporal and geographic patterns of declining heart disease mortality by race and sex in the United States, 1973–2010. J Amer Heart Assoc. 2015;4:e002567.CrossRef
50.
go back to reference Cai Q, Rushton G, Bhaduri B. Validation tests of an improved kernel density estimation method for identifying disease clusters. J Geograph Sys. 2012;14:243–64.CrossRef Cai Q, Rushton G, Bhaduri B. Validation tests of an improved kernel density estimation method for identifying disease clusters. J Geograph Sys. 2012;14:243–64.CrossRef
51.
go back to reference Centers for Diseaese Control and Prevention. Active Bacterial Core Surveillance (ABCs) Report Emerging Infections Program Network Methicillin-Resistant Staphylococcus aureus, 2008. Atlanta: Centers for Disease Control and Prevention. p. 2008. Centers for Diseaese Control and Prevention. Active Bacterial Core Surveillance (ABCs) Report Emerging Infections Program Network Methicillin-Resistant Staphylococcus aureus, 2008. Atlanta: Centers for Disease Control and Prevention. p. 2008.
52.
go back to reference Rossini CJ, Moriarty KP, Tashjian DB, Garb JL, Wait RB. Geographic distribution of community-acquired methicillin-resistant Staphylococcus aureus soft tissue infections. J Pediatr Surg. 2011;46:1089–92.CrossRef Rossini CJ, Moriarty KP, Tashjian DB, Garb JL, Wait RB. Geographic distribution of community-acquired methicillin-resistant Staphylococcus aureus soft tissue infections. J Pediatr Surg. 2011;46:1089–92.CrossRef
53.
go back to reference Parrish KL, Hogan PG, Clemons AA 2nd, Fritz SA. Spatial relationships among public places frequented by families plagued by methicillin-resistant Staphylococcus aureus. BMC Res Notes. 2018;11:692.CrossRef Parrish KL, Hogan PG, Clemons AA 2nd, Fritz SA. Spatial relationships among public places frequented by families plagued by methicillin-resistant Staphylococcus aureus. BMC Res Notes. 2018;11:692.CrossRef
54.
go back to reference Hayes MM. The building blocks of Atlanta: racial residential segregation and neighborhood inequity. Atlanta: Georgia State University; 2006. Hayes MM. The building blocks of Atlanta: racial residential segregation and neighborhood inequity. Atlanta: Georgia State University; 2006.
55.
go back to reference Strauss BW, Valentiner EM, Bhattacharya S, et al. Improving population representation through geographic health information systems: mapping the MURDOCK study. Amer J Translat Res. 2014;6:402. Strauss BW, Valentiner EM, Bhattacharya S, et al. Improving population representation through geographic health information systems: mapping the MURDOCK study. Amer J Translat Res. 2014;6:402.
56.
go back to reference Dixon BE, Gibson PJ, Comer KF, Rosenman M. Measuring population health using electronic health records: exploring biases and representativeness in a community health information exchange. 15th World Congress on Health and Biomedical Informatics, MEDINFO 2015: IOS Press; 2015. Dixon BE, Gibson PJ, Comer KF, Rosenman M. Measuring population health using electronic health records: exploring biases and representativeness in a community health information exchange. 15th World Congress on Health and Biomedical Informatics, MEDINFO 2015: IOS Press; 2015.
57.
go back to reference Charlton M, Fotheringham S, Brunsdon C. Georgaphically weighted regression. UK: Economic and Social Research Council. Charlton M, Fotheringham S, Brunsdon C. Georgaphically weighted regression. UK: Economic and Social Research Council.
Metadata
Title
Geographic surveillance of community associated MRSA infections in children using electronic health record data
Authors
Lilly Cheng Immergluck
Traci Leong
Khusdeep Malhotra
Trisha Chan Parker
Fatima Ali
Robert C. Jerris
George S. Rust
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Antibiotic
Published in
BMC Infectious Diseases / Issue 1/2019
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-3682-3

Other articles of this Issue 1/2019

BMC Infectious Diseases 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine