Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

Identity and validity of conserved B cell epitopes of filovirus glycoprotein: towards rapid diagnostic testing for Ebola and possibly Marburg virus disease

Authors: Peace Babirye, Carol Musubika, Samuel Kirimunda, Robert Downing, Julian J Lutwama, Edward K Mbidde, Jacqueline Weyer, Janusz T Paweska, Moses L Joloba, Misaki Wayengera

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

Ebolavirus and Marburgvirus are genera of the virus family Filoviridae. Filoviruses cause rare but fatal viral hemorrhagic fevers (VHFs) in remote villages of equatorial Africa with potential for regional and international spread. Point-of-care (POC) rapid diagnostic tests (RDTs) are critical for early epidemic detection, reponse and control. There are 2 RDTs for Zaire ebolavirus (EBOV), but not other Ebolavirus spp. or Marburg marburgvirus (MARV). We validate 3 conserved B cell epitopes of filovirus glycoprotein (GP) using ebola virus diseases (EVD) survivor samples, towards devising pan-filovirus RDTs.

Methods

In-silico Immuno-informatics:- (a) multiple and basic local alignments of amino-acid sequences of filovirus (4 Ebolavirus spp. & MARV) Gp1, 2 and epitope prediction and conservation analyses within context of ClusterW, BLAST-P and the immune epitope database analysis resource (IEDB-AR); alongside (b) in-vitro enzyme immuno-assays (EIAs) for SUDV Gp1, 2 antigen and host-specific antibodies (IgM and IgG) among 94 gamma irradiated EVD survivor serum and 9 negative controls.

Results

Linear B cell epitopes were present across the entire length of all Gp1, 2, most lying in the region between amino acids positioned 350 and 500. Three seperate epitopes 97/80_GAFFLYDRLAST, 39_YEAGEWAENCY and 500_CGLRQLANETTQALQLFLRATTELR (designated UG-Filo-Peptide− 1, 2 and 3 respectively) were conserved within all studied filovirus species Gp1, 2. Gp1, 2 host specific IgM levels were comparably low (av. ODs < 0.04 [95% CI: 0.02837 to 0.04033]) among the 9 negative controls and 57 survivor samples analyzed. Host specific IgG levels, on the other hand, were elevated (av. ODs > 1.7525 [95% CI: 0.3010 to 3.1352]) among the 92 survivor samples relative to the 9 negative controls (av. ODs < 0.2.321 [95% CI: -0.7596 to 0.5372]). Filovirus Gp1, 2 antigen was not detected [av. ODs < 0.20] within EVD survivor serum relative to recombinant protein positive controls [av. ODs = 0.50].

Conclusions

These conserved B cell epitopes of filovirus Gp1, 2 and their derivative antibodies are promising for research and development of RDTs for EVD, with potential for extension to detect MVD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Feldmann H, Slenczka W, Klenk HD. Emerging and reemerging of filoviruses. Arch Virol Suppl. 1996;11:77–100.PubMed Feldmann H, Slenczka W, Klenk HD. Emerging and reemerging of filoviruses. Arch Virol Suppl. 1996;11:77–100.PubMed
2.
go back to reference Siegert R, Shu HL, Slenczka HL, Peters D, Muller G. The aetiology of an unknown human infection transmitted by monkeys (preliminary communication). Ger Med Mon. 1968;13:1–2.PubMed Siegert R, Shu HL, Slenczka HL, Peters D, Muller G. The aetiology of an unknown human infection transmitted by monkeys (preliminary communication). Ger Med Mon. 1968;13:1–2.PubMed
3.
go back to reference Towner JS, Sealy TK, Khristova ML, CG A˜o, Conlan S, et al. Newly discovered Ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog. 2008;4(11):e1000212.CrossRef Towner JS, Sealy TK, Khristova ML, CG A˜o, Conlan S, et al. Newly discovered Ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog. 2008;4(11):e1000212.CrossRef
4.
go back to reference Bausch DG, Nichol ST, Muyembe-Tamfum JJ, Borchert M, Rollin PE, et al. Marburg hemorrhagic fever associated with multiple genetic lineages of virus. N Engl J Med. 2006;355(9):909–19.CrossRef Bausch DG, Nichol ST, Muyembe-Tamfum JJ, Borchert M, Rollin PE, et al. Marburg hemorrhagic fever associated with multiple genetic lineages of virus. N Engl J Med. 2006;355(9):909–19.CrossRef
5.
go back to reference Ikegami T, Calaor AB, Miranda ME, Niikura M, Saijo M, Kurane I, et al. Genome structure of Ebola virus subtype Reston: differences among Ebola subtypes. Arch Virol. 2001;146:2021–7.CrossRef Ikegami T, Calaor AB, Miranda ME, Niikura M, Saijo M, Kurane I, et al. Genome structure of Ebola virus subtype Reston: differences among Ebola subtypes. Arch Virol. 2001;146:2021–7.CrossRef
6.
go back to reference Burk R, Bollinger L, Johnson JC, Wada J, Radoshitzky SR, Palacios G, Bavari S, Jahrling PB, Kuhn JH. Neglected filoviruses. FEMS Microbiol Rev. 2016;40(4):494–519.CrossRef Burk R, Bollinger L, Johnson JC, Wada J, Radoshitzky SR, Palacios G, Bavari S, Jahrling PB, Kuhn JH. Neglected filoviruses. FEMS Microbiol Rev. 2016;40(4):494–519.CrossRef
7.
go back to reference Pourrut X, Kumulungui B, Wittmann T, Moussavou G, Delicat A, Yaba P, et al. The natural history of Ebola virus in Africa. Microbes Infect. 2005;7:1005–14.CrossRef Pourrut X, Kumulungui B, Wittmann T, Moussavou G, Delicat A, Yaba P, et al. The natural history of Ebola virus in Africa. Microbes Infect. 2005;7:1005–14.CrossRef
8.
go back to reference Saijo M, Niikura M, Ikegami T, Kurane I, Kurata T, Morikawa S. Laboratory diagnostic systems for Ebola and Marburg hemorrhagic fevers developed with recombinant proteins. Clin Vaccine Immunol. 2006;13:444–51.CrossRef Saijo M, Niikura M, Ikegami T, Kurane I, Kurata T, Morikawa S. Laboratory diagnostic systems for Ebola and Marburg hemorrhagic fevers developed with recombinant proteins. Clin Vaccine Immunol. 2006;13:444–51.CrossRef
9.
go back to reference Jones SM, Feldmann H, Ströher U, Geisbert JB, Fernando L, Grolla A, et al. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nature Med. 2005;11:786–90.CrossRef Jones SM, Feldmann H, Ströher U, Geisbert JB, Fernando L, Grolla A, et al. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nature Med. 2005;11:786–90.CrossRef
10.
go back to reference Lee JE, MLl F, Hessell AJ, Oswald WB, Burton DR, et al. Structure of the ebola virus glycoprotein bound to an antibody from a human survivor. Nature. 2008;454:177.CrossRef Lee JE, MLl F, Hessell AJ, Oswald WB, Burton DR, et al. Structure of the ebola virus glycoprotein bound to an antibody from a human survivor. Nature. 2008;454:177.CrossRef
11.
go back to reference Geisbert TW, Bausch DG, Feldmann H. Prospects for immunisation against Marburg and Ebola viruses. Rev Med Virol. 2010;20(6):344–57.CrossRef Geisbert TW, Bausch DG, Feldmann H. Prospects for immunisation against Marburg and Ebola viruses. Rev Med Virol. 2010;20(6):344–57.CrossRef
12.
go back to reference Huang JY, Louis FJ, Dixon MG, Sefu M, Kightlinger L, Martel LD, et al. Notes from the field. Baseline assessment of use of Ebola rapid diagnostic tests—Forecariah, Guniea, October-November 2015. MMWR Morb Mortal Rep. 2016;65:328–9.CrossRef Huang JY, Louis FJ, Dixon MG, Sefu M, Kightlinger L, Martel LD, et al. Notes from the field. Baseline assessment of use of Ebola rapid diagnostic tests—Forecariah, Guniea, October-November 2015. MMWR Morb Mortal Rep. 2016;65:328–9.CrossRef
13.
go back to reference Broadhurst MJ, Brooks TJG, Pollock NR. Diagnosis of Ebola virus disease: past, present and future. Clin Microbial Rev. 2016;29(4):773–93.CrossRef Broadhurst MJ, Brooks TJG, Pollock NR. Diagnosis of Ebola virus disease: past, present and future. Clin Microbial Rev. 2016;29(4):773–93.CrossRef
14.
go back to reference Chan SY, Speck RF, Ma MC, Goldsmith MA. Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Virol. 2000;74:4933–7.CrossRef Chan SY, Speck RF, Ma MC, Goldsmith MA. Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Virol. 2000;74:4933–7.CrossRef
15.
go back to reference Ito H, Watanabe S, Sanchez A, Whitt MA, Kawaoka Y. Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. J Virol. 1999;73:8907–12.PubMedPubMedCentral Ito H, Watanabe S, Sanchez A, Whitt MA, Kawaoka Y. Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. J Virol. 1999;73:8907–12.PubMedPubMedCentral
16.
go back to reference Yang ZY, Duckers HJ, Sullivan NJ, Sanchez A, Nabel EG, Nabel GJ. Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med. 2000;6:886–9.CrossRef Yang ZY, Duckers HJ, Sullivan NJ, Sanchez A, Nabel EG, Nabel GJ. Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med. 2000;6:886–9.CrossRef
17.
go back to reference Alazard-Dany N, Volchkova V, Reynard O, Carbonnelle C, Dolnik O, Ottmann M, et al. Ebola virus glycoprotein GP is not cytotoxic when expressed constitutively at a moderate level. J Gen Virol. 2006;87(Pt 5):1247–57.CrossRef Alazard-Dany N, Volchkova V, Reynard O, Carbonnelle C, Dolnik O, Ottmann M, et al. Ebola virus glycoprotein GP is not cytotoxic when expressed constitutively at a moderate level. J Gen Virol. 2006;87(Pt 5):1247–57.CrossRef
18.
go back to reference Jeffers SA, Sanders DA, Sanchez A. Covalent modifications of the ebola virus glycoprotein. J Virol. 2002;76:12463–72.CrossRef Jeffers SA, Sanders DA, Sanchez A. Covalent modifications of the ebola virus glycoprotein. J Virol. 2002;76:12463–72.CrossRef
19.
go back to reference Volchkov VE, Feldmann H, Volchkova VA, Klenk HD. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci U S A. 1998;95:5762–7.CrossRef Volchkov VE, Feldmann H, Volchkova VA, Klenk HD. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci U S A. 1998;95:5762–7.CrossRef
20.
go back to reference Sanchez A, Trappier SG, Mahy BW, Peters CJ, Nichol ST. The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci U S A. 1996;93:3602–7.CrossRef Sanchez A, Trappier SG, Mahy BW, Peters CJ, Nichol ST. The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci U S A. 1996;93:3602–7.CrossRef
21.
go back to reference Volchkov VE, Volchkova VA, StroÈher U, Becker S, Dolnik O, Cieplik M, et al. Proteolytic processing of Marburg virus glycoprotein. Virol. 2000;268:1–6.CrossRef Volchkov VE, Volchkova VA, StroÈher U, Becker S, Dolnik O, Cieplik M, et al. Proteolytic processing of Marburg virus glycoprotein. Virol. 2000;268:1–6.CrossRef
22.
go back to reference Dolnik O, Volchkova V, Garten W, Carbonnelle C, Becker S, Kahnt J, et al. Ectodomain shedding of the glycoprotein GP of Ebola virus. EMBO J. 2004;23:2175–84.CrossRef Dolnik O, Volchkova V, Garten W, Carbonnelle C, Becker S, Kahnt J, et al. Ectodomain shedding of the glycoprotein GP of Ebola virus. EMBO J. 2004;23:2175–84.CrossRef
23.
go back to reference Sanchez A, Trappier S, Stroher U, Nichol S, Bowen M, Feldmann H. Variation in the glycoprotein and VP35 genes of Marburg virus strains. Virol. 1998;240:138–46.CrossRef Sanchez A, Trappier S, Stroher U, Nichol S, Bowen M, Feldmann H. Variation in the glycoprotein and VP35 genes of Marburg virus strains. Virol. 1998;240:138–46.CrossRef
24.
go back to reference Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148.PubMed Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148.PubMed
25.
go back to reference Zhang Q, Wang P, Kim Y, Haste-Andersen P, Beaver J, Bourne PE, et al. Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res. 2008;36(Web Server):W513–8.CrossRef Zhang Q, Wang P, Kim Y, Haste-Andersen P, Beaver J, Bourne PE, et al. Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res. 2008;36(Web Server):W513–8.CrossRef
26.
go back to reference Korber B, LaBute M, Yusim K. Immunoinformatics comes of age. PLoS Comput Biol. 2006;2(6):e71.CrossRef Korber B, LaBute M, Yusim K. Immunoinformatics comes of age. PLoS Comput Biol. 2006;2(6):e71.CrossRef
27.
go back to reference Larsen JEP, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006;2:2.CrossRef Larsen JEP, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006;2:2.CrossRef
28.
go back to reference Gasteiger E, Hoogland C, Gattiker, Duvaud S, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook, edited by Walker JM. Humana Press; 2005: 571-607. Gasteiger E, Hoogland C, Gattiker, Duvaud S, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook, edited by Walker JM. Humana Press; 2005: 571-607.
29.
go back to reference Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.CrossRef Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.CrossRef
30.
go back to reference Marchler-Bauer A, Zheng C, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, et al. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 2011;39(Database issue):D225–9.CrossRef Marchler-Bauer A, Zheng C, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, et al. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 2011;39(Database issue):D225–9.CrossRef
31.
go back to reference Haste Andersen P, Nielsen M, Lund O. Prediction of B-cell epitopes using protein 3D structures. Protein Sci. 2006;15(11):2558–67.CrossRef Haste Andersen P, Nielsen M, Lund O. Prediction of B-cell epitopes using protein 3D structures. Protein Sci. 2006;15(11):2558–67.CrossRef
32.
go back to reference Wayengera M. Conserved B cell epitopes of filovirus glycoprotein and their use as either biomarkers or therapeutics and sub-unit vaccines for Ebola virus and marburg virus. World Intellecture Property Organization. 2016, International Application #:PCT/IB2014/066251: Pub #:WO/2016/079572 (Filing Date:21.11.2014). Wayengera M. Conserved B cell epitopes of filovirus glycoprotein and their use as either biomarkers or therapeutics and sub-unit vaccines for Ebola virus and marburg virus. World Intellecture Property Organization. 2016, International Application #:PCT/IB2014/066251: Pub #:WO/2016/079572 (Filing Date:21.11.2014).
33.
go back to reference Wayengera M, Kajumbula H, Kaddu-Mulindwa D, Byarugaba W, Olobo J. Proteomics of Marburg and Ebola glycoproteins: insights into their physicochemical similarities and irregularities. Afr J Biotechnol. 2009;8(17):4025–31. Wayengera M, Kajumbula H, Kaddu-Mulindwa D, Byarugaba W, Olobo J. Proteomics of Marburg and Ebola glycoproteins: insights into their physicochemical similarities and irregularities. Afr J Biotechnol. 2009;8(17):4025–31.
34.
go back to reference Gire SK, Goba A, Andersen KG, Sealfon RS, Park DJ, Kanneh L, et al. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science. 2014;345(6202):1369–72.CrossRef Gire SK, Goba A, Andersen KG, Sealfon RS, Park DJ, Kanneh L, et al. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science. 2014;345(6202):1369–72.CrossRef
35.
go back to reference Sobarzo A, Groseth A, Dolnik O, Becker S, Lutwama JJ, Perelman E, et al. Profile and persistence of the virus-specific neutralizing humoral immune response in human survivors of Sudan ebolavirus (Gulu). J Infect Dis. 2013;208(2):299–309.CrossRef Sobarzo A, Groseth A, Dolnik O, Becker S, Lutwama JJ, Perelman E, et al. Profile and persistence of the virus-specific neutralizing humoral immune response in human survivors of Sudan ebolavirus (Gulu). J Infect Dis. 2013;208(2):299–309.CrossRef
36.
go back to reference Sobarzo A, Perelman E, Groseth A, Groseth A, Dolnik O, Becker S, et al. Profiling the native specific human humoral immune response to Sudan ebolavirus strain Gulu by chemiluminescence enzyme-linked immunosorbent assay. Clin Vaccine Immunol. 2012;19:1844–52.CrossRef Sobarzo A, Perelman E, Groseth A, Groseth A, Dolnik O, Becker S, et al. Profiling the native specific human humoral immune response to Sudan ebolavirus strain Gulu by chemiluminescence enzyme-linked immunosorbent assay. Clin Vaccine Immunol. 2012;19:1844–52.CrossRef
37.
go back to reference Becquart P, Wauquier N, Mahlakoiv T, Nkoghe D, Padilla C, Souris M, et al. High prevalence of both humoral and cellular immunity to Zaire ebolavirus among rural populations in Gabon. PLoS One. 2010;5(2):e9126.CrossRef Becquart P, Wauquier N, Mahlakoiv T, Nkoghe D, Padilla C, Souris M, et al. High prevalence of both humoral and cellular immunity to Zaire ebolavirus among rural populations in Gabon. PLoS One. 2010;5(2):e9126.CrossRef
38.
go back to reference Sobarzo A, Ochayon DE, Lutwama JJ, Balinandi S, Guttman O, Marks RS, et al. Persistent Immune Responses after Ebola Virus Infection. N Eng J Med. 2014;369(5):492–3.CrossRef Sobarzo A, Ochayon DE, Lutwama JJ, Balinandi S, Guttman O, Marks RS, et al. Persistent Immune Responses after Ebola Virus Infection. N Eng J Med. 2014;369(5):492–3.CrossRef
39.
go back to reference Rowe AK, Bertolli J, Khan AS, Mukunu R, Muyembe-Tamfum JJ, Bressler D, et al. Clinical, Virologic, and immunologic follow-up of convalescent Ebola hemorrhagic fever patients and their household contacts, Kikwit, Democratic Republic of the Congo. J Infect Dis. 1999;179(Suppl 1):S28–35.CrossRef Rowe AK, Bertolli J, Khan AS, Mukunu R, Muyembe-Tamfum JJ, Bressler D, et al. Clinical, Virologic, and immunologic follow-up of convalescent Ebola hemorrhagic fever patients and their household contacts, Kikwit, Democratic Republic of the Congo. J Infect Dis. 1999;179(Suppl 1):S28–35.CrossRef
40.
go back to reference MacNeil A, Rollin PE. Ebola and Marburg hemorrhagic fevers: neglected tropical diseases? PLoS Negl Trop Dis. 2012;6(6):e1546.CrossRef MacNeil A, Rollin PE. Ebola and Marburg hemorrhagic fevers: neglected tropical diseases? PLoS Negl Trop Dis. 2012;6(6):e1546.CrossRef
Metadata
Title
Identity and validity of conserved B cell epitopes of filovirus glycoprotein: towards rapid diagnostic testing for Ebola and possibly Marburg virus disease
Authors
Peace Babirye
Carol Musubika
Samuel Kirimunda
Robert Downing
Julian J Lutwama
Edward K Mbidde
Jacqueline Weyer
Janusz T Paweska
Moses L Joloba
Misaki Wayengera
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3409-x

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine