Skip to main content
Top
Published in: Breast Cancer Research 2/2004

Open Access 01-04-2004 | Research article

Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3

Authors: Torsten Stein, Joanna S Morris, Claire R Davies, Stephen J Weber-Hall, Marie-Anne Duffy, Victoria J Heath, Alexandra K Bell, Roderick K Ferrier, Gavin P Sandilands, Barry A Gusterson

Published in: Breast Cancer Research | Issue 2/2004

Login to get access

Abstract

Introduction

Involution of the mammary gland is a complex process of controlled apoptosis and tissue remodelling. The aim of the project was to identify genes that are specifically involved in this process.

Methods

We used Affymetrix oligonucleotide microarrays to perform a detailed transcript analysis on the mechanism of controlled involution after withdrawal of the pups at day seven of lactation. Some of the results were confirmed by semi-quantitative reverse transcriptase polymerase chain reaction, Western blotting or immunohistochemistry.

Results

We identified 145 genes that were specifically upregulated during the first 4 days of involution; of these, 49 encoded immunoglobulin genes. A further 12 genes, including those encoding the signal transducer and activator of transcription 3 (STAT3), the lipopolysaccharide receptor (CD14) and lipopolysaccharide-binding protein (LBP), were involved in the acute-phase response, demonstrating that the expression of acute-phase response genes can occur in the mammary gland itself and not only in the liver. Expression of LBP and CD14 was upregulated, at both the RNA and protein level, immediately after pup withdrawal; CD14 was strongly expressed in the luminal epithelial cells. Other genes identified suggested neutrophil activation early in involution, followed by macrophage activation late in the process. Immunohistochemistry and histological staining confirmed the infiltration of the involuting mammary tissue with neutrophils, plasma cells, macrophages and eosinophils.

Conclusion

Oligonucleotide microarrays are a useful tool for identifying genes that are involved in the complex developmental process of mammary gland involution. The genes identified are consistent with an immune cascade, with an early acute-phase response that occurs in the mammary gland itself and resembles a wound healing process.
Appendix
Available only for authorised users
Literature
1.
go back to reference Richert MM, Schwertfeger KL, Ryder JW, Anderson SM: An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia. 2000, 5: 227-241. 10.1023/A:1026499523505.CrossRefPubMed Richert MM, Schwertfeger KL, Ryder JW, Anderson SM: An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia. 2000, 5: 227-241. 10.1023/A:1026499523505.CrossRefPubMed
2.
go back to reference Masso-Welch PA, Darcy KM, Stangle-Castor NC, Ip MM: A developmental atlas of rat mammary gland histology. J Mammary Gland Biol Neoplasia. 2000, 5: 165-185. 10.1023/A:1026491221687.CrossRefPubMed Masso-Welch PA, Darcy KM, Stangle-Castor NC, Ip MM: A developmental atlas of rat mammary gland histology. J Mammary Gland Biol Neoplasia. 2000, 5: 165-185. 10.1023/A:1026491221687.CrossRefPubMed
3.
go back to reference Lund LR, Romer J, Thomasset N, Solberg H, Pyke C, Bissell MJ, Dano K, Werb Z: Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development. 1996, 122: 181-193.PubMedCentralPubMed Lund LR, Romer J, Thomasset N, Solberg H, Pyke C, Bissell MJ, Dano K, Werb Z: Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development. 1996, 122: 181-193.PubMedCentralPubMed
4.
go back to reference Li M, Liu X, Robinson G, Bar-Paled U, Wagner K-U, Young WS, Hennighausen L, Furth PA: Mammary derived signals activate programmed cell during the involuting mammary gland. Proc Natl Acad Sci USA. 1997, 94: 3425-3430. 10.1073/pnas.94.7.3425.PubMedCentralCrossRefPubMed Li M, Liu X, Robinson G, Bar-Paled U, Wagner K-U, Young WS, Hennighausen L, Furth PA: Mammary derived signals activate programmed cell during the involuting mammary gland. Proc Natl Acad Sci USA. 1997, 94: 3425-3430. 10.1073/pnas.94.7.3425.PubMedCentralCrossRefPubMed
5.
go back to reference Marti A, Lazar H, Ritter P, Jaggi R: Transcription factor activities and gene expression during mouse mammary gland involution. J Mammary Gland Biol Neoplasia. 1999, 4: 145-152. 10.1023/A:1018721107061.CrossRefPubMed Marti A, Lazar H, Ritter P, Jaggi R: Transcription factor activities and gene expression during mouse mammary gland involution. J Mammary Gland Biol Neoplasia. 1999, 4: 145-152. 10.1023/A:1018721107061.CrossRefPubMed
6.
go back to reference Master SR, Hartman JL, D'Cruz CM, Moody SE, Keiper EA, Ha SI, Cox JD, Belka GK, Chodosh LA: Functional microarray analysis of mammary organogenesis reveals a developmental role in adaptive thermogenesis. Mol Endocrinol. 2000, 16: 1185-1203. 10.1210/me.16.6.1185.CrossRef Master SR, Hartman JL, D'Cruz CM, Moody SE, Keiper EA, Ha SI, Cox JD, Belka GK, Chodosh LA: Functional microarray analysis of mammary organogenesis reveals a developmental role in adaptive thermogenesis. Mol Endocrinol. 2000, 16: 1185-1203. 10.1210/me.16.6.1185.CrossRef
7.
go back to reference Clarkson RWE, Wayland MT, Lee J, Freeman T, Watson CJ: Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res. 2004, 6: R92-R109. 10.1186/bcr754.PubMedCentralCrossRefPubMed Clarkson RWE, Wayland MT, Lee J, Freeman T, Watson CJ: Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res. 2004, 6: R92-R109. 10.1186/bcr754.PubMedCentralCrossRefPubMed
8.
go back to reference Eckersall PD: Recent advances and future prospects for the use of acute phase proteins as markers of disease in animals. Revue Méd Vét. 2000, 151: 577-584. Eckersall PD: Recent advances and future prospects for the use of acute phase proteins as markers of disease in animals. Revue Méd Vét. 2000, 151: 577-584.
9.
go back to reference Dinarello CA: Interleukin-1 and the pathogenesis of the acute phase response. New Engl J Med. 1984, 311: 1413-1418.CrossRefPubMed Dinarello CA: Interleukin-1 and the pathogenesis of the acute phase response. New Engl J Med. 1984, 311: 1413-1418.CrossRefPubMed
11.
go back to reference Beutler B, Cerami A: Cachectin/tumor necrosis factor: an endogenous mediator of shock and inflammation. Immunol Res. 1986, 5: 281-293.CrossRefPubMed Beutler B, Cerami A: Cachectin/tumor necrosis factor: an endogenous mediator of shock and inflammation. Immunol Res. 1986, 5: 281-293.CrossRefPubMed
12.
go back to reference Anderson JC: The increased resistance of mice to experimental staphylococcal mastitis following inoculation of endotoxin. Res Vet Sci. 1976, 21: 64-68.PubMed Anderson JC: The increased resistance of mice to experimental staphylococcal mastitis following inoculation of endotoxin. Res Vet Sci. 1976, 21: 64-68.PubMed
13.
go back to reference Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K, Akira S, Clarke AR, Watson CJ: Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev. 1999, 13: 2604-2616. 10.1101/gad.13.19.2604.PubMedCentralCrossRefPubMed Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K, Akira S, Clarke AR, Watson CJ: Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev. 1999, 13: 2604-2616. 10.1101/gad.13.19.2604.PubMedCentralCrossRefPubMed
14.
go back to reference Humphreys RC, Bierie B, Zhao L, Raz R, Levy D, Hennighausen L: Deletion of Stat3 blocks mammary gland involution and extends functional competence of the secretory epithelium in the absence of lactogenic stimuli. Endocrinology. 2002, 143: 3641-3650. 10.1210/en.2002-220224.CrossRefPubMed Humphreys RC, Bierie B, Zhao L, Raz R, Levy D, Hennighausen L: Deletion of Stat3 blocks mammary gland involution and extends functional competence of the secretory epithelium in the absence of lactogenic stimuli. Endocrinology. 2002, 143: 3641-3650. 10.1210/en.2002-220224.CrossRefPubMed
15.
go back to reference Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, Yoshida K, Sudo T, Naruta M, Kishimoto T: Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell. 1994, 77: 63-71.CrossRefPubMed Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, Yoshida K, Sudo T, Naruta M, Kishimoto T: Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell. 1994, 77: 63-71.CrossRefPubMed
16.
go back to reference Zhong Z, Wen Z, Darnell JE: Stat3: a new family member that is activated through tyrosine phosphorylation in response to EGF and IL-6. Science. 1994, 264: 95-98.CrossRefPubMed Zhong Z, Wen Z, Darnell JE: Stat3: a new family member that is activated through tyrosine phosphorylation in response to EGF and IL-6. Science. 1994, 264: 95-98.CrossRefPubMed
17.
go back to reference Trautwein C, Rakemann T, Niehof M, Rose-John S, Manns MP: Acute-phase response factor, increased binding, and target gene transcription during liver regeneration. Gastroenterology. 1996, 110: 1854-1862.CrossRefPubMed Trautwein C, Rakemann T, Niehof M, Rose-John S, Manns MP: Acute-phase response factor, increased binding, and target gene transcription during liver regeneration. Gastroenterology. 1996, 110: 1854-1862.CrossRefPubMed
18.
go back to reference Schumann RR, Kirschning CJ, Unbehaun A, Aberle HP, Knope HP, Lamping N, Ulevitch RJ, Herrmann F: The lipopolysaccharide-binding protein is a secretory class 1 acute-phase protein whose gene is transcriptionally activated by APRF/STAT-3 and other cytokine-inducible nuclear proteins. Mol Cell Biol. 1996, 16: 3490-3503.PubMedCentralCrossRefPubMed Schumann RR, Kirschning CJ, Unbehaun A, Aberle HP, Knope HP, Lamping N, Ulevitch RJ, Herrmann F: The lipopolysaccharide-binding protein is a secretory class 1 acute-phase protein whose gene is transcriptionally activated by APRF/STAT-3 and other cytokine-inducible nuclear proteins. Mol Cell Biol. 1996, 16: 3490-3503.PubMedCentralCrossRefPubMed
19.
go back to reference Cantwell CA, Sterneck E, Johnson PF: Interleukin-6-specific activation of the C/EBPdelta gene in hepatocytes is mediated by Stat3 and Sp1. Mol Cell Biol. 1998, 18: 2108-2117.PubMedCentralCrossRefPubMed Cantwell CA, Sterneck E, Johnson PF: Interleukin-6-specific activation of the C/EBPdelta gene in hepatocytes is mediated by Stat3 and Sp1. Mol Cell Biol. 1998, 18: 2108-2117.PubMedCentralCrossRefPubMed
20.
go back to reference Boudreau F, Yu SJ, Asselin C: CCAAT/enhancer binding proteins beta and delta regulate alpha1-acid glycoprotein gene expression in rat intestinal epithelial cells. DNA Cell Biol. 1998, 17: 669-677.CrossRefPubMed Boudreau F, Yu SJ, Asselin C: CCAAT/enhancer binding proteins beta and delta regulate alpha1-acid glycoprotein gene expression in rat intestinal epithelial cells. DNA Cell Biol. 1998, 17: 669-677.CrossRefPubMed
21.
go back to reference Alam T, An MR, Papaconstantinou J: Differential expression of three C/EBP isoforms in multiple tissues during the acute phase response. J Biol Chem. 1992, 267: 5021-5024.PubMed Alam T, An MR, Papaconstantinou J: Differential expression of three C/EBP isoforms in multiple tissues during the acute phase response. J Biol Chem. 1992, 267: 5021-5024.PubMed
22.
go back to reference Pan Z, Hetherington CJ, Zhang DE: CCAAT/enhancer-binding protein activates the CD14 promoter and mediates transforming growth factor beta signaling in monocyte development. J Biol Chem. 1999, 274: 23242-23248. 10.1074/jbc.274.33.23242.CrossRefPubMed Pan Z, Hetherington CJ, Zhang DE: CCAAT/enhancer-binding protein activates the CD14 promoter and mediates transforming growth factor beta signaling in monocyte development. J Biol Chem. 1999, 274: 23242-23248. 10.1074/jbc.274.33.23242.CrossRefPubMed
23.
go back to reference Devitt A, Moffa OD, Raykundalia C, Capra JD, Simmons DL, Gregory CD: Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature. 1998, 392: 505-509. 10.1038/33169.CrossRefPubMed Devitt A, Moffa OD, Raykundalia C, Capra JD, Simmons DL, Gregory CD: Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature. 1998, 392: 505-509. 10.1038/33169.CrossRefPubMed
24.
go back to reference Wright SD: CD14: a leukocyte membrane protein that functions in the response to endotoxin [abstract]. FASEB J. 1990, 4: A1848- Wright SD: CD14: a leukocyte membrane protein that functions in the response to endotoxin [abstract]. FASEB J. 1990, 4: A1848-
25.
go back to reference Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC: CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990, 249: 1431-1433.CrossRefPubMed Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC: CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990, 249: 1431-1433.CrossRefPubMed
26.
go back to reference Paape MJ, Lillius EM, Wiitanen PA, Kontio MP: Intramammary defense against infections induced by Escherichia coli in cows. Am J Vet Res. 1996, 57: 477-482.PubMed Paape MJ, Lillius EM, Wiitanen PA, Kontio MP: Intramammary defense against infections induced by Escherichia coli in cows. Am J Vet Res. 1996, 57: 477-482.PubMed
27.
go back to reference Labeta MO, Vidal K, Nores JE, Arias M, Vita N, Morgan BP, Guillemot JC, Loyaux D, Ferrara P, Schmid D, Affolter M, Borysiewicz LK, Donnet-Hughes A, Schiffrin EJ: Innate recognition of bacteria in human milk is mediated by a milk-derived highly expressed pattern recognition receptor, soluble CD14. J Exp Med. 2000, 191: 1807-1812. 10.1084/jem.191.10.1807.PubMedCentralCrossRefPubMed Labeta MO, Vidal K, Nores JE, Arias M, Vita N, Morgan BP, Guillemot JC, Loyaux D, Ferrara P, Schmid D, Affolter M, Borysiewicz LK, Donnet-Hughes A, Schiffrin EJ: Innate recognition of bacteria in human milk is mediated by a milk-derived highly expressed pattern recognition receptor, soluble CD14. J Exp Med. 2000, 191: 1807-1812. 10.1084/jem.191.10.1807.PubMedCentralCrossRefPubMed
28.
go back to reference Walker NI, Bennett RE, Kerr JFR: Cell death by apoptosis during involution of the lactating breast in mice and rats. Am J Anat. 1989, 185: 19-32.CrossRefPubMed Walker NI, Bennett RE, Kerr JFR: Cell death by apoptosis during involution of the lactating breast in mice and rats. Am J Anat. 1989, 185: 19-32.CrossRefPubMed
29.
go back to reference Fadok VA: Clearance: the last and often forgotten stage of apoptosis. J Mammary Gland Biol Neoplasia. 1999, 4: 203-211. 10.1023/A:1011384009787.CrossRefPubMed Fadok VA: Clearance: the last and often forgotten stage of apoptosis. J Mammary Gland Biol Neoplasia. 1999, 4: 203-211. 10.1023/A:1011384009787.CrossRefPubMed
30.
go back to reference Monks J, Geske FJ, Lehman L, Fadok VA: Do inflammatory cells participate in mammary gland involution?. J Mammary Gland Biol Neoplasia. 2002, 7: 163-176. 10.1023/A:1020351919634.CrossRefPubMed Monks J, Geske FJ, Lehman L, Fadok VA: Do inflammatory cells participate in mammary gland involution?. J Mammary Gland Biol Neoplasia. 2002, 7: 163-176. 10.1023/A:1020351919634.CrossRefPubMed
31.
go back to reference Gregory CD: CD14-dependent clearance of apoptotic cells: relevance to the immune system. Curr Opin Immunol. 2000, 12: 27-34. 10.1016/S0952-7915(99)00047-3.CrossRefPubMed Gregory CD: CD14-dependent clearance of apoptotic cells: relevance to the immune system. Curr Opin Immunol. 2000, 12: 27-34. 10.1016/S0952-7915(99)00047-3.CrossRefPubMed
33.
go back to reference Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM: Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrinemechanisms involving TGF β, PGE2, and PAF. J Clin Invest. 1998, 1001: 890-898.CrossRef Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM: Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrinemechanisms involving TGF β, PGE2, and PAF. J Clin Invest. 1998, 1001: 890-898.CrossRef
34.
go back to reference Laurent PE: Clinical measurement of acute phase proteins to detect and monitor infectious disease. In Acute Phase Proteins in the Acute Phase Response. Edited by: Pepys MB. 1989, New York: Springer-Verlag, 151-159.CrossRef Laurent PE: Clinical measurement of acute phase proteins to detect and monitor infectious disease. In Acute Phase Proteins in the Acute Phase Response. Edited by: Pepys MB. 1989, New York: Springer-Verlag, 151-159.CrossRef
35.
go back to reference Jin FY, Nathan C, Radzioch D, Ding A: Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide. Cell. 1997, 88: 417-426.CrossRefPubMed Jin FY, Nathan C, Radzioch D, Ding A: Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide. Cell. 1997, 88: 417-426.CrossRefPubMed
36.
go back to reference Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM, Lacomis L, Erdjument-Bromage H, Tempst P, Wright CD, Ding A: Conversion of proepithelin to epithelins. Roles of SLPI and elastase in host defense and wound repair. Cell. 2002, 111: 867-878.CrossRefPubMed Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM, Lacomis L, Erdjument-Bromage H, Tempst P, Wright CD, Ding A: Conversion of proepithelin to epithelins. Roles of SLPI and elastase in host defense and wound repair. Cell. 2002, 111: 867-878.CrossRefPubMed
37.
go back to reference Lutticken C, Wegenka UM, Yuan J, Buschmann J, Schindler C, Ziemiecki A, Harpur AG, Wilks AF, Yasukawa K, Taga T: Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science. 1994, 263: 89-92.CrossRefPubMed Lutticken C, Wegenka UM, Yuan J, Buschmann J, Schindler C, Ziemiecki A, Harpur AG, Wilks AF, Yasukawa K, Taga T: Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science. 1994, 263: 89-92.CrossRefPubMed
38.
go back to reference Hutt JA, DeWille JW: Oncostatin M induces growth arrest of mammary epithelium via a CCAAT/enhancer-binding protein delta-dependent pathway. Mol Cancer Ther. 2002, 1: 601-610.PubMed Hutt JA, DeWille JW: Oncostatin M induces growth arrest of mammary epithelium via a CCAAT/enhancer-binding protein delta-dependent pathway. Mol Cancer Ther. 2002, 1: 601-610.PubMed
39.
go back to reference Grant SL, Douglas AM, Goss GA, Begley CG: Oncostatin M and leukemia inhibitory factor regulate the growth of normal human breast epithelial cells. Growth Factors. 2001, 19: 153-162.CrossRefPubMed Grant SL, Douglas AM, Goss GA, Begley CG: Oncostatin M and leukemia inhibitory factor regulate the growth of normal human breast epithelial cells. Growth Factors. 2001, 19: 153-162.CrossRefPubMed
40.
go back to reference Schere-Levy C, Buggiano V, Quaglino A, Gattelli A, Cirio MC, Piazzon I, Vanzulli S, Kordon EC: Leukemia inhibitory factor induces apoptosis of the mammary epithelial cells and participates in mouse mammary gland involution. Exp Cell Res. 2003, 282: 35-47. 10.1006/excr.2002.5666.CrossRefPubMed Schere-Levy C, Buggiano V, Quaglino A, Gattelli A, Cirio MC, Piazzon I, Vanzulli S, Kordon EC: Leukemia inhibitory factor induces apoptosis of the mammary epithelial cells and participates in mouse mammary gland involution. Exp Cell Res. 2003, 282: 35-47. 10.1006/excr.2002.5666.CrossRefPubMed
41.
go back to reference Kritikou EA, Sharkey A, Abell K, Came PJ, Anderson E, Clarkson RWE, Watson CJ: A dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development. 2003, 130: 3459-3468. 10.1242/dev.00578.CrossRefPubMed Kritikou EA, Sharkey A, Abell K, Came PJ, Anderson E, Clarkson RWE, Watson CJ: A dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development. 2003, 130: 3459-3468. 10.1242/dev.00578.CrossRefPubMed
42.
go back to reference Lee CS, McDowell GH, Lascelles AK: The importance of macrophages in the removal of fat from the involuting mammary gland. Res Vet Sci. 1969, 10: 34-38.PubMed Lee CS, McDowell GH, Lascelles AK: The importance of macrophages in the removal of fat from the involuting mammary gland. Res Vet Sci. 1969, 10: 34-38.PubMed
44.
go back to reference Lee CS, McCauley I, Hartmann PE: Light and electron microscopy of cells in pig colostrum, milk and involution secretion. Acta Anat. 1983, 116: 126-135.CrossRefPubMed Lee CS, McCauley I, Hartmann PE: Light and electron microscopy of cells in pig colostrum, milk and involution secretion. Acta Anat. 1983, 116: 126-135.CrossRefPubMed
45.
go back to reference Colditz IG: Studies on the inflammatory response during involution of the ovine mammary gland. Q J Exp Physiol. 1988, 73: 363-368.CrossRefPubMed Colditz IG: Studies on the inflammatory response during involution of the ovine mammary gland. Q J Exp Physiol. 1988, 73: 363-368.CrossRefPubMed
46.
go back to reference O'Donnell LC, Druhan LJ, Avalos BR: Molecular characterization and expression analysis of leucine-rich alpha2-glycoprotein, a novel marker of granulocytic differentiation. J Leukoc Biol. 2002, 72: 478-485.PubMed O'Donnell LC, Druhan LJ, Avalos BR: Molecular characterization and expression analysis of leucine-rich alpha2-glycoprotein, a novel marker of granulocytic differentiation. J Leukoc Biol. 2002, 72: 478-485.PubMed
47.
go back to reference Engelhardt E, Toksoy A, Goebeler M, Debus S, Brocker EB, Gillitzer R: Chemokines IL-8, GROalpha, MCP-1, IP-10, and Mig are sequentially and differentially expressed during phase-specific infiltration of leukocyte subsets in human wound healing. Am J Pathol. 1998, 153: 1849-1860.PubMedCentralCrossRefPubMed Engelhardt E, Toksoy A, Goebeler M, Debus S, Brocker EB, Gillitzer R: Chemokines IL-8, GROalpha, MCP-1, IP-10, and Mig are sequentially and differentially expressed during phase-specific infiltration of leukocyte subsets in human wound healing. Am J Pathol. 1998, 153: 1849-1860.PubMedCentralCrossRefPubMed
48.
go back to reference Wiekowski MT, Chen SC, Zalamea P, Wilburn BP, Kinsley DJ, Sharif WW, Jensen KK, Hedrick JA, Manfra D, Lira SA: Disruption of neutrophil migration in a conditional transgenic model: evidence for CXCR2 desensitization in vivo. J Immunol. 2001, 167: 7102-7110.CrossRefPubMed Wiekowski MT, Chen SC, Zalamea P, Wilburn BP, Kinsley DJ, Sharif WW, Jensen KK, Hedrick JA, Manfra D, Lira SA: Disruption of neutrophil migration in a conditional transgenic model: evidence for CXCR2 desensitization in vivo. J Immunol. 2001, 167: 7102-7110.CrossRefPubMed
49.
go back to reference Aubry F, Habasque C, Satie AP, Jegou B, Samson M: Expression and regulation of the CXC-chemokines, GRO/KC and IP-10/ mob-1 in rat seminiferous tubules. Eur Cytokine Netw. 2000, 11: 690-698.PubMed Aubry F, Habasque C, Satie AP, Jegou B, Samson M: Expression and regulation of the CXC-chemokines, GRO/KC and IP-10/ mob-1 in rat seminiferous tubules. Eur Cytokine Netw. 2000, 11: 690-698.PubMed
50.
go back to reference Heeckeren A, Walenga R, Konstan MW, Bonfield T, Davis PB, Ferkol T: Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J Clin Invest. 1997, 100: 2810-2815.PubMedCentralCrossRefPubMed Heeckeren A, Walenga R, Konstan MW, Bonfield T, Davis PB, Ferkol T: Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J Clin Invest. 1997, 100: 2810-2815.PubMedCentralCrossRefPubMed
51.
go back to reference Jones CE, Chan K: Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-alpha, and granulocyte-colony-stimulating factor by human airway epithelial cells. Am J Respir Cell Mol Biol. 2002, 26: 748-753.CrossRefPubMed Jones CE, Chan K: Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-alpha, and granulocyte-colony-stimulating factor by human airway epithelial cells. Am J Respir Cell Mol Biol. 2002, 26: 748-753.CrossRefPubMed
52.
go back to reference Mehrad B, Strieter RM, Moore TA, Tsai WC, Lira SA, Standiford TJ: CXC chemokine receptor-2 ligands are necessary components of neutrophil-mediated host defense in invasive pulmonary aspergillosis. J Immunol. 1999, 163: 6086-6094.PubMed Mehrad B, Strieter RM, Moore TA, Tsai WC, Lira SA, Standiford TJ: CXC chemokine receptor-2 ligands are necessary components of neutrophil-mediated host defense in invasive pulmonary aspergillosis. J Immunol. 1999, 163: 6086-6094.PubMed
53.
go back to reference Endlich B, Armstrong D, Brodsky J, Novotny M, Hamilton TA: Distinct temporal patterns of macrophage-inflammatory protein-2 and KC chemokine gene expression in surgical injury. J Immunol. 2002, 168: 3586-3594.CrossRefPubMed Endlich B, Armstrong D, Brodsky J, Novotny M, Hamilton TA: Distinct temporal patterns of macrophage-inflammatory protein-2 and KC chemokine gene expression in surgical injury. J Immunol. 2002, 168: 3586-3594.CrossRefPubMed
54.
go back to reference Rovai LE, Herschman HR, Smith JB: The murine neutrophil-chemoattractant chemokines LIX, KC, and MIP-2 have distinct induction kinetics, tissue distributions, and tissue-specific sensitivities to glucocorticoid regulation in endotoxemia. J Leukoc Biol. 1998, 64: 494-502.PubMed Rovai LE, Herschman HR, Smith JB: The murine neutrophil-chemoattractant chemokines LIX, KC, and MIP-2 have distinct induction kinetics, tissue distributions, and tissue-specific sensitivities to glucocorticoid regulation in endotoxemia. J Leukoc Biol. 1998, 64: 494-502.PubMed
55.
go back to reference Anisowicz A, Zajchowski D, Stenman G, Sager R: Functional diversity of GRO gene expression in human fibroblasts and mammary epithelial cells. Proc Nat Acad Sci USA. 1988, 85: 9645-9649.PubMedCentralCrossRefPubMed Anisowicz A, Zajchowski D, Stenman G, Sager R: Functional diversity of GRO gene expression in human fibroblasts and mammary epithelial cells. Proc Nat Acad Sci USA. 1988, 85: 9645-9649.PubMedCentralCrossRefPubMed
56.
go back to reference Paape M, Mehrzad J, Zhao J, Detilleux J, Burvenich C: Defense of the bovine mammary gland by polymorphonuclear neutrophil leukocytes. J Mammary Gland Biol Neoplasia. 2002, 7: 109-121. 10.1023/A:1020343717817.CrossRefPubMed Paape M, Mehrzad J, Zhao J, Detilleux J, Burvenich C: Defense of the bovine mammary gland by polymorphonuclear neutrophil leukocytes. J Mammary Gland Biol Neoplasia. 2002, 7: 109-121. 10.1023/A:1020343717817.CrossRefPubMed
57.
go back to reference Gouon-Evans V, Rothenberg ME, Pollard JW: Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000, 127: 2269-2282.PubMed Gouon-Evans V, Rothenberg ME, Pollard JW: Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000, 127: 2269-2282.PubMed
58.
go back to reference Sleeman MA, Fraser JK, Murison JG, Kelly SL, Prestidge RL, Palmer DJ, Watson JD, Kumble KD: B cell- and monocyte-activating chemokine (BMAC), a novel non-ELR alpha-chemokine. Int Immunol. 2000, 12: 677-689. 10.1093/intimm/12.5.677.CrossRefPubMed Sleeman MA, Fraser JK, Murison JG, Kelly SL, Prestidge RL, Palmer DJ, Watson JD, Kumble KD: B cell- and monocyte-activating chemokine (BMAC), a novel non-ELR alpha-chemokine. Int Immunol. 2000, 12: 677-689. 10.1093/intimm/12.5.677.CrossRefPubMed
59.
go back to reference Kurth I, Willimann K, Schaerli P, Hunziker T, Clark-Lewis I, Moser B: Monocyte selectivity and tissue localization suggests a role for breast and kidney-expressed chemokine (BRAK) in macrophage development. J Exp Med. 2001, 194: 855-861. 10.1084/jem.194.6.855.PubMedCentralCrossRefPubMed Kurth I, Willimann K, Schaerli P, Hunziker T, Clark-Lewis I, Moser B: Monocyte selectivity and tissue localization suggests a role for breast and kidney-expressed chemokine (BRAK) in macrophage development. J Exp Med. 2001, 194: 855-861. 10.1084/jem.194.6.855.PubMedCentralCrossRefPubMed
60.
61.
go back to reference Myokai F, Takashiba S, Lebo R, Amar S: A novel lipopolysaccharide-induced transcription factor regulating tumor necrosis factor α gene expression: molecular cloning, sequencing, characterization, and chromosomal assignment. Proc Natl Acad Sci USA. 1999, 96: 4518-4523. 10.1073/pnas.96.8.4518.PubMedCentralCrossRefPubMed Myokai F, Takashiba S, Lebo R, Amar S: A novel lipopolysaccharide-induced transcription factor regulating tumor necrosis factor α gene expression: molecular cloning, sequencing, characterization, and chromosomal assignment. Proc Natl Acad Sci USA. 1999, 96: 4518-4523. 10.1073/pnas.96.8.4518.PubMedCentralCrossRefPubMed
62.
go back to reference Kushner I, Mackiewicz A: Acute phase proteins as disease markers. Dis Markers. 1987, 5: 1-11.PubMed Kushner I, Mackiewicz A: Acute phase proteins as disease markers. Dis Markers. 1987, 5: 1-11.PubMed
63.
go back to reference Hochepied T, Berger FG, Baumann H, Libert C: α1-acid glycoprotein: and acute phase protein with inflammatory and immunomodulating properties. Cyt Growth Factor Rev. 2003, 14: 25-34. 10.1016/S1359-6101(02)00054-0.CrossRef Hochepied T, Berger FG, Baumann H, Libert C: α1-acid glycoprotein: and acute phase protein with inflammatory and immunomodulating properties. Cyt Growth Factor Rev. 2003, 14: 25-34. 10.1016/S1359-6101(02)00054-0.CrossRef
64.
go back to reference Gitlin JD: Transcriptional regulation of ceruloplasmin gene expression during inflammation. J Biol Chem. 1988, 263: 6281-6287.PubMed Gitlin JD: Transcriptional regulation of ceruloplasmin gene expression during inflammation. J Biol Chem. 1988, 263: 6281-6287.PubMed
65.
go back to reference Pietzsch A, Buchler C, Aslanidis C, Schmitz G: Identification and characterization of a novel monocyte/macrophage differentiation-dependent gene that is responsive to lipopolysaccharide, ceramide, and lysophosphatidylcholine. Biochem Biophys Res Commun. 1997, 235: 4-9. 10.1006/bbrc.1997.6715.CrossRefPubMed Pietzsch A, Buchler C, Aslanidis C, Schmitz G: Identification and characterization of a novel monocyte/macrophage differentiation-dependent gene that is responsive to lipopolysaccharide, ceramide, and lysophosphatidylcholine. Biochem Biophys Res Commun. 1997, 235: 4-9. 10.1006/bbrc.1997.6715.CrossRefPubMed
Metadata
Title
Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3
Authors
Torsten Stein
Joanna S Morris
Claire R Davies
Stephen J Weber-Hall
Marie-Anne Duffy
Victoria J Heath
Alexandra K Bell
Roderick K Ferrier
Gavin P Sandilands
Barry A Gusterson
Publication date
01-04-2004
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 2/2004
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr753

Other articles of this Issue 2/2004

Breast Cancer Research 2/2004 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine