Skip to main content
Top
Published in: Journal of Ophthalmic Inflammation and Infection 1/2019

Open Access 01-12-2019 | Silicone | Original research

Does ophthalmic-grade silicone oil possess antimicrobial properties?

Authors: Vivek Pravin Dave, Joveeta Joseph, Priyanka Jayabhasker, Rajeev Reddy Pappuru, Avinash Pathengay, Taraprasad Das

Published in: Journal of Ophthalmic Inflammation and Infection | Issue 1/2019

Login to get access

Abstract

Purpose

To test the antimicrobial properties of silicon oil (Aurosil 1000 cSt, Aurosil Plus 5000 cSt) on in vitro growth of common microorganisms causing endophthalmitis.

Materials and methods

Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, multi-drug resistant (MDR) strain of Klebsiella pneumoniae, Escherichia coli, Candida albicans, and Aspergillus flavus were prepared to 0.5 McFarland turbidity. The bacteria and fungi were inoculated into the silicone oils, brain heart infusion (BHI) broth for bacteria and Sabouraud dextrose agar (SDA) broth for fungi, respectively, and cultured aerobically for 30 days. From each sample, 10 μl was plated onto nutrient agar and potato dextrose agar (PDA) for testing growth of bacteria and fungi respectively. Cultures from specimens, overnight incubation, and CFU counting were repeated on days 1, 3, 5, 7, 14, 21, 24, and 30. Negative controls were brain heart infusion and physiologic saline as well as silicone oils without any inoculations.

Results

All bacteria showed a decrease in CFUs by the fifth day and eliminated between 21 and 30 days in silicone oil. The silicon oil, irrespective of its viscosity, had only fungistatic effect up to 30 days. Colony-forming units of microorganisms remained stable in physiologic saline during the study. In BHI and Sabouraud broth, both bacteria and fungi showed a growth pattern that was compatible with the growth curve of microorganisms.

Conclusion

Medical-grade silicone oil used in ophthalmology exhibited in vitro bactericidal and fungistatic activity over 30 days. Insertion of silicone oil in vitrectomy for endophthalmitis, when required, could supplement the antimicrobial activities of intravitreal antibiotics in management of endophthalmitis.
Literature
1.
go back to reference Kertes PJ, Peyman GA (2001) Use of silicone oil in vitreous surgery. In: Peyman GA, Meffert SA, Conway MD, Chou F (eds) Vitreoretinal surgical techniques. Martin Dunitz, Londres, pp 193–120 Kertes PJ, Peyman GA (2001) Use of silicone oil in vitreous surgery. In: Peyman GA, Meffert SA, Conway MD, Chou F (eds) Vitreoretinal surgical techniques. Martin Dunitz, Londres, pp 193–120
2.
go back to reference Parel JM, Milne P, Gaultier S, Jallet V, Villain F (2006) Silicon oils: physicochemiproperties. In: Ryan SJ (ed) Retina, 4th edn. Mosby, St. Louis, pp 2191–2210CrossRef Parel JM, Milne P, Gaultier S, Jallet V, Villain F (2006) Silicon oils: physicochemiproperties. In: Ryan SJ (ed) Retina, 4th edn. Mosby, St. Louis, pp 2191–2210CrossRef
3.
go back to reference Bali E, Huyghe PH, Caspers L, Libert J (2003) Vitrectomy and silicone oil in the treatment of acute endophthalmitis. Preliminary results Bull Soc Belge Ophtalmol 288:9–14 Bali E, Huyghe PH, Caspers L, Libert J (2003) Vitrectomy and silicone oil in the treatment of acute endophthalmitis. Preliminary results Bull Soc Belge Ophtalmol 288:9–14
4.
go back to reference Ozdamar A, Araz C, Ozturk R, Akin E, Karacorlu M, Ercikan C (1999) In vitro antimicrobial activity of silicone oil against endophthalmitis-causing agents. Retina. 19(2):122–126CrossRef Ozdamar A, Araz C, Ozturk R, Akin E, Karacorlu M, Ercikan C (1999) In vitro antimicrobial activity of silicone oil against endophthalmitis-causing agents. Retina. 19(2):122–126CrossRef
5.
go back to reference Soheilian M, Mazareei M, Mohammadpour M, Rahmani B (2006) Comparison of silicon oil removal with various viscosities after complex retinal detachment surgery. BMC Ophthalmol 6:21CrossRef Soheilian M, Mazareei M, Mohammadpour M, Rahmani B (2006) Comparison of silicon oil removal with various viscosities after complex retinal detachment surgery. BMC Ophthalmol 6:21CrossRef
6.
go back to reference Soheilian M, Rafati N, Mohebbi MR, Yazdani S, Habibabadi HF, Feghhi M, Shahriary HA, Eslamipour J, Piri N, Peyman GA, Traumatic Endophthalmitis Trial Research Group (2007) Prophylaxis of acute posttraumatic bacterial endophthalmitis: a multicenter, randomized clinical trial of intraocular antibiotic injection, report 2. Arch Ophthalmol 125(4):460–465CrossRef Soheilian M, Rafati N, Mohebbi MR, Yazdani S, Habibabadi HF, Feghhi M, Shahriary HA, Eslamipour J, Piri N, Peyman GA, Traumatic Endophthalmitis Trial Research Group (2007) Prophylaxis of acute posttraumatic bacterial endophthalmitis: a multicenter, randomized clinical trial of intraocular antibiotic injection, report 2. Arch Ophthalmol 125(4):460–465CrossRef
7.
go back to reference Han DP, Wisniewski SR, Wilson LA et al (1996) Spectrum and susceptibilities of microbiologic isolates in the endophthalmitis vitrectomy study. Am J Ophthalmol 122:1–17CrossRef Han DP, Wisniewski SR, Wilson LA et al (1996) Spectrum and susceptibilities of microbiologic isolates in the endophthalmitis vitrectomy study. Am J Ophthalmol 122:1–17CrossRef
8.
go back to reference Kunimoto DY, Das T, Sharma S, Jalali S, Majji AB, Gopinathan U et al (1999) Microbiologic spectrum and susceptibility of isolates: part 1. Postoperative Endophthalmitis. Am J Ophthalmol 128:240–242CrossRef Kunimoto DY, Das T, Sharma S, Jalali S, Majji AB, Gopinathan U et al (1999) Microbiologic spectrum and susceptibility of isolates: part 1. Postoperative Endophthalmitis. Am J Ophthalmol 128:240–242CrossRef
9.
go back to reference Dave VP, Pathengay A, Nishant K, Pappuru RR, Sharma S, Sharma P et al (2017) Clinical presentation, risk factors and outcomes of ceftazidime-resistant Gram-negative endophthalmitis. Clin Exp Ophthalmol 45:254–260CrossRef Dave VP, Pathengay A, Nishant K, Pappuru RR, Sharma S, Sharma P et al (2017) Clinical presentation, risk factors and outcomes of ceftazidime-resistant Gram-negative endophthalmitis. Clin Exp Ophthalmol 45:254–260CrossRef
10.
go back to reference Chrapek O, Vecerova R, Koukalova D, Maresova K, Jirkova B, Sin M et al (2012) The in vitro antimicrobial activity of silicone oils used in ophthalmic surgery. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 156:7–13CrossRef Chrapek O, Vecerova R, Koukalova D, Maresova K, Jirkova B, Sin M et al (2012) The in vitro antimicrobial activity of silicone oils used in ophthalmic surgery. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 156:7–13CrossRef
11.
go back to reference Ornek N, Apan T, Ogurel R, Ornek K (2014) Comparison of the antimicrobial effect of heavy silicone oil and conventional silicone oil against endophthalmitis-causing agents. Indian J Ophthalmol 62:388–391CrossRef Ornek N, Apan T, Ogurel R, Ornek K (2014) Comparison of the antimicrobial effect of heavy silicone oil and conventional silicone oil against endophthalmitis-causing agents. Indian J Ophthalmol 62:388–391CrossRef
12.
go back to reference Adams F, Romero IL, Da Silva CB, Manzano RP (2012) Evaluation of silicone oil on bacterial growth. Arq Bras Oftalmol 75:89–91CrossRef Adams F, Romero IL, Da Silva CB, Manzano RP (2012) Evaluation of silicone oil on bacterial growth. Arq Bras Oftalmol 75:89–91CrossRef
13.
go back to reference Jindal A, Pathengay A, Mithal K, Jalali S, Mathai A, Pappuru RR et al (2014) Microbiologic spectrum and susceptibility of isolates in postcataract surgery endophthalmitis: are they same as they were more than a decade ago? Br J Ophthalmol 98:414–416CrossRef Jindal A, Pathengay A, Mithal K, Jalali S, Mathai A, Pappuru RR et al (2014) Microbiologic spectrum and susceptibility of isolates in postcataract surgery endophthalmitis: are they same as they were more than a decade ago? Br J Ophthalmol 98:414–416CrossRef
14.
go back to reference Jindal A, Pathengay A, Mithal K, Jalali S, Mathai A, Pappuru RR et al (2014) Endophthalmitis after open-globe injury: changes in microbiological spectrum and isolate susceptibility pattern over 14 years. J Ophthalmic Inflamm Infect 18:5CrossRef Jindal A, Pathengay A, Mithal K, Jalali S, Mathai A, Pappuru RR et al (2014) Endophthalmitis after open-globe injury: changes in microbiological spectrum and isolate susceptibility pattern over 14 years. J Ophthalmic Inflamm Infect 18:5CrossRef
15.
go back to reference Jindal A, Pathengay A, Khera M, Jalali S, Mathai A, Pappuru RR et al (2013) Combined ceftazidime and amikacin resistance among gram-negative isolates in acute-onset postoperative endophthalmitis : prevalance, anti-microbial susceptibilities and visual outcomes. J Ophthalmic Inflamm Infect 3:62CrossRef Jindal A, Pathengay A, Khera M, Jalali S, Mathai A, Pappuru RR et al (2013) Combined ceftazidime and amikacin resistance among gram-negative isolates in acute-onset postoperative endophthalmitis : prevalance, anti-microbial susceptibilities and visual outcomes. J Ophthalmic Inflamm Infect 3:62CrossRef
Metadata
Title
Does ophthalmic-grade silicone oil possess antimicrobial properties?
Authors
Vivek Pravin Dave
Joveeta Joseph
Priyanka Jayabhasker
Rajeev Reddy Pappuru
Avinash Pathengay
Taraprasad Das
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
Journal of Ophthalmic Inflammation and Infection / Issue 1/2019
Electronic ISSN: 1869-5760
DOI
https://doi.org/10.1186/s12348-019-0187-6

Other articles of this Issue 1/2019

Journal of Ophthalmic Inflammation and Infection 1/2019 Go to the issue