Skip to main content
Top
Published in: BMC Anesthesiology 1/2020

Open Access 01-12-2020 | Anesthetics | Research article

Methylation in HT22 cells and primary hippocampal neurons with and without isoflurane exposure

Authors: Stefanie Klenke, Christian Specking, Maike Stegen, Andrea Engler, Jürgen Peters

Published in: BMC Anesthesiology | Issue 1/2020

Login to get access

Abstract

Background

Epigenetic modulation may play a role in anesthesia related phenotypes, such as cognitive impairment or memory loss, especially with exposure to anesthetics in the vulnerable phase of brain development. While isoflurane anesthesia can evoke neuroinflammation and neuroapoptosis in young animals, we investigated in a permanent hippocampal cell line (HT22) and in primary hippocampal neurons in an a priori in vitro analysis, whether isoflurane exposure 1) evokes DNA methylation changes in genes involved in apoptosis and inflammation, and 2) results observed in a permanent hippocampal cell line are comparable to primary hippocampal neurons. In case of methylation changes in specific genes, (3) mRNA analysis was performed to assess possible effects on gene expression.

Methods

HT22 cells and primary mouse hippocampal neurons were exposed to 3% isoflurane for 4 h and DNA (each 6 single experiments) and RNA (3 single independent experiments) were extracted. Methylation analysis (EpiTect Methyl II PCR Array Systems, Qiagen) included the methylation status of 66 genes involved in apoptosis, cytokine production, inflammatory response, and autoimmunity. Quantitative Real-Time PCR was performed using the Quantitect SYBR Green Kit on a Step One Plus.

Results

Methylation status was markedly different between immortalized HT22 cells and cultured primary hippocampal neurons without isoflurane exposure. Of 66 genes investigated, 29 were methylated to a significantly greater degree in HT22 cells compared to primary hippocampal neurons. In cultured primary hippocampal neurons, in contrast, there was a greater methylation in several genes involved in inflammation, accompanied with significant downregulation of C-X-C motif chemokine 12 with isoflurane exposure (p = 0.023).

Conclusions

We demonstrate marked differences in gene methylation between HT22 cells and cultured primary hippocampal neurons without isoflurane exposure, with a greater methylation of several genes involved in inflammation upon isoflurane exposure and significant downregulation of Cxcl12 mRNA expression in primary hippocampal neurons. Accordingly, further investigations of anesthesia related DNA methylation should be performed with special consideration being given to the choice of cells targeted for such investigations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pascual M, Do Couto BR, Alfonso-Loeches S, Aguilar MA, Rodriguez-Arias M, Guerri C. Changes in histone acetylation in the prefrontal cortex of ethanol-exposed adolescent rats are associated with ethanol-induced place conditioning. Neuropharmacology. 2012;62(7):2309–19.CrossRef Pascual M, Do Couto BR, Alfonso-Loeches S, Aguilar MA, Rodriguez-Arias M, Guerri C. Changes in histone acetylation in the prefrontal cortex of ethanol-exposed adolescent rats are associated with ethanol-induced place conditioning. Neuropharmacology. 2012;62(7):2309–19.CrossRef
2.
go back to reference Guo W, Crossey EL, Zhang L, Zucca S, George OL, Valenzuela CF, Zhao X. Alcohol exposure decreases CREB binding protein expression and histone acetylation in the developing cerebellum. PLoS One. 2011;6(5):e19351.CrossRef Guo W, Crossey EL, Zhang L, Zucca S, George OL, Valenzuela CF, Zhao X. Alcohol exposure decreases CREB binding protein expression and histone acetylation in the developing cerebellum. PLoS One. 2011;6(5):e19351.CrossRef
3.
go back to reference Murawski NJ, Klintsova AY, Stanton ME. Neonatal alcohol exposure and the hippocampus in developing male rats: effects on behaviorally induced CA1 c-Fos expression, CA1 pyramidal cell number, and contextual fear conditioning. Neuroscience. 2012;206:89–99.CrossRef Murawski NJ, Klintsova AY, Stanton ME. Neonatal alcohol exposure and the hippocampus in developing male rats: effects on behaviorally induced CA1 c-Fos expression, CA1 pyramidal cell number, and contextual fear conditioning. Neuroscience. 2012;206:89–99.CrossRef
4.
go back to reference Mori K, Iijima N, Higo S, Aikawa S, Matsuo I, Takumi K, Sakamoto A, Ozawa H. Epigenetic suppression of mouse Per2 expression in the suprachiasmatic nucleus by the inhalational anesthetic, sevoflurane. PLoS One. 2014;9(1):e87319.CrossRef Mori K, Iijima N, Higo S, Aikawa S, Matsuo I, Takumi K, Sakamoto A, Ozawa H. Epigenetic suppression of mouse Per2 expression in the suprachiasmatic nucleus by the inhalational anesthetic, sevoflurane. PLoS One. 2014;9(1):e87319.CrossRef
5.
go back to reference Dalla Massara L, Osuru HP, Oklopcic A, Milanovic D, Joksimovic SM, Caputo V, DiGruccio MR, Ori C, Wang G, Todorovic SM, et al. General anesthesia causes epigenetic histone modulation of c-Fos and brain-derived Neurotrophic factor, target genes important for neuronal development in the immature rat Hippocampus. Anesthesiology. 2016;124(6):1311–27.CrossRef Dalla Massara L, Osuru HP, Oklopcic A, Milanovic D, Joksimovic SM, Caputo V, DiGruccio MR, Ori C, Wang G, Todorovic SM, et al. General anesthesia causes epigenetic histone modulation of c-Fos and brain-derived Neurotrophic factor, target genes important for neuronal development in the immature rat Hippocampus. Anesthesiology. 2016;124(6):1311–27.CrossRef
6.
go back to reference Ju LS, Jia M, Sun J, Sun XR, Zhang H, Ji MH, Yang JJ, Wang ZY. Hypermethylation of hippocampal synaptic plasticity-related genes is involved in neonatal Sevoflurane exposure-induced cognitive impairments in rats. Neurotox Res. 2016;29(2):243–55.CrossRef Ju LS, Jia M, Sun J, Sun XR, Zhang H, Ji MH, Yang JJ, Wang ZY. Hypermethylation of hippocampal synaptic plasticity-related genes is involved in neonatal Sevoflurane exposure-induced cognitive impairments in rats. Neurotox Res. 2016;29(2):243–55.CrossRef
7.
go back to reference Shen X, Dong Y, Xu Z, Wang H, Miao C, Soriano SG, Sun D, Baxter MG, Zhang Y, Xie Z. Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology. 2013;118(3):502–15.CrossRef Shen X, Dong Y, Xu Z, Wang H, Miao C, Soriano SG, Sun D, Baxter MG, Zhang Y, Xie Z. Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology. 2013;118(3):502–15.CrossRef
8.
go back to reference Lee BH, Chan JT, Hazarika O, Vutskits L, Sall JW. Early exposure to volatile anesthetics impairs long-term associative learning and recognition memory. PLoS One. 2014;9(8):e105340.CrossRef Lee BH, Chan JT, Hazarika O, Vutskits L, Sall JW. Early exposure to volatile anesthetics impairs long-term associative learning and recognition memory. PLoS One. 2014;9(8):e105340.CrossRef
9.
go back to reference Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23(3):876–82.CrossRef Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23(3):876–82.CrossRef
10.
go back to reference Fredriksson A, Ponten E, Gordh T, Eriksson P. Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type a receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology. 2007;107(3):427–36.CrossRef Fredriksson A, Ponten E, Gordh T, Eriksson P. Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type a receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology. 2007;107(3):427–36.CrossRef
11.
go back to reference Klenke S, Renckhoff K, Engler A, Peters J, Frey UH. Easy-to-use strategy for reference gene selection in quantitative real-time PCR experiments. Naunyn Schmiedeberg’s Arch Pharmacol. 2016;389(12):1353–66.CrossRef Klenke S, Renckhoff K, Engler A, Peters J, Frey UH. Easy-to-use strategy for reference gene selection in quantitative real-time PCR experiments. Naunyn Schmiedeberg’s Arch Pharmacol. 2016;389(12):1353–66.CrossRef
12.
go back to reference Karatzas PS, Mantzaris GJ, Safioleas M, Gazouli M. DNA methylation profile of genes involved in inflammation and autoimmunity in inflammatory bowel disease. Medicine (Baltimore). 2014;93(28):e309.CrossRef Karatzas PS, Mantzaris GJ, Safioleas M, Gazouli M. DNA methylation profile of genes involved in inflammation and autoimmunity in inflammatory bowel disease. Medicine (Baltimore). 2014;93(28):e309.CrossRef
13.
go back to reference Pereira NB, ACM DC, Campos K, Costa S, Diniz MG, Gomez RS, Gomes CC. DNA methylation polymerase chain reaction (PCR) array of apoptosis-related genes in pleomorphic adenomas of the salivary glands. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;124(6):554–60.CrossRef Pereira NB, ACM DC, Campos K, Costa S, Diniz MG, Gomez RS, Gomes CC. DNA methylation polymerase chain reaction (PCR) array of apoptosis-related genes in pleomorphic adenomas of the salivary glands. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;124(6):554–60.CrossRef
14.
go back to reference Tran S, Wang Y, Lamba P, Zhou X, Boehm U, Bernard DJ. The CpG island in the murine foxl2 proximal promoter is differentially methylated in primary and immortalized cells. PLoS One. 2013;8(10):e76642.CrossRef Tran S, Wang Y, Lamba P, Zhou X, Boehm U, Bernard DJ. The CpG island in the murine foxl2 proximal promoter is differentially methylated in primary and immortalized cells. PLoS One. 2013;8(10):e76642.CrossRef
15.
go back to reference Smiraglia DJ, Rush LJ, Fruhwald MC, Dai Z, Held WA, Costello JF, Lang JC, Eng C, Li B, Wright FA, et al. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum Mol Genet. 2001;10(13):1413–9.CrossRef Smiraglia DJ, Rush LJ, Fruhwald MC, Dai Z, Held WA, Costello JF, Lang JC, Eng C, Li B, Wright FA, et al. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum Mol Genet. 2001;10(13):1413–9.CrossRef
16.
go back to reference Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, Cross MK, Williams BA, Stamatoyannopoulos JA, Crawford GE, et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 2013;23(3):555–67.CrossRef Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, Cross MK, Williams BA, Stamatoyannopoulos JA, Crawford GE, et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 2013;23(3):555–67.CrossRef
17.
go back to reference Ji M, Dong L, Jia M, Liu W, Zhang M, Ju L, Yang J, Xie Z, Yang J. Epigenetic enhancement of brain-derived neurotrophic factor signaling pathway improves cognitive impairments induced by isoflurane exposure in aged rats. Mol Neurobiol. 2014;50(3):937–44.CrossRef Ji M, Dong L, Jia M, Liu W, Zhang M, Ju L, Yang J, Xie Z, Yang J. Epigenetic enhancement of brain-derived neurotrophic factor signaling pathway improves cognitive impairments induced by isoflurane exposure in aged rats. Mol Neurobiol. 2014;50(3):937–44.CrossRef
18.
go back to reference Momcilovic M, Mostarica-Stojkovic M, Miljkovic D. CXCL12 in control of neuroinflammation. Immunol Res. 2012;52(1–2):53–63.CrossRef Momcilovic M, Mostarica-Stojkovic M, Miljkovic D. CXCL12 in control of neuroinflammation. Immunol Res. 2012;52(1–2):53–63.CrossRef
19.
go back to reference Nagasawa T, Nakajima T, Tachibana K, Iizasa H, Bleul CC, Yoshie O, Matsushima K, Yoshida N, Springer TA, Kishimoto T. Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proc Natl Acad Sci U S A. 1996;93(25):14726–9.CrossRef Nagasawa T, Nakajima T, Tachibana K, Iizasa H, Bleul CC, Yoshie O, Matsushima K, Yoshida N, Springer TA, Kishimoto T. Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proc Natl Acad Sci U S A. 1996;93(25):14726–9.CrossRef
20.
go back to reference Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998;393(6685):595–9.CrossRef Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998;393(6685):595–9.CrossRef
21.
go back to reference Prendergast CT, Anderton SM. Immune cell entry to central nervous system--current understanding and prospective therapeutic targets. Endocr Metab Immune Disord Drug Targets. 2009;9(4):315–27.CrossRef Prendergast CT, Anderton SM. Immune cell entry to central nervous system--current understanding and prospective therapeutic targets. Endocr Metab Immune Disord Drug Targets. 2009;9(4):315–27.CrossRef
22.
go back to reference Chung IY, Norris JG, Benveniste EN. Differential tumor necrosis factor alpha expression by astrocytes from experimental allergic encephalomyelitis-susceptible and -resistant rat strains. J Exp Med. 1991;173(4):801–11.CrossRef Chung IY, Norris JG, Benveniste EN. Differential tumor necrosis factor alpha expression by astrocytes from experimental allergic encephalomyelitis-susceptible and -resistant rat strains. J Exp Med. 1991;173(4):801–11.CrossRef
23.
go back to reference Constantinescu CS, Hilliard B, Ventura E, Wysocka M, Showe L, Lavi E, Fujioka T, Scott P, Trinchieri G, Rostami A. Modulation of susceptibility and resistance to an autoimmune model of multiple sclerosis in prototypically susceptible and resistant strains by neutralization of interleukin-12 and interleukin-4, respectively. Clin Immunol. 2001;98(1):23–30.CrossRef Constantinescu CS, Hilliard B, Ventura E, Wysocka M, Showe L, Lavi E, Fujioka T, Scott P, Trinchieri G, Rostami A. Modulation of susceptibility and resistance to an autoimmune model of multiple sclerosis in prototypically susceptible and resistant strains by neutralization of interleukin-12 and interleukin-4, respectively. Clin Immunol. 2001;98(1):23–30.CrossRef
24.
go back to reference Cautain B, Damoiseaux J, Bernard I, van Straaten H, van Breda VP, Boneu B, Druet P, Saoudi A. Essential role of TGF-beta in the natural resistance to experimental allergic encephalomyelitis in rats. Eur J Immunol. 2001;31(4):1132–40.CrossRef Cautain B, Damoiseaux J, Bernard I, van Straaten H, van Breda VP, Boneu B, Druet P, Saoudi A. Essential role of TGF-beta in the natural resistance to experimental allergic encephalomyelitis in rats. Eur J Immunol. 2001;31(4):1132–40.CrossRef
25.
go back to reference Segal BM, Dwyer BK, Shevach EM. An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J Exp Med. 1998;187(4):537–46.CrossRef Segal BM, Dwyer BK, Shevach EM. An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J Exp Med. 1998;187(4):537–46.CrossRef
26.
go back to reference Hansen TG, Lonnqvist PA. The rise and fall of anaesthesia-related neurotoxicity and the immature developing human brain. Acta Anaesthesiol Scand. 2016;60(3):280–3.CrossRef Hansen TG, Lonnqvist PA. The rise and fall of anaesthesia-related neurotoxicity and the immature developing human brain. Acta Anaesthesiol Scand. 2016;60(3):280–3.CrossRef
27.
go back to reference Istaphanous GK, Howard J, Nan X, Hughes EA, McCann JC, McAuliffe JJ, Danzer SC, Loepke AW. Comparison of the neuroapoptotic properties of equipotent anesthetic concentrations of desflurane, isoflurane, or sevoflurane in neonatal mice. Anesthesiology. 2011;114(3):578–87.CrossRef Istaphanous GK, Howard J, Nan X, Hughes EA, McCann JC, McAuliffe JJ, Danzer SC, Loepke AW. Comparison of the neuroapoptotic properties of equipotent anesthetic concentrations of desflurane, isoflurane, or sevoflurane in neonatal mice. Anesthesiology. 2011;114(3):578–87.CrossRef
Metadata
Title
Methylation in HT22 cells and primary hippocampal neurons with and without isoflurane exposure
Authors
Stefanie Klenke
Christian Specking
Maike Stegen
Andrea Engler
Jürgen Peters
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2020
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-020-00981-4

Other articles of this Issue 1/2020

BMC Anesthesiology 1/2020 Go to the issue