Skip to main content
Top
Published in: BMC Anesthesiology 1/2020

Open Access 01-12-2020 | Acute Respiratory Distress-Syndrome | Research article

Validation of RESP and PRESERVE score for ARDS patients with pumpless extracorporeal lung assist (pECLA)

Authors: Jan Petran, Thorsten Muelly, Rolf Dembinski, Niklas Steuer, Jutta Arens, Gernot Marx, Ruedger Kopp

Published in: BMC Anesthesiology | Issue 1/2020

Login to get access

Abstract

Background

RESP score and PRESERVE score have been validated for veno-venous Extracorporeal Membrane Oxygenation in severe ARDS to assume individual mortality risk. ARDS patients with low-flow Extracorporeal Carbon Dioxide Removal, especially pumpless Extracorporeal Lung Assist, have also a high mortality rate, but there are no validated specific or general outcome scores. This retrospective study tested whether these established specific risk scores can be validated for pumpless Extracorporeal Lung Assist in ARDS patients in comparison to a general organ dysfunction score, the SOFA score.

Methods

In a retrospective single center cohort study we calculated and evaluated RESP, PRESERVE, and SOFA score for 73 ARDS patients with pumpless Extracorporeal Lung Assist treated between 2002 and 2016 using the XENIOS iLA Membrane Ventilator. Six patients had a mild, 40 a moderate and 27 a severe ARDS according to the Berlin criteria. Demographic data and hospital mortality as well as ventilator settings, hemodynamic parameters, and blood gas measurement before and during extracorporeal therapy were recorded.

Results

Pumpless Extracorporeal Lung Assist of mechanical ventilated ARDS patients resulted in an optimized lung protective ventilation, significant reduction of PaCO2, and compensation of acidosis. Scoring showed a mean score of alive versus deceased patients of 3 ± 1 versus − 1 ± 1 for RESP (p < 0.01), 3 ± 0 versus 6 ± 0 for PRESERVE (p < 0.05) and 8 ± 1 versus 10 ± 1 for SOFA (p < 0.05). Using receiver operating characteristic curves, area under the curve (AUC) was 0.78 (95% confidence interval (CI) 0.67–0.89, p < 0.01) for RESP score, 0.80 (95% CI 0.70–0.90, p < 0.0001) for PRESERVE score and 0.66 (95% CI 0.53–0.79, p < 0.05) for SOFA score.

Conclusions

RESP and PRESERVE scores were superior to SOFA, as non-specific critical care score. Although scores were developed for veno-venous ECMO, we could validate RESP and PRESERVE score for pumpless Extracorporeal Lung Assist. In conclusion, RESP and PRESERVE score are suitable to estimate mortality risk of ARDS patients with an arterio-venous pumpless Extracorporeal Carbon Dioxide Removal.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schmidt M, Bailey M, Sheldrake J, Hodgson C, Aubron C, Rycus PT, et al. Predicting survival after extracorporeal membrane oxygenation for severe acute respiratory failure. The respiratory extracorporeal membrane oxygenation survival prediction (RESP) score. Am J Respir Crit Care Med. 2014;189(11):1374–82.CrossRef Schmidt M, Bailey M, Sheldrake J, Hodgson C, Aubron C, Rycus PT, et al. Predicting survival after extracorporeal membrane oxygenation for severe acute respiratory failure. The respiratory extracorporeal membrane oxygenation survival prediction (RESP) score. Am J Respir Crit Care Med. 2014;189(11):1374–82.CrossRef
2.
go back to reference Schmidt M, Zogheib E, Roze H, Repesse X, Lebreton G, Luyt CE, et al. The PRESERVE mortality risk score and analysis of long-term outcomes after extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. Intensive Care Med. 2013;39(10):1704–13.CrossRef Schmidt M, Zogheib E, Roze H, Repesse X, Lebreton G, Luyt CE, et al. The PRESERVE mortality risk score and analysis of long-term outcomes after extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. Intensive Care Med. 2013;39(10):1704–13.CrossRef
3.
go back to reference Combes A, Brodie D, Bartlett R, Brochard L, Brower R, Conrad S, et al. Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients. Am J Respir Crit Care Med. 2014;190(5):488–96.CrossRef Combes A, Brodie D, Bartlett R, Brochard L, Brower R, Conrad S, et al. Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients. Am J Respir Crit Care Med. 2014;190(5):488–96.CrossRef
4.
go back to reference Terragni P, Maiolo G, Ranieri VM. Role and potentials of low-flow CO (2) removal system in mechanical ventilation. Curr Opin Crit Care. 2012;18(1):93–8.CrossRef Terragni P, Maiolo G, Ranieri VM. Role and potentials of low-flow CO (2) removal system in mechanical ventilation. Curr Opin Crit Care. 2012;18(1):93–8.CrossRef
5.
go back to reference Bein T, Weber F, Philipp A, Prasser C, Pfeifer M, Schmid FX, et al. A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia. Crit Care Med. 2006;34(5):1372–7.CrossRef Bein T, Weber F, Philipp A, Prasser C, Pfeifer M, Schmid FX, et al. A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia. Crit Care Med. 2006;34(5):1372–7.CrossRef
6.
go back to reference Kopp R, Bensberg R, Wardeh M, Rossaint R, Kuhlen R, Henzler D. Pumpless arterio-venous extracorporeal lung assist compared with veno-venous extracorporeal membrane oxygenation during experimental lung injury. Br J Anaesth. 2012;108(5):745–53.CrossRef Kopp R, Bensberg R, Wardeh M, Rossaint R, Kuhlen R, Henzler D. Pumpless arterio-venous extracorporeal lung assist compared with veno-venous extracorporeal membrane oxygenation during experimental lung injury. Br J Anaesth. 2012;108(5):745–53.CrossRef
7.
go back to reference Liebold A, Reng CM, Philipp A, Pfeifer M, Birnbaum DE. Pumpless extracorporeal lung assist - experience with the first 20 cases. Eur J Cardiothorac Surg. 2000;17(5):608–13.CrossRef Liebold A, Reng CM, Philipp A, Pfeifer M, Birnbaum DE. Pumpless extracorporeal lung assist - experience with the first 20 cases. Eur J Cardiothorac Surg. 2000;17(5):608–13.CrossRef
8.
go back to reference Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707–10.CrossRef Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707–10.CrossRef
9.
go back to reference Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.CrossRef Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.CrossRef
10.
go back to reference Klinzing S, Wenger U, Steiger P, Starck CT, Wilhelm M, Schuepbach RA, et al. External validation of scores proposed for estimation of survival probability of patients with severe adult respiratory distress syndrome undergoing extracorporeal membrane oxygenation therapy: a retrospective study. Crit Care. 2015;19:142.CrossRef Klinzing S, Wenger U, Steiger P, Starck CT, Wilhelm M, Schuepbach RA, et al. External validation of scores proposed for estimation of survival probability of patients with severe adult respiratory distress syndrome undergoing extracorporeal membrane oxygenation therapy: a retrospective study. Crit Care. 2015;19:142.CrossRef
11.
go back to reference Enger T, Philipp A, Videm V, Lubnow M, Wahba A, Fischer M, et al. Prediction of mortality in adult patients with severe acute lung failure receiving veno-venous extracorporeal membrane oxygenation: a prospective observational study. Crit Care. 2014;18(2):R67.CrossRef Enger T, Philipp A, Videm V, Lubnow M, Wahba A, Fischer M, et al. Prediction of mortality in adult patients with severe acute lung failure receiving veno-venous extracorporeal membrane oxygenation: a prospective observational study. Crit Care. 2014;18(2):R67.CrossRef
12.
go back to reference Huang L, Li T, Xu L, Hu XM, Duan DW, Li ZB, et al. Performance of multiple risk assessment tools to predict mortality for adult respiratory distress syndrome with extracorporeal membrane oxygenation therapy: an external validation study based on Chinese single-center data. Chin Med J. 2016;129(14):1688–95.CrossRef Huang L, Li T, Xu L, Hu XM, Duan DW, Li ZB, et al. Performance of multiple risk assessment tools to predict mortality for adult respiratory distress syndrome with extracorporeal membrane oxygenation therapy: an external validation study based on Chinese single-center data. Chin Med J. 2016;129(14):1688–95.CrossRef
13.
go back to reference Hsin CH, Wu MY, Huang CC, Kao KC, Lin PJ. Venovenous extracorporeal membrane oxygenation in adult respiratory failure: scores for mortality prediction. Medicine (Baltimore). 2016;95(25):e3989.CrossRef Hsin CH, Wu MY, Huang CC, Kao KC, Lin PJ. Venovenous extracorporeal membrane oxygenation in adult respiratory failure: scores for mortality prediction. Medicine (Baltimore). 2016;95(25):e3989.CrossRef
14.
go back to reference Lee S, Yeo HJ, Yoon SH, Lee SE, Cho WH, Jeon DS, et al. Validity of outcome prediction scoring Systems in Korean Patients with severe adult respiratory distress syndrome receiving extracorporeal membrane oxygenation therapy. J Korean Med Sci. 2016;31(6):932–8.CrossRef Lee S, Yeo HJ, Yoon SH, Lee SE, Cho WH, Jeon DS, et al. Validity of outcome prediction scoring Systems in Korean Patients with severe adult respiratory distress syndrome receiving extracorporeal membrane oxygenation therapy. J Korean Med Sci. 2016;31(6):932–8.CrossRef
15.
go back to reference Brunet J, Valette X, Buklas D, Lehoux P, Verrier P, Sauneuf B, et al. Predicting survival after extracorporeal membrane oxygenation for ARDS: an external validation of RESP and PRESERVE scores. Respir Care. 2017;62(7):912–9.CrossRef Brunet J, Valette X, Buklas D, Lehoux P, Verrier P, Sauneuf B, et al. Predicting survival after extracorporeal membrane oxygenation for ARDS: an external validation of RESP and PRESERVE scores. Respir Care. 2017;62(7):912–9.CrossRef
16.
go back to reference Kang HR, Kim DJ, Lee J, Cho YJ, Kim JS, Lee SM, et al. A comparative analysis of survival prediction using PRESERVE and RESP scores. Ann Thorac Surg. 2017;104(3):797–803.CrossRef Kang HR, Kim DJ, Lee J, Cho YJ, Kim JS, Lee SM, et al. A comparative analysis of survival prediction using PRESERVE and RESP scores. Ann Thorac Surg. 2017;104(3):797–803.CrossRef
17.
go back to reference The Ards Definition Task Force. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–33. The Ards Definition Task Force. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–33.
18.
go back to reference Kopp R, Kuhlen R, Max M, Rossaint R. Evidence-based medicine in the therapy of the acute respiratory distress syndrome. Intensive Care Med. 2002;28(3):244–55.CrossRef Kopp R, Kuhlen R, Max M, Rossaint R. Evidence-based medicine in the therapy of the acute respiratory distress syndrome. Intensive Care Med. 2002;28(3):244–55.CrossRef
19.
go back to reference Combes A, Slutsky AS, Brodie D. ECMO for severe acute respiratory distress syndrome. N Engl J Med. 2018;379(11):1091–2.PubMed Combes A, Slutsky AS, Brodie D. ECMO for severe acute respiratory distress syndrome. N Engl J Med. 2018;379(11):1091–2.PubMed
20.
go back to reference Bein T, Weber-Carstens S, Goldmann A, Muller T, Staudinger T, Brederlau J, et al. Lower tidal volume strategy ( approximately 3 ml/kg) combined with extracorporeal CO2 removal versus 'conventional' protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med. 2013;39(5):847–56.CrossRef Bein T, Weber-Carstens S, Goldmann A, Muller T, Staudinger T, Brederlau J, et al. Lower tidal volume strategy ( approximately 3 ml/kg) combined with extracorporeal CO2 removal versus 'conventional' protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med. 2013;39(5):847–56.CrossRef
21.
go back to reference Beitler JR, Sands SA, Loring SH, Owens RL, Malhotra A, Spragg RG, et al. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med. 2016;42(9):1427–36.CrossRef Beitler JR, Sands SA, Loring SH, Owens RL, Malhotra A, Spragg RG, et al. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med. 2016;42(9):1427–36.CrossRef
22.
go back to reference McNamee JJ, Gillies MA, Barrett NA, Agus AM, Beale R, Bentley A, et al. Protective vEntilation with veno-venouS lung assisT in respiratory failure: a protocol for a multicentre randomised controlled trial of extracorporeal carbon dioxide removal in patients with acute hypoxaemic respiratory failure. J Intensive Care Soc. 2017;18(2):159–69.CrossRef McNamee JJ, Gillies MA, Barrett NA, Agus AM, Beale R, Bentley A, et al. Protective vEntilation with veno-venouS lung assisT in respiratory failure: a protocol for a multicentre randomised controlled trial of extracorporeal carbon dioxide removal in patients with acute hypoxaemic respiratory failure. J Intensive Care Soc. 2017;18(2):159–69.CrossRef
23.
go back to reference Nin N, Muriel A, Penuelas O, Brochard L, Lorente JA, Ferguson ND, et al. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med. 2017;43(2):200–8.CrossRef Nin N, Muriel A, Penuelas O, Brochard L, Lorente JA, Ferguson ND, et al. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med. 2017;43(2):200–8.CrossRef
Metadata
Title
Validation of RESP and PRESERVE score for ARDS patients with pumpless extracorporeal lung assist (pECLA)
Authors
Jan Petran
Thorsten Muelly
Rolf Dembinski
Niklas Steuer
Jutta Arens
Gernot Marx
Ruedger Kopp
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2020
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-020-01010-0

Other articles of this Issue 1/2020

BMC Anesthesiology 1/2020 Go to the issue