Skip to main content
Top
Published in: Environmental Health and Preventive Medicine 1/2017

Open Access 01-12-2017 | Regular Article

Radio-protective effect and mechanism of 4-Acetamido-2,2,6,6- tetramethylpiperidin-1-oxyl in HUVEC cells

Authors: Feng Wang, Peng Gao, Ling Guo, Ping Meng, Yuexing Fan, Yongbin Chen, Yanyun Lin, Guozhen Guo, Guirong Ding, Haibo Wang

Published in: Environmental Health and Preventive Medicine | Issue 1/2017

Login to get access

Abstract

Objectives

To search for more effective radiation protectors with minimal toxicity, a water-soluble nitroxides Acetamido-Tempol (AA-Tempol) was evaluated for potential radioprotective properties in HUVEC cells (Human Umbilical Vein Endothelial cell line).

Methods

To study the anti-radiation effect of AA-Tempol in cell culture, the viability of irradiated HUVEC cells using a clonogenic survival assay was examined. The anti-apoptosis effects of AA-Tempol using Annexin V/propidium iodide staining in a flow cytometry assay was also evaluated. To elucidate the molecular mechanism of the anti-apoptosis effect of AA-Tempol against X-radiation induced HUVEC cell apoptosis, the expression of Bax, Bcl-2 and p53 and caspase-3 were examined. The changes in the level of malondialdehyde (MDA) and glutathione (GSH) in HUVEC cells after X-radiation were also investigated.

Results

Pretreatment of the HUVEC cells colony with AA-Tempol 1 h before X-radiation significantly increased the colony survival (p < 0.05) compared with the cells without pretreatment. This demonstrates that AA-Tempol provides an effective radiation protection in the irradiated HUVEC cells, thus reducing apoptosis from 20.1 ± 1.3% in 8 Gy X-radiated cells to 12.2 ± 0.9% (1.0 mmol/L−1 AA-Tempol) in AA-Tempo pretreated HUVEC cells. This implies that 1.0 mM AA-Tempol treatment significantly block the increase of caspase-3 activity in radiated HUVEC cells (P < 0.01), causing down-regulation in expressions of Bax and P53 and up-regulation in the expression of Bcl-2. Pretreatment with AA-Tempol also decreased the MDA activities (P < 0.01) and increase the GSH level (P < 0.05) in HUVEC cells compared to the 8Gy X-radiated cells without pretreatment.

Conclusions

These observations indicate that AA-Tempol is a potential therapeutic agent against the radiation damage.
Literature
1.
go back to reference Kuwahara Y, Li L, Baba T, Nakagawa H, Shimura T, Yamamoto Y, Ohkubo Y, Fukumoto M. Clinically relevant radioresistant cells efficiently repair DNA double-strand breaks induced by X-rays. Cancer Sci. 2009;4:747–52.CrossRef Kuwahara Y, Li L, Baba T, Nakagawa H, Shimura T, Yamamoto Y, Ohkubo Y, Fukumoto M. Clinically relevant radioresistant cells efficiently repair DNA double-strand breaks induced by X-rays. Cancer Sci. 2009;4:747–52.CrossRef
3.
go back to reference Foray N, Bourguignon M, Hamad N. Individual response to ionizing radiation, Mutat. Res.: Rev Mutat Res. 2016;770(Part B):369–86. Foray N, Bourguignon M, Hamad N. Individual response to ionizing radiation, Mutat. Res.: Rev Mutat Res. 2016;770(Part B):369–86.
4.
go back to reference Patt HM, Tyree EB, Straube RL, Smith DE. Cysteine Protection against X Irradiation. Science. 1949;110:213.CrossRefPubMed Patt HM, Tyree EB, Straube RL, Smith DE. Cysteine Protection against X Irradiation. Science. 1949;110:213.CrossRefPubMed
5.
go back to reference Cakmak G, Miller LM, Zorlu F, Severcan F. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: an FTIR microspectroscopic imaging study. Arch Biochem Biophys. 2012;5:2067–73. Cakmak G, Miller LM, Zorlu F, Severcan F. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: an FTIR microspectroscopic imaging study. Arch Biochem Biophys. 2012;5:2067–73.
6.
go back to reference Burkon P, Petyrek P, Spurny V. Cytoprotective effects of amifostine in the treatment of tumors. Vnitr Lek. 2003;49(8):673–8.PubMed Burkon P, Petyrek P, Spurny V. Cytoprotective effects of amifostine in the treatment of tumors. Vnitr Lek. 2003;49(8):673–8.PubMed
7.
8.
go back to reference Wasserman TH. Radioprotective effects of amifostine. Semin Oncol. 1999;26(2):89–94.PubMed Wasserman TH. Radioprotective effects of amifostine. Semin Oncol. 1999;26(2):89–94.PubMed
9.
go back to reference Wasserman TH, Brizel DM. The role of amifostine as a radioprotector. Oncol. 2001;15(10):1349–54. Wasserman TH, Brizel DM. The role of amifostine as a radioprotector. Oncol. 2001;15(10):1349–54.
10.
go back to reference Bonner HS, Shaw LM. New dosing regimens for amifostine: a pilot study to compare the relative bioavailability of oral and subcutaneous administration with intravenous infusion. J Clin Pharmacol. 2002;42:166–74.CrossRefPubMed Bonner HS, Shaw LM. New dosing regimens for amifostine: a pilot study to compare the relative bioavailability of oral and subcutaneous administration with intravenous infusion. J Clin Pharmacol. 2002;42:166–74.CrossRefPubMed
11.
go back to reference Cassatt DR, Fazenbaker CA, Bachy CM, Hanson MS. Preclinical modeling of improved amifostine (ethyol) use in radiation therapy. Sem Radiat Oncol. 2002;12:97–102.CrossRef Cassatt DR, Fazenbaker CA, Bachy CM, Hanson MS. Preclinical modeling of improved amifostine (ethyol) use in radiation therapy. Sem Radiat Oncol. 2002;12:97–102.CrossRef
12.
go back to reference Schuchter LM, Hensley ML, Meropol NJ, Winer EP. Update of recommendations for the use of chemotherapy and radiotherapy protectants: clinical practice guidelines of the American society of clinical oncology. J Clin Oncol. 2002;20:2895–903.CrossRefPubMed Schuchter LM, Hensley ML, Meropol NJ, Winer EP. Update of recommendations for the use of chemotherapy and radiotherapy protectants: clinical practice guidelines of the American society of clinical oncology. J Clin Oncol. 2002;20:2895–903.CrossRefPubMed
13.
go back to reference Koukourakis MI, Kyrias G, Kakolyris S, Kouroussis C, Frangiadaki C, Giatromanolaki A, Retalis G, Georgoulias V. Subcutaneous administration of amifostine during fractionated radiotherapy: a randomized phase II study. J Clin Oncol. 2000;18:2226–33.CrossRefPubMed Koukourakis MI, Kyrias G, Kakolyris S, Kouroussis C, Frangiadaki C, Giatromanolaki A, Retalis G, Georgoulias V. Subcutaneous administration of amifostine during fractionated radiotherapy: a randomized phase II study. J Clin Oncol. 2000;18:2226–33.CrossRefPubMed
14.
go back to reference Laurent A, Blasi F. Differential DNA damage signalling and apoptotie threshold correlate with mouse epiblast-specific hypersensitivity to radiation. Development. 2015;142(21):3675–85. Laurent A, Blasi F. Differential DNA damage signalling and apoptotie threshold correlate with mouse epiblast-specific hypersensitivity to radiation. Development. 2015;142(21):3675–85.
15.
go back to reference Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol. 1994;65:27.CrossRefPubMed Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol. 1994;65:27.CrossRefPubMed
16.
go back to reference Jagetia GC, Baliga MS, Malagi KJ, Sethukumar Kamath M. The evaluation of radioprotective effect of Triphala (an ayurvedic rejuvenating drug) in the mice exposed to gamma irradiation. Phytomedicine. 2002;9:99–108.CrossRefPubMed Jagetia GC, Baliga MS, Malagi KJ, Sethukumar Kamath M. The evaluation of radioprotective effect of Triphala (an ayurvedic rejuvenating drug) in the mice exposed to gamma irradiation. Phytomedicine. 2002;9:99–108.CrossRefPubMed
17.
18.
go back to reference Kinoshita Y, Yamada K, Yamasaki T, Mito F, Yamato M, Kosem N, Deguchi H, Shirahama C, Ito Y, Kitagawa K, Okukado N, Sakai K, Utsumi H. In vivo evaluation of novel nitroxyl radicals with reduction stability. Free Radic Biol Med. 2010;49:1703–9.CrossRefPubMed Kinoshita Y, Yamada K, Yamasaki T, Mito F, Yamato M, Kosem N, Deguchi H, Shirahama C, Ito Y, Kitagawa K, Okukado N, Sakai K, Utsumi H. In vivo evaluation of novel nitroxyl radicals with reduction stability. Free Radic Biol Med. 2010;49:1703–9.CrossRefPubMed
19.
go back to reference Pliss EM, Tikhonov IV, Rusakov AI. The kinetics and mechanism of reactions of aliphatic stable nitroxyl radicals with alkyl and peroxide radicals during styrene oxidation. Russ J Phys Chem B. 2012;6:376–83.CrossRef Pliss EM, Tikhonov IV, Rusakov AI. The kinetics and mechanism of reactions of aliphatic stable nitroxyl radicals with alkyl and peroxide radicals during styrene oxidation. Russ J Phys Chem B. 2012;6:376–83.CrossRef
20.
go back to reference Haibo Wang, Yujing Jia, Peng Gao, Ying Cheng, Min Cheng, Chengtao Lu, Siyuan Zhou, Xiaoli Sun. Synthesis, radioprotective activity and pharmacokinetics characteristic of a new stable nitronyl nitroxyl radical-NIT2011. Biochimie. 2013;95:1574–81. Haibo Wang, Yujing Jia, Peng Gao, Ying Cheng, Min Cheng, Chengtao Lu, Siyuan Zhou, Xiaoli Sun. Synthesis, radioprotective activity and pharmacokinetics characteristic of a new stable nitronyl nitroxyl radical-NIT2011. Biochimie. 2013;95:1574–81.
21.
go back to reference Chateauneuf J, Lusztyk J, Ingold KU. Absolute rate constants for the reactions of some carbon-centered radicals with 2,2,6,6-tetramethylpiperidine-N-oxyl. J Org Chem. 1988;53:1629–32.CrossRef Chateauneuf J, Lusztyk J, Ingold KU. Absolute rate constants for the reactions of some carbon-centered radicals with 2,2,6,6-tetramethylpiperidine-N-oxyl. J Org Chem. 1988;53:1629–32.CrossRef
22.
go back to reference Samuni A, Mitchell JB, DeGraff W, Krishna CM, Samuni U, Russo A. Nitroxide SOD-mimics: modes of action. Free Radic Res Commun. 1991;12/13:187–94.CrossRef Samuni A, Mitchell JB, DeGraff W, Krishna CM, Samuni U, Russo A. Nitroxide SOD-mimics: modes of action. Free Radic Res Commun. 1991;12/13:187–94.CrossRef
23.
go back to reference Augusto O, Trindade DF, Linares E, Vaz SM. Cyclic nitroxides inhibit the toxicity of nitric oxide-derived oxidants: mechanisms and implications. An Acad Bras Cienc. 2008;80:179–89.CrossRefPubMed Augusto O, Trindade DF, Linares E, Vaz SM. Cyclic nitroxides inhibit the toxicity of nitric oxide-derived oxidants: mechanisms and implications. An Acad Bras Cienc. 2008;80:179–89.CrossRefPubMed
24.
go back to reference Braunhut SJ, Medeiros’ D, Lai L, Bump EA. Tempol prevents impairment of the endothelial cell wound healing response caused by ionising radiation. Br J Cancer. 1996;74(Suppl XXVII):S157–60. Braunhut SJ, Medeiros’ D, Lai L, Bump EA. Tempol prevents impairment of the endothelial cell wound healing response caused by ionising radiation. Br J Cancer. 1996;74(Suppl XXVII):S157–60.
25.
go back to reference Hahn SM, Krishna MC, DeLuca AM, Coffin D, Mitchell JB. Evaluation of the hydroxylamine Tempol-H as an in vivo radioprotector. Free Radic Biol Med. 2000;28:953–8.CrossRefPubMed Hahn SM, Krishna MC, DeLuca AM, Coffin D, Mitchell JB. Evaluation of the hydroxylamine Tempol-H as an in vivo radioprotector. Free Radic Biol Med. 2000;28:953–8.CrossRefPubMed
26.
go back to reference Mitchell JB, Degraff W, Kaufman D, Krishna MC, Samuni A, Finkelstein E, Ahn M, Hahn SM, Gamson J, Russo A. Inhibi- tion of oxygen-dependent radiation-induced damage by the nitroxide superoxide dismutase mimic, Tempol. Arch Biochem Biophys. 1991;289:62–70.CrossRefPubMed Mitchell JB, Degraff W, Kaufman D, Krishna MC, Samuni A, Finkelstein E, Ahn M, Hahn SM, Gamson J, Russo A. Inhibi- tion of oxygen-dependent radiation-induced damage by the nitroxide superoxide dismutase mimic, Tempol. Arch Biochem Biophys. 1991;289:62–70.CrossRefPubMed
27.
go back to reference Hahn SM, Tochner Z, Krishna CM, Wilson L, Samuni A, Venzon D, Glatstein E, Mitchell JB, Russo A. Tempol a stable free radical is a novel, murine radioprotector. Cancer Res. 1992;52:1750–3.PubMed Hahn SM, Tochner Z, Krishna CM, Wilson L, Samuni A, Venzon D, Glatstein E, Mitchell JB, Russo A. Tempol a stable free radical is a novel, murine radioprotector. Cancer Res. 1992;52:1750–3.PubMed
28.
go back to reference Jiang J, Stoyanovsky DA, Belikova NA, Tyurina YY, Zhao Q, Tungekar MA, Kapralova V, Huang Z, Mintz AH, Greenberger JS, Kagan VE. A mitochondria-targeted triphenylphosphonium-conjugated nitroxide functions as a radioprotector/mitigator. Radiat Res. 2009;172:706–17.CrossRefPubMedPubMedCentral Jiang J, Stoyanovsky DA, Belikova NA, Tyurina YY, Zhao Q, Tungekar MA, Kapralova V, Huang Z, Mintz AH, Greenberger JS, Kagan VE. A mitochondria-targeted triphenylphosphonium-conjugated nitroxide functions as a radioprotector/mitigator. Radiat Res. 2009;172:706–17.CrossRefPubMedPubMedCentral
29.
go back to reference Jiang J, Belikova NA, Hoye AT, Zhao Q, Epperly MW, Greenberger JS, Wipf P, Kagan VE. A mitochondria-targeted nitroxide/hemigramicidin S conjugate protects mouse embryonic cells against gamma irradiation. Int J Radiat Oncol Biol Phys. 2008;70:816–25.CrossRefPubMedPubMedCentral Jiang J, Belikova NA, Hoye AT, Zhao Q, Epperly MW, Greenberger JS, Wipf P, Kagan VE. A mitochondria-targeted nitroxide/hemigramicidin S conjugate protects mouse embryonic cells against gamma irradiation. Int J Radiat Oncol Biol Phys. 2008;70:816–25.CrossRefPubMedPubMedCentral
30.
go back to reference Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988;48:589–601.PubMed Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988;48:589–601.PubMed
31.
go back to reference Belikova A, Jiang J, Stoyanovsky DA, Glumac A, Bayir H, Greenberger JS, Kagan VE. Mitochondria-targeted (2-hydroxyamino-vinyl)-triphenyl-phosphonium releases NO. and protects mouse embryonic cells against irradiation-induced apoptosis. FEBS Lett. 2009;583:1945–50.CrossRefPubMedPubMedCentral Belikova A, Jiang J, Stoyanovsky DA, Glumac A, Bayir H, Greenberger JS, Kagan VE. Mitochondria-targeted (2-hydroxyamino-vinyl)-triphenyl-phosphonium releases NO. and protects mouse embryonic cells against irradiation-induced apoptosis. FEBS Lett. 2009;583:1945–50.CrossRefPubMedPubMedCentral
32.
go back to reference Pollard JM, Reboucas JS, Durazo A, Kos I, Fike F, Panni M, Gralla EB, Valentine JS, Batinic-Haberle I, Gatti RA. Radioprotective effects of manganese-containing superoxide dismutase mimics on ataxia-telangiectasia cells. Free Radic Biol Med. 2009;47:250–60.CrossRefPubMedPubMedCentral Pollard JM, Reboucas JS, Durazo A, Kos I, Fike F, Panni M, Gralla EB, Valentine JS, Batinic-Haberle I, Gatti RA. Radioprotective effects of manganese-containing superoxide dismutase mimics on ataxia-telangiectasia cells. Free Radic Biol Med. 2009;47:250–60.CrossRefPubMedPubMedCentral
33.
go back to reference Behbahani H, Rickle A, Concha H, Ankarcrona M, Winblad B, Cowburn RF. Flow cytometry as a method for studying effects of stressors on primary rat neurons. J Neurosci Res. 2005;82:432–41.CrossRefPubMed Behbahani H, Rickle A, Concha H, Ankarcrona M, Winblad B, Cowburn RF. Flow cytometry as a method for studying effects of stressors on primary rat neurons. J Neurosci Res. 2005;82:432–41.CrossRefPubMed
34.
go back to reference Guo J, Zhang Y, Zeng L, Liu J, Liang J, Guo G. Salvianic acid A protects L-02 cells against_-irradiation-induced apoptosis via the scavenging of reactive oxygen species. Environ Toxicol Pharmacol. 2013;35:117–30.CrossRefPubMed Guo J, Zhang Y, Zeng L, Liu J, Liang J, Guo G. Salvianic acid A protects L-02 cells against_-irradiation-induced apoptosis via the scavenging of reactive oxygen species. Environ Toxicol Pharmacol. 2013;35:117–30.CrossRefPubMed
35.
go back to reference Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9(6):515–40.CrossRefPubMed Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9(6):515–40.CrossRefPubMed
36.
go back to reference Amit Kumar D, Deepti B, Vineet K, Chawla D, Fakhruddin K, Deepak B. Antioxidant potential and radioprotective effect of soy isoflavone against gamma irradiation induced oxidative stress. J Funct Foods. 2012;4:197–206.CrossRef Amit Kumar D, Deepti B, Vineet K, Chawla D, Fakhruddin K, Deepak B. Antioxidant potential and radioprotective effect of soy isoflavone against gamma irradiation induced oxidative stress. J Funct Foods. 2012;4:197–206.CrossRef
37.
go back to reference Halliwell B, Gutteridge JMC. Free radical in biology and medicine. 2nd ed. Oxford: Clarendon; 1989. Halliwell B, Gutteridge JMC. Free radical in biology and medicine. 2nd ed. Oxford: Clarendon; 1989.
38.
go back to reference Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 1988;35:95–125.CrossRefPubMed Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 1988;35:95–125.CrossRefPubMed
39.
go back to reference Kalpana KB, Devipriya N, Srinivasan M, Menon VP. Investigation of the radioprotective efficacy of hesperidin against gamma-radiation induced cellular damage in cultured human peripheral blood lymphocyte. Mutat Res. 2009;676:54–61.CrossRefPubMed Kalpana KB, Devipriya N, Srinivasan M, Menon VP. Investigation of the radioprotective efficacy of hesperidin against gamma-radiation induced cellular damage in cultured human peripheral blood lymphocyte. Mutat Res. 2009;676:54–61.CrossRefPubMed
40.
go back to reference Samuni AM, DeGraff W, Cook JA, Krishna MC, Russo A, Mitchell JB. The effects of antioxidants on radiation-induced apoptosis pathways in TK6 cells. Free Radic Biol Med. 2004;37:1648–55. Samuni AM, DeGraff W, Cook JA, Krishna MC, Russo A, Mitchell JB. The effects of antioxidants on radiation-induced apoptosis pathways in TK6 cells. Free Radic Biol Med. 2004;37:1648–55.
41.
go back to reference Samuni AM, Barenholz Y. Stable nitroxide radicals protect lipid acyl chains from radiation damage. Free Radic. Biol. Med. 1997;22:1165–74. Samuni AM, Barenholz Y. Stable nitroxide radicals protect lipid acyl chains from radiation damage. Free Radic. Biol. Med. 1997;22:1165–74.
42.
go back to reference Hahn SM, Wilson L, Krishna CM, Liebmann J, DeGraff W, Gamson J, Samuni A, Venzon D, Mitchell JB. Identification of Nitroxide Radioprotectors. Radiat Res. 1992;132:87–93.CrossRefPubMed Hahn SM, Wilson L, Krishna CM, Liebmann J, DeGraff W, Gamson J, Samuni A, Venzon D, Mitchell JB. Identification of Nitroxide Radioprotectors. Radiat Res. 1992;132:87–93.CrossRefPubMed
43.
go back to reference Metz JM, Smith D, Mick R, Lustig R, Mitchell J, Cherakuri M, Glatstein E, Hahn SM. A phase I study of topical tempol for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res. 2004;19:6411–7.CrossRef Metz JM, Smith D, Mick R, Lustig R, Mitchell J, Cherakuri M, Glatstein E, Hahn SM. A phase I study of topical tempol for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res. 2004;19:6411–7.CrossRef
44.
go back to reference Fraternale A, Paoletti MF, Casabianca A, Nencioni L, Garaci E, Palamara AT, Magnani M. GSH and analogs in antiviral therapy. Mol Aspects Med. 2009;30:99–110.CrossRefPubMed Fraternale A, Paoletti MF, Casabianca A, Nencioni L, Garaci E, Palamara AT, Magnani M. GSH and analogs in antiviral therapy. Mol Aspects Med. 2009;30:99–110.CrossRefPubMed
45.
go back to reference Pocernich CB, La Fontaine M, Butterfield DA. In-vivo glutathione elevation protects against hydroxyl free radical-induced protein oxidation in rat brain. Neurochem Int. 2000;36:185–91.CrossRefPubMed Pocernich CB, La Fontaine M, Butterfield DA. In-vivo glutathione elevation protects against hydroxyl free radical-induced protein oxidation in rat brain. Neurochem Int. 2000;36:185–91.CrossRefPubMed
46.
go back to reference Pompella A, Visikis A, Paolicchi A, De Tata V, Casini AF. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol. 2003;66:1499–503.CrossRefPubMed Pompella A, Visikis A, Paolicchi A, De Tata V, Casini AF. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol. 2003;66:1499–503.CrossRefPubMed
47.
48.
go back to reference Reed DJ, Fariss MW. Glutathione depletion and susceptibility. Pharmacol Rev. 1984;36:235–335. Reed DJ, Fariss MW. Glutathione depletion and susceptibility. Pharmacol Rev. 1984;36:235–335.
49.
go back to reference DeGraff WG, Mitchell JB. Glutathione dependence of neocarzinostatin cytotoxicity and mutagenicity in Chinese hamster V-79 cells. Cancer Res. 1985;45:4760–2.PubMed DeGraff WG, Mitchell JB. Glutathione dependence of neocarzinostatin cytotoxicity and mutagenicity in Chinese hamster V-79 cells. Cancer Res. 1985;45:4760–2.PubMed
50.
go back to reference Coppola S, Ghibelli L. GSH extrusion and the mitochondrial pathway of apoptotic signalling. Biochem Soc Trans. 2000;28:56–61.CrossRefPubMed Coppola S, Ghibelli L. GSH extrusion and the mitochondrial pathway of apoptotic signalling. Biochem Soc Trans. 2000;28:56–61.CrossRefPubMed
51.
go back to reference Zhang Y, Guo J, Qi Y, Shao Q, Liang J. The prevention of radiation-induced DNA damage and apoptosis in human intestinal epithelial cells by salvianic acid A. J Radiat Res Appl Sci. 2014;7:274–85.CrossRef Zhang Y, Guo J, Qi Y, Shao Q, Liang J. The prevention of radiation-induced DNA damage and apoptosis in human intestinal epithelial cells by salvianic acid A. J Radiat Res Appl Sci. 2014;7:274–85.CrossRef
52.
go back to reference Zhu C, Hallin U, Ozaki Y, Grandér R, Gatzinsky K, Bahr BA, Karlsson JO, Shibasaki F, Hagberg H, Blomgren K. Nuclear translocation and calpain-dependent reduction of Bcl-2 after neonatal cerebral hypoxia-ischemia. Brain Behav Immun. 2010;24(5):822–30.CrossRefPubMed Zhu C, Hallin U, Ozaki Y, Grandér R, Gatzinsky K, Bahr BA, Karlsson JO, Shibasaki F, Hagberg H, Blomgren K. Nuclear translocation and calpain-dependent reduction of Bcl-2 after neonatal cerebral hypoxia-ischemia. Brain Behav Immun. 2010;24(5):822–30.CrossRefPubMed
53.
go back to reference Croker BA, O’Donnell JA, Nowell CJ, Metcalf D, Dewson G, Campbell KJ, Rogers KL, Hu Y, Smyth GK, Zhang JG, White M, Lackovic K, Cengia LH, O’Reilly LA, Bouillet P, Cory S, Strasser A, Roberts AW. Fas-mediated neutrophil apoptosis is accelerated by Bid, Bak, and Bax and inhibited by Bcl-2 and Mcl-1. Proc Natl Acad Sci U S A. 2011;108(32):13135–40.CrossRefPubMedPubMedCentral Croker BA, O’Donnell JA, Nowell CJ, Metcalf D, Dewson G, Campbell KJ, Rogers KL, Hu Y, Smyth GK, Zhang JG, White M, Lackovic K, Cengia LH, O’Reilly LA, Bouillet P, Cory S, Strasser A, Roberts AW. Fas-mediated neutrophil apoptosis is accelerated by Bid, Bak, and Bax and inhibited by Bcl-2 and Mcl-1. Proc Natl Acad Sci U S A. 2011;108(32):13135–40.CrossRefPubMedPubMedCentral
54.
go back to reference Jee YH, Jeong WI, Kim TH, Hwang IS, Ahn MJ, Joo HG. P53 and cell-cycle-regulated protein expression in small intestinal cells after fast-neutron irradiation in mice. Mol Cell Biochem. 2005;270:21–8.CrossRefPubMed Jee YH, Jeong WI, Kim TH, Hwang IS, Ahn MJ, Joo HG. P53 and cell-cycle-regulated protein expression in small intestinal cells after fast-neutron irradiation in mice. Mol Cell Biochem. 2005;270:21–8.CrossRefPubMed
55.
go back to reference Parihar VK, Jatin D, Kumar S, Manjula SN, Subramanian G, Unnikrishnan MK, Mallikarjuna Rao C. Free radical scavenging and radioprotective activity of dehydrozingerone against whole body gamma irradiation in Swiss albino mice. Chem Biol Interact. 2007;170:9–58.CrossRef Parihar VK, Jatin D, Kumar S, Manjula SN, Subramanian G, Unnikrishnan MK, Mallikarjuna Rao C. Free radical scavenging and radioprotective activity of dehydrozingerone against whole body gamma irradiation in Swiss albino mice. Chem Biol Interact. 2007;170:9–58.CrossRef
56.
go back to reference Samuni A, Krishna CM, Mitchell JB, Collins CR, Russo A. Superoxide reaction with nitroxides. Free Radic Res Commun. 1990;9:241–9.CrossRefPubMed Samuni A, Krishna CM, Mitchell JB, Collins CR, Russo A. Superoxide reaction with nitroxides. Free Radic Res Commun. 1990;9:241–9.CrossRefPubMed
57.
go back to reference Samuni A, Krishna CM, Riesz P, Finkelstein E, Russo A. A novel metal-free low molecular weight superoxide dismutase mimic. J Biol Chem. 1988;263:17921–4.PubMed Samuni A, Krishna CM, Riesz P, Finkelstein E, Russo A. A novel metal-free low molecular weight superoxide dismutase mimic. J Biol Chem. 1988;263:17921–4.PubMed
58.
go back to reference Krishna MC, Grahame DA, Samuni A, Mitchell JB, Russo A. Oxoammonium cation intermediate in the nitroxide-catalyzed dismutation of superoxide. Proc Natl Acad Sci U S A. 1992;89:5537–41.CrossRefPubMedPubMedCentral Krishna MC, Grahame DA, Samuni A, Mitchell JB, Russo A. Oxoammonium cation intermediate in the nitroxide-catalyzed dismutation of superoxide. Proc Natl Acad Sci U S A. 1992;89:5537–41.CrossRefPubMedPubMedCentral
59.
go back to reference Krishna MC, Russo A, Mitchell JB, Goldstein S, Dafni H, Samuni A. Do nitroxide antioxidants act as scavengers of O2 ⋅− or as SOD mimics? J Biol Chem. 1996;271:26026–31.CrossRefPubMed Krishna MC, Russo A, Mitchell JB, Goldstein S, Dafni H, Samuni A. Do nitroxide antioxidants act as scavengers of O2 ⋅− or as SOD mimics? J Biol Chem. 1996;271:26026–31.CrossRefPubMed
60.
go back to reference Miura Y, Utsumi H, Hamada A. Antioxidant activity of nitroxide radicals in lipid peroxidation of rat liver microsomes. Arch Biochem Biophys. 1993;300:148–56.CrossRefPubMed Miura Y, Utsumi H, Hamada A. Antioxidant activity of nitroxide radicals in lipid peroxidation of rat liver microsomes. Arch Biochem Biophys. 1993;300:148–56.CrossRefPubMed
61.
go back to reference Krishna MC, Samuni A, Taira J, Goldstein S, Mitchell JB, Russo A. Stimulation by nitroxides of catalase-like activity of hemeproteins: kinetics and mechanism. J Biol Chem. 1996;271:26018–25.CrossRefPubMed Krishna MC, Samuni A, Taira J, Goldstein S, Mitchell JB, Russo A. Stimulation by nitroxides of catalase-like activity of hemeproteins: kinetics and mechanism. J Biol Chem. 1996;271:26018–25.CrossRefPubMed
62.
go back to reference Mitchell JB, Russo A, Kuppusamy P, Krishna MC. Radiation, radicals, and images. Ann N Y Acad Sci. 2000;899:28–43.CrossRefPubMed Mitchell JB, Russo A, Kuppusamy P, Krishna MC. Radiation, radicals, and images. Ann N Y Acad Sci. 2000;899:28–43.CrossRefPubMed
Metadata
Title
Radio-protective effect and mechanism of 4-Acetamido-2,2,6,6- tetramethylpiperidin-1-oxyl in HUVEC cells
Authors
Feng Wang
Peng Gao
Ling Guo
Ping Meng
Yuexing Fan
Yongbin Chen
Yanyun Lin
Guozhen Guo
Guirong Ding
Haibo Wang
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Environmental Health and Preventive Medicine / Issue 1/2017
Print ISSN: 1342-078X
Electronic ISSN: 1347-4715
DOI
https://doi.org/10.1186/s12199-017-0616-9

Other articles of this Issue 1/2017

Environmental Health and Preventive Medicine 1/2017 Go to the issue