Skip to main content
Top
Published in: Breast Cancer Research 1/1999

01-12-1999 | Commentary

Epithelial stem cells in the mammary gland: casting light into dark corners

Authors: Elizabeth Anderson, Robert B Clarke

Published in: Breast Cancer Research | Issue 1/1999

Login to get access

Abstract

The epithelial structures of the human breast or the mouse mammary gland are derived from a relatively small number of multipotent, tissue-specific stem cells, of which we are surprisingly ignorant. We do not know how many are required to produce a complete mammary gland, how many times they divide during the process, where they are situated in the gland, or even what they look like. We want to know the answers to these questions, not just to satisfy intellectual curiosity, but also because the answers may shed light on the evolution of breast cancer. Now, studies carried out by Kordon and Smith at the National Cancer Institute have pointed the way toward a new understanding of mammary stem cells and their progeny.
Literature
1.
go back to reference Kordon EC, Smith GH: An entire functional mammary gland may comprise the progeny from a single cell. Development. 1998, 125: 1921-1930.PubMed Kordon EC, Smith GH: An entire functional mammary gland may comprise the progeny from a single cell. Development. 1998, 125: 1921-1930.PubMed
2.
go back to reference DeOme KB, Faulkin LJ, Bern HA, Blair PB: Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. J Natl Cancer Inst. 1959, 78: 751-757. DeOme KB, Faulkin LJ, Bern HA, Blair PB: Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. J Natl Cancer Inst. 1959, 78: 751-757.
3.
go back to reference Callahan R, Droahn W, D'Hoostelaere SD, Potter M: Novel class of mouse mammary tumor virus-related DNA sequences found in all species of Mus, including mice lacking the virus proviral genome. Proc Natl Acad Sci USA. 1982, 79: 4113-4117.CrossRefPubMedPubMedCentral Callahan R, Droahn W, D'Hoostelaere SD, Potter M: Novel class of mouse mammary tumor virus-related DNA sequences found in all species of Mus, including mice lacking the virus proviral genome. Proc Natl Acad Sci USA. 1982, 79: 4113-4117.CrossRefPubMedPubMedCentral
4.
go back to reference Chepko G, Smith GH: Three division-competent, structurally distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell. 1997, 29: 239-253.CrossRefPubMed Chepko G, Smith GH: Three division-competent, structurally distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell. 1997, 29: 239-253.CrossRefPubMed
5.
go back to reference Sober H: . Selected Data for Molecular Biology, Cleveland: CRC,. 1970, H112- Sober H: . Selected Data for Molecular Biology, Cleveland: CRC,. 1970, H112-
6.
go back to reference Smith GH: Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat. 1996, 39: 21-31.CrossRefPubMed Smith GH: Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat. 1996, 39: 21-31.CrossRefPubMed
7.
go back to reference Daniel CW, Young LJT: Influence of cell division on an aging process: life span of mouse mammary epithelium during serial propagation in vivo. Exp Cell Res. 1971, 65: 27-32.CrossRefPubMed Daniel CW, Young LJT: Influence of cell division on an aging process: life span of mouse mammary epithelium during serial propagation in vivo. Exp Cell Res. 1971, 65: 27-32.CrossRefPubMed
8.
go back to reference Hayflick L, Moorhead PS: The serial cultivation of human diploid cell strains. Exp Cell Res. 1961, 25: 585-621.CrossRefPubMed Hayflick L, Moorhead PS: The serial cultivation of human diploid cell strains. Exp Cell Res. 1961, 25: 585-621.CrossRefPubMed
9.
go back to reference Clarke RB, Howell A, Potten CS, Anderson E: Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res. 1997, 57: 4987-4991.PubMed Clarke RB, Howell A, Potten CS, Anderson E: Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res. 1997, 57: 4987-4991.PubMed
10.
go back to reference Zeps N, Bentel JM, Papadimitriou JM, D'Antuono MF, Dawkins HJ: Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation. 1998, 65: 221-226. 10.1046/j.1432-0436.1998.6250221.x.CrossRef Zeps N, Bentel JM, Papadimitriou JM, D'Antuono MF, Dawkins HJ: Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation. 1998, 65: 221-226. 10.1046/j.1432-0436.1998.6250221.x.CrossRef
11.
go back to reference Kordon EC, McKnight RA, Jhappen C, Hennighausen L, Merlino G, Smith GH: Ectopic TGFβ expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol. 1995, 168: 47-61. 10.1006/dbio.1995.1060.CrossRefPubMed Kordon EC, McKnight RA, Jhappen C, Hennighausen L, Merlino G, Smith GH: Ectopic TGFβ expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol. 1995, 168: 47-61. 10.1006/dbio.1995.1060.CrossRefPubMed
12.
go back to reference Daniel CW, Silberstein GB, Van Horn K, Strickland P, Robinson S: TGF-β1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization. Dev Biol . 1989, 135: 20-30.CrossRefPubMed Daniel CW, Silberstein GB, Van Horn K, Strickland P, Robinson S: TGF-β1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization. Dev Biol . 1989, 135: 20-30.CrossRefPubMed
13.
go back to reference Tsai YC, Lu Y, Nichols PW, et al: Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res. 1996, 56: 402-404.PubMed Tsai YC, Lu Y, Nichols PW, et al: Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res. 1996, 56: 402-404.PubMed
14.
go back to reference Wellings SR, Jensen HM, Marcum RG: An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst. 1975, 55: 231-273.PubMed Wellings SR, Jensen HM, Marcum RG: An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst. 1975, 55: 231-273.PubMed
15.
go back to reference Wainscoat JS, Fey MF: Assessment of clonality in human tumors: a review. Cancer Res. 1990, 50: 1355-1360.PubMed Wainscoat JS, Fey MF: Assessment of clonality in human tumors: a review. Cancer Res. 1990, 50: 1355-1360.PubMed
16.
go back to reference Potten CS, Booth C, Pritchard DM: The intestinal stem cell: the mucosal governor. Int J Exp Pathol. 1997, 78: 219-243. 10.1046/j.1365-2613.1997.280362.x.CrossRefPubMedPubMedCentral Potten CS, Booth C, Pritchard DM: The intestinal stem cell: the mucosal governor. Int J Exp Pathol. 1997, 78: 219-243. 10.1046/j.1365-2613.1997.280362.x.CrossRefPubMedPubMedCentral
Metadata
Title
Epithelial stem cells in the mammary gland: casting light into dark corners
Authors
Elizabeth Anderson
Robert B Clarke
Publication date
01-12-1999
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/1999
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr5

Other articles of this Issue 1/1999

Breast Cancer Research 1/1999 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine