Skip to main content
Top
Published in: Breast Cancer Research 4/2012

Open Access 01-08-2012 | Research article

Prolactin-induced protein mediates cell invasion and regulates integrin signaling in estrogen receptor-negative breast cancer

Authors: Ali Naderi, Michelle Meyer

Published in: Breast Cancer Research | Issue 4/2012

Login to get access

Abstract

Introduction

Molecular apocrine is a subtype of estrogen receptor (ER)-negative breast cancer that is characterized by a steroid-response gene signature. We have recently identified a positive feedback loop between androgen receptor (AR) and extracellular signal-regulated kinase (ERK) signaling in this subtype. In this study, we investigated the transcriptional regulation of molecular apocrine genes by the AR-ERK feedback loop.

Methods

The transcriptional effects of AR and ERK inhibition on molecular apocrine genes were assessed in cell lines. The most regulated gene in this process, prolactin-induced protein (PIP), was further studied using immunohistochemistry of breast tumors and xenograft models. The transcriptional regulation of PIP was assessed by luciferase reporter assay and chromatin immunoprecipitation. The functional significance of PIP in cell invasion and viability was assessed using siRNA knockdown experiments and the mechanism of PIP effect on integrin-β1 signaling was studied using immunoblotting and immunoprecipitation.

Results

We found that PIP is the most regulated molecular apocrine gene by the AR-ERK feedback loop and is overexpressed in ER-/AR+ breast tumors. In addition, PIP expression is regulated by AR-ERK signaling in xenograft models. These observations are explained by the fact that PIP is a target gene of the ERK-CREB1 pathway and is also induced by AR activation. Furthermore, we demonstrated that PIP has a significant functional role in maintaining cell invasion and viability of molecular apocrine cells because of a positive regulatory effect on the Integrin-ERK and Integrin-Akt signaling pathways. In fact, PIP-knockdown markedly decreases the phosphorylation of ERK, Akt, and CREB1. Importantly, PIP knockdown leads to a marked reduction of integrin-β1 binding to ILK1 and ErbB2 that can be reversed by the addition of fibronectin fragments.

Conclusions

We have identified a novel feedback loop between PIP and CREB1 mediated through the Integrin signaling pathway. In this process, PIP cleaves fibronectin to release fragments that activate integrin signaling, which in turn increases PIP expression through the ERK-CREB1 pathway. In addition, we demonstrated that PIP expression has a profound effect on cell invasion and the viability of molecular apocrine cells. Therefore, PIP signaling may be a potential therapeutic target in molecular apocrine breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Putti TC, El-Rehim DM, Rakha EA, Paish CE, Lee AH, Pinder SE, Ellis IO: Estrogen receptor-negative breast carcinomas: a review of morphology and immunophenotypical analysis. Mod Pathol. 2005, 18: 26-35. 10.1038/modpathol.3800255.CrossRefPubMed Putti TC, El-Rehim DM, Rakha EA, Paish CE, Lee AH, Pinder SE, Ellis IO: Estrogen receptor-negative breast carcinomas: a review of morphology and immunophenotypical analysis. Mod Pathol. 2005, 18: 26-35. 10.1038/modpathol.3800255.CrossRefPubMed
2.
go back to reference Guedj M, Marisa L, de Reynies A, Orsetti B, Schiappa R, Bibeau F, MacGrogan G, Lerebours F, Finetti P, Longy M, Bertheau P, Bertrand F, Bonnet F, Martin AL, Feugeas JP, Bieche I, Lehmann-Che J, Lidereau R, Birnbaum D, Bertucci F, de The H, Theillet C: A refined molecular taxonomy of breast cancer. Oncogene. 2012, 31: 1196-1206. 10.1038/onc.2011.301.CrossRefPubMed Guedj M, Marisa L, de Reynies A, Orsetti B, Schiappa R, Bibeau F, MacGrogan G, Lerebours F, Finetti P, Longy M, Bertheau P, Bertrand F, Bonnet F, Martin AL, Feugeas JP, Bieche I, Lehmann-Che J, Lidereau R, Birnbaum D, Bertucci F, de The H, Theillet C: A refined molecular taxonomy of breast cancer. Oncogene. 2012, 31: 1196-1206. 10.1038/onc.2011.301.CrossRefPubMed
3.
go back to reference Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, Macgrogan G, Bergh J, Cameron D, Goldstein D, Duss S, Nicoulaz AL, Brisken C, Fiche M, Delorenzi M, Iggo R: Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005, 24: 4660-4671. 10.1038/sj.onc.1208561.CrossRefPubMed Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, Macgrogan G, Bergh J, Cameron D, Goldstein D, Duss S, Nicoulaz AL, Brisken C, Fiche M, Delorenzi M, Iggo R: Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005, 24: 4660-4671. 10.1038/sj.onc.1208561.CrossRefPubMed
4.
go back to reference Teschendorff AE, Naderi A, Barbosa-Morais NL, Caldas C: PACK: Profile Analysis using Clustering and Kurtosis to find molecular classifiers in cancer. Bioinformatics. 2006, 15: 2269-2275.CrossRef Teschendorff AE, Naderi A, Barbosa-Morais NL, Caldas C: PACK: Profile Analysis using Clustering and Kurtosis to find molecular classifiers in cancer. Bioinformatics. 2006, 15: 2269-2275.CrossRef
5.
go back to reference Doane AS, Danso M, Lal P, Donaton M, Zhang L, Hudis C, Gerald WL: An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene. 2006, 25: 3994-4008. 10.1038/sj.onc.1209415.CrossRefPubMed Doane AS, Danso M, Lal P, Donaton M, Zhang L, Hudis C, Gerald WL: An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene. 2006, 25: 3994-4008. 10.1038/sj.onc.1209415.CrossRefPubMed
6.
go back to reference Park S, Koo J, Park HS, Kim JH, Choi SY, Lee JH, Park BW, Lee KS: Expression of androgen receptors in primary breast cancer. Ann Oncol. 2010, 21: 488-492. 10.1093/annonc/mdp510.CrossRefPubMed Park S, Koo J, Park HS, Kim JH, Choi SY, Lee JH, Park BW, Lee KS: Expression of androgen receptors in primary breast cancer. Ann Oncol. 2010, 21: 488-492. 10.1093/annonc/mdp510.CrossRefPubMed
7.
go back to reference Collins LC, Cole KS, Marotti JD, Hu R, Schnitt SJ, Tamimi RM: Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses' Health Study. Mod Pathol. 2011, 24: 924-931. 10.1038/modpathol.2011.54.CrossRefPubMedPubMedCentral Collins LC, Cole KS, Marotti JD, Hu R, Schnitt SJ, Tamimi RM: Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses' Health Study. Mod Pathol. 2011, 24: 924-931. 10.1038/modpathol.2011.54.CrossRefPubMedPubMedCentral
8.
go back to reference Niemeier LA, Dabbas DJ, Beriwal S, Striebel JM, Bhargava R: Androgen receptor in breast cancer: expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Mod Pathol. 2009, 23: 205-212.CrossRefPubMed Niemeier LA, Dabbas DJ, Beriwal S, Striebel JM, Bhargava R: Androgen receptor in breast cancer: expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Mod Pathol. 2009, 23: 205-212.CrossRefPubMed
9.
go back to reference Banneau G, Guedj M, Macgrogan G, de Mascarel L, Velasco V, Schiappa R, Bonadona V, David A, Dugast C, Gilbert-Dussardier B, Ingster O, Vabres P, Caux F, de Reynies A, Iggo R, Sevenet N, Bonnet F, Longy M: Molecular apocrine differentiation is a common feature of breast cancer in patients with germline PTEN mutations. Breast Cancer Res. 2010, 12: R63-10.1186/bcr2626.CrossRefPubMedPubMedCentral Banneau G, Guedj M, Macgrogan G, de Mascarel L, Velasco V, Schiappa R, Bonadona V, David A, Dugast C, Gilbert-Dussardier B, Ingster O, Vabres P, Caux F, de Reynies A, Iggo R, Sevenet N, Bonnet F, Longy M: Molecular apocrine differentiation is a common feature of breast cancer in patients with germline PTEN mutations. Breast Cancer Res. 2010, 12: R63-10.1186/bcr2626.CrossRefPubMedPubMedCentral
10.
go back to reference Naderi A, Hughes-Davies L: A functionally significant cross-talk between androgen receptor and ErbB2 pathways in estrogen receptor negative breast cancer. Neoplasia. 2008, 10: 542-548.CrossRefPubMedPubMedCentral Naderi A, Hughes-Davies L: A functionally significant cross-talk between androgen receptor and ErbB2 pathways in estrogen receptor negative breast cancer. Neoplasia. 2008, 10: 542-548.CrossRefPubMedPubMedCentral
11.
go back to reference Chia KM, Liu J, Francis GD, Naderi A: A feedback loop between androgen receptor and ERK signaling in estrogen receptor-negative breast cancer. Neoplasia. 2011, 13: 154-166.CrossRefPubMedPubMedCentral Chia KM, Liu J, Francis GD, Naderi A: A feedback loop between androgen receptor and ERK signaling in estrogen receptor-negative breast cancer. Neoplasia. 2011, 13: 154-166.CrossRefPubMedPubMedCentral
12.
go back to reference Ni M, Chen Y, Lim E, Wimberly H, Bailey ST, Imai Y, Rimm DL, Liu XS, Brown M: Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell. 2011, 20: 119-131. 10.1016/j.ccr.2011.05.026.CrossRefPubMedPubMedCentral Ni M, Chen Y, Lim E, Wimberly H, Bailey ST, Imai Y, Rimm DL, Liu XS, Brown M: Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell. 2011, 20: 119-131. 10.1016/j.ccr.2011.05.026.CrossRefPubMedPubMedCentral
13.
go back to reference Sanga S, Broom BM, Cristini V, Edgerton ME: Gene expression meta-analysis supports existence of molecular apocrine breast cancer with a role for androgen receptor and implies interactions with ErbB family. BMC Med Genomics. 2009, 2: 59-10.1186/1755-8794-2-59.CrossRefPubMedPubMedCentral Sanga S, Broom BM, Cristini V, Edgerton ME: Gene expression meta-analysis supports existence of molecular apocrine breast cancer with a role for androgen receptor and implies interactions with ErbB family. BMC Med Genomics. 2009, 2: 59-10.1186/1755-8794-2-59.CrossRefPubMedPubMedCentral
14.
go back to reference Naderi A, Liu J: Inhibition of androgen receptor and Cdc25A phosphatase as a combination targeted therapy in molecular apocrine breast cancer. Cancer Lett. 2010, 298: 74-87. 10.1016/j.canlet.2010.06.005.CrossRefPubMed Naderi A, Liu J: Inhibition of androgen receptor and Cdc25A phosphatase as a combination targeted therapy in molecular apocrine breast cancer. Cancer Lett. 2010, 298: 74-87. 10.1016/j.canlet.2010.06.005.CrossRefPubMed
15.
go back to reference Naderi A, Chia KM, Liu J: Synergy between inhibitors of androgen receptor and MEK has therapeutic implications in estrogen receptor-negative breast cancer. Breast Cancer Res. 2011, 13: R36-10.1186/bcr2858.CrossRefPubMedPubMedCentral Naderi A, Chia KM, Liu J: Synergy between inhibitors of androgen receptor and MEK has therapeutic implications in estrogen receptor-negative breast cancer. Breast Cancer Res. 2011, 13: R36-10.1186/bcr2858.CrossRefPubMedPubMedCentral
16.
go back to reference Gucalp A, Traina TA: Triple-negative breast cancer: role of the androgen receptor. Cancer J. 2010, 16: 62-65. 10.1097/PPO.0b013e3181ce4ae1.CrossRefPubMed Gucalp A, Traina TA: Triple-negative breast cancer: role of the androgen receptor. Cancer J. 2010, 16: 62-65. 10.1097/PPO.0b013e3181ce4ae1.CrossRefPubMed
17.
go back to reference Leotoing L, Manin M, Monte D, Baron S, Communal Y, Lours C, Veyssiere G, Morel L, Beaudoin C: Crosstalk between androgen receptor and epidermal growth factor receptor-signalling pathways: a molecular switch for epithelial cell differentiation. J Mol Endocrinol. 2007, 39: 151-162. 10.1677/JME-07-0021.CrossRefPubMed Leotoing L, Manin M, Monte D, Baron S, Communal Y, Lours C, Veyssiere G, Morel L, Beaudoin C: Crosstalk between androgen receptor and epidermal growth factor receptor-signalling pathways: a molecular switch for epithelial cell differentiation. J Mol Endocrinol. 2007, 39: 151-162. 10.1677/JME-07-0021.CrossRefPubMed
18.
go back to reference Naderi A, Teschendorff AE, Beigel M, Cariati M, Ellis IO, Brenton JD, Caldas C: BEX2 is overexpressed in a subset of primary breast cancers and mediates nerve growth factor/nuclear factor-kappaB inhibition of apoptosis in breast cancer cell lines. Cancer Res. 2007, 67: 6725-6736. 10.1158/0008-5472.CAN-06-4394.CrossRefPubMed Naderi A, Teschendorff AE, Beigel M, Cariati M, Ellis IO, Brenton JD, Caldas C: BEX2 is overexpressed in a subset of primary breast cancers and mediates nerve growth factor/nuclear factor-kappaB inhibition of apoptosis in breast cancer cell lines. Cancer Res. 2007, 67: 6725-6736. 10.1158/0008-5472.CAN-06-4394.CrossRefPubMed
19.
go back to reference Ma XL, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, Muir B, Mohapatra G, Salunga R, Tuggle JT, Tran Y, Tran D, Tassin A, Amon P, Wang W, Wang W, Enright E, Stecker K, Estepa-Sabal E, Smith B, Younger J, Balis U, Michaelson J, Bhan A, Habin K, Baer TM, Brugge J, Haber DA, Erlander MG, Sgroi DC: A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004, 5: 607-616. 10.1016/j.ccr.2004.05.015.CrossRefPubMed Ma XL, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, Muir B, Mohapatra G, Salunga R, Tuggle JT, Tran Y, Tran D, Tassin A, Amon P, Wang W, Wang W, Enright E, Stecker K, Estepa-Sabal E, Smith B, Younger J, Balis U, Michaelson J, Bhan A, Habin K, Baer TM, Brugge J, Haber DA, Erlander MG, Sgroi DC: A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004, 5: 607-616. 10.1016/j.ccr.2004.05.015.CrossRefPubMed
20.
go back to reference Naderi A, Meyer M, Dowhan DH: Cross-regulation between FOXA1 and ErbB2 signaling in estrogen receptor-negative breast cancer. Neoplasia. 2012, 14: 283-296.CrossRefPubMedPubMedCentral Naderi A, Meyer M, Dowhan DH: Cross-regulation between FOXA1 and ErbB2 signaling in estrogen receptor-negative breast cancer. Neoplasia. 2012, 14: 283-296.CrossRefPubMedPubMedCentral
21.
go back to reference Hoeflich KP, O'Brien C, Boyd Z, Cavet G, Guerrero S, Jung K, Januario T, Savage H, Punnoose E, Truong T, Zhou W, Berry L, Murray L, Amler L, Belvin M, Friedman LS, Lackner MR: In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin Cancer Res. 2009, 15: 4649-4664. 10.1158/1078-0432.CCR-09-0317.CrossRefPubMed Hoeflich KP, O'Brien C, Boyd Z, Cavet G, Guerrero S, Jung K, Januario T, Savage H, Punnoose E, Truong T, Zhou W, Berry L, Murray L, Amler L, Belvin M, Friedman LS, Lackner MR: In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin Cancer Res. 2009, 15: 4649-4664. 10.1158/1078-0432.CCR-09-0317.CrossRefPubMed
23.
go back to reference Doppler W, Groner B, Ball RK: Prolactin and glucocorticoid hormones synergistically induce expression of transfected rat beta-casein gene promoter constructs in a mammary epithelial cell line. Proc Natl Acad Sci USA. 1989, 86: 104-108. 10.1073/pnas.86.1.104.CrossRefPubMedPubMedCentral Doppler W, Groner B, Ball RK: Prolactin and glucocorticoid hormones synergistically induce expression of transfected rat beta-casein gene promoter constructs in a mammary epithelial cell line. Proc Natl Acad Sci USA. 1989, 86: 104-108. 10.1073/pnas.86.1.104.CrossRefPubMedPubMedCentral
24.
go back to reference Naderi A, Liu J, Hughes-Davies L: BEX2 has a functional interplay with c-Jun/JNK and p65/RelA in breast cancer. Mol Cancer. 2010, 19: 111-CrossRef Naderi A, Liu J, Hughes-Davies L: BEX2 has a functional interplay with c-Jun/JNK and p65/RelA in breast cancer. Mol Cancer. 2010, 19: 111-CrossRef
25.
go back to reference Naderi A, Liu J, Bennett IC: BEX2 regulates mitochondrial apoptosis and G1 cell cycle in breast cancer. Int J Cancer. 2010, 126: 1596-1610.PubMed Naderi A, Liu J, Bennett IC: BEX2 regulates mitochondrial apoptosis and G1 cell cycle in breast cancer. Int J Cancer. 2010, 126: 1596-1610.PubMed
26.
go back to reference Tullai JW, Chen J, Schaffer ME, Kamenetsky E, Kasif S, Cooper GM: Glycogen synthase kinase-3 represses cyclic AMP response element-binding protein (CREB)-targeted immediate early genes in quiescent cells. J Biol Chem. 2007, 282: 9482-9491. 10.1074/jbc.M700067200.CrossRefPubMedPubMedCentral Tullai JW, Chen J, Schaffer ME, Kamenetsky E, Kasif S, Cooper GM: Glycogen synthase kinase-3 represses cyclic AMP response element-binding protein (CREB)-targeted immediate early genes in quiescent cells. J Biol Chem. 2007, 282: 9482-9491. 10.1074/jbc.M700067200.CrossRefPubMedPubMedCentral
27.
go back to reference Yu X, Miyamoto S, Mekada E: Integrin alpha 2 beta 1-dependent EGF receptor activation at cell-cell contact sites. J Cell Sci. 2000, 113: 2139-2147.PubMed Yu X, Miyamoto S, Mekada E: Integrin alpha 2 beta 1-dependent EGF receptor activation at cell-cell contact sites. J Cell Sci. 2000, 113: 2139-2147.PubMed
29.
go back to reference Lonze BE, Ginty DD: Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002, 35: 605-623. 10.1016/S0896-6273(02)00828-0.CrossRefPubMed Lonze BE, Ginty DD: Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002, 35: 605-623. 10.1016/S0896-6273(02)00828-0.CrossRefPubMed
30.
go back to reference Xing J, Ginty D, Greenberg ME: Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science. 1996, 273: 959-963. 10.1126/science.273.5277.959.CrossRefPubMed Xing J, Ginty D, Greenberg ME: Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science. 1996, 273: 959-963. 10.1126/science.273.5277.959.CrossRefPubMed
31.
go back to reference Caputo E, Manco G, Mandrich L, Guardiola J: A novel aspartyl proteinase from apocrine epithelia and breast tumors. J Biol Chem. 2000, 275: 7935-7941. 10.1074/jbc.275.11.7935.CrossRefPubMed Caputo E, Manco G, Mandrich L, Guardiola J: A novel aspartyl proteinase from apocrine epithelia and breast tumors. J Biol Chem. 2000, 275: 7935-7941. 10.1074/jbc.275.11.7935.CrossRefPubMed
32.
go back to reference Hassan MI, Waheed A, Yadav S, Singh TP, Ahmad F: Prolactin inducible protein in cancer, fertility and immunoregulation: structure, function and its clinical implications. Cell Mol Life Sci. 2009, 66: 447-459. 10.1007/s00018-008-8463-x.CrossRefPubMed Hassan MI, Waheed A, Yadav S, Singh TP, Ahmad F: Prolactin inducible protein in cancer, fertility and immunoregulation: structure, function and its clinical implications. Cell Mol Life Sci. 2009, 66: 447-459. 10.1007/s00018-008-8463-x.CrossRefPubMed
33.
go back to reference Robinson JL, Macarthur S, Ross-Innes CS, Tilley WD, Neal DE, Mills IG, Carroll JS: Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. Embo J. 2011, 30: 3019-3027. 10.1038/emboj.2011.216.CrossRefPubMedPubMedCentral Robinson JL, Macarthur S, Ross-Innes CS, Tilley WD, Neal DE, Mills IG, Carroll JS: Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. Embo J. 2011, 30: 3019-3027. 10.1038/emboj.2011.216.CrossRefPubMedPubMedCentral
34.
go back to reference Chen JY, Lin JR, Cimprich KA, Meyer T: A two-dimensional ERK-AKT signaling code for an NGF-triggered cell-fate decision. Mol Cell. 2012, 45: 196-209. 10.1016/j.molcel.2011.11.023.CrossRefPubMed Chen JY, Lin JR, Cimprich KA, Meyer T: A two-dimensional ERK-AKT signaling code for an NGF-triggered cell-fate decision. Mol Cell. 2012, 45: 196-209. 10.1016/j.molcel.2011.11.023.CrossRefPubMed
35.
go back to reference De Cesare D, Jacquot S, Hanauer A, Sassone-Corsi P: Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proc Natl Acad Sci USA. 1998, 95: 12202-12207. 10.1073/pnas.95.21.12202.CrossRefPubMedPubMedCentral De Cesare D, Jacquot S, Hanauer A, Sassone-Corsi P: Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proc Natl Acad Sci USA. 1998, 95: 12202-12207. 10.1073/pnas.95.21.12202.CrossRefPubMedPubMedCentral
36.
go back to reference Du K, Montminy M: CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem. 1998, 273: 32377-32379. 10.1074/jbc.273.49.32377.CrossRefPubMed Du K, Montminy M: CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem. 1998, 273: 32377-32379. 10.1074/jbc.273.49.32377.CrossRefPubMed
37.
go back to reference Wilson SH, Ljubimov AV, Morla AO, Caballero S, Shaw LC, Spoerri PE, Tarnuzzer RW, Grant MB: Fibronectin fragments promote human retinal endothelial cell adhesion and proliferation and ERK activation through alpha5beta1 integrin and PI 3-kinase. Invest Ophthalmol Vis Sci. 2003, 44: 1704-1715. 10.1167/iovs.02-0773.CrossRefPubMed Wilson SH, Ljubimov AV, Morla AO, Caballero S, Shaw LC, Spoerri PE, Tarnuzzer RW, Grant MB: Fibronectin fragments promote human retinal endothelial cell adhesion and proliferation and ERK activation through alpha5beta1 integrin and PI 3-kinase. Invest Ophthalmol Vis Sci. 2003, 44: 1704-1715. 10.1167/iovs.02-0773.CrossRefPubMed
38.
go back to reference Hocking DC, Sottile J, McKeown-Longo PJ: Activation of distinct alpha5beta1-mediated signaling pathways by fibronectin's cell adhesion and matrix assembly domains. J Cell Biol. 1998, 141: 241-253. 10.1083/jcb.141.1.241.CrossRefPubMedPubMedCentral Hocking DC, Sottile J, McKeown-Longo PJ: Activation of distinct alpha5beta1-mediated signaling pathways by fibronectin's cell adhesion and matrix assembly domains. J Cell Biol. 1998, 141: 241-253. 10.1083/jcb.141.1.241.CrossRefPubMedPubMedCentral
39.
go back to reference Berry MG, Goode AW, Puddefoot JR, Vinson GP, Carpenter R: Integrin beta1-mediated invasion of human breast cancer cells: an ex vivo assay for invasiveness. Breast Cancer. 2003, 10: 214-219. 10.1007/BF02966720.CrossRefPubMed Berry MG, Goode AW, Puddefoot JR, Vinson GP, Carpenter R: Integrin beta1-mediated invasion of human breast cancer cells: an ex vivo assay for invasiveness. Breast Cancer. 2003, 10: 214-219. 10.1007/BF02966720.CrossRefPubMed
40.
go back to reference Forsyth CB, Pulai J, Loeser RF: Fibronectin fragments and blocking antibodies to alpha2beta1 and alpha5beta1 integrins stimulate mitogen-activated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. Arthritis Rheum. 2002, 46: 2368-2376. 10.1002/art.10502.CrossRefPubMed Forsyth CB, Pulai J, Loeser RF: Fibronectin fragments and blocking antibodies to alpha2beta1 and alpha5beta1 integrins stimulate mitogen-activated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. Arthritis Rheum. 2002, 46: 2368-2376. 10.1002/art.10502.CrossRefPubMed
41.
go back to reference Legate KR, Montanez E, Kudlacek O, Fassler R: ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol. 2006, 7: 20-31. 10.1038/nrm1789.CrossRefPubMed Legate KR, Montanez E, Kudlacek O, Fassler R: ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol. 2006, 7: 20-31. 10.1038/nrm1789.CrossRefPubMed
42.
go back to reference Wu C, Dedhar S: Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol. 2001, 155: 505-510. 10.1083/jcb.200108077.CrossRefPubMedPubMedCentral Wu C, Dedhar S: Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol. 2001, 155: 505-510. 10.1083/jcb.200108077.CrossRefPubMedPubMedCentral
43.
go back to reference Falcioni R, Antonini A, Nistico P, Di Stefano S, Crescenzi M, Natali PG, Sacchi A: Alpha 6 beta 4 and alpha 6 beta 1 integrins associate with ErbB-2 in human carcinoma cell lines. Exp Cell Res. 1997, 236: 76-85. 10.1006/excr.1997.3695.CrossRefPubMed Falcioni R, Antonini A, Nistico P, Di Stefano S, Crescenzi M, Natali PG, Sacchi A: Alpha 6 beta 4 and alpha 6 beta 1 integrins associate with ErbB-2 in human carcinoma cell lines. Exp Cell Res. 1997, 236: 76-85. 10.1006/excr.1997.3695.CrossRefPubMed
44.
go back to reference Zhang Z, Kobayashi S, Borczuk AC, Leidner RS, Laframboise T, Levine AD, Halmos B: Dual specificity phosphatase 6 (DUSP6) is an ETS-regulated negative feedback mediator of oncogenic ERK signaling in lung cancer cells. Carcinogenesis. 2010, 31: 577-586. 10.1093/carcin/bgq020.CrossRefPubMedPubMedCentral Zhang Z, Kobayashi S, Borczuk AC, Leidner RS, Laframboise T, Levine AD, Halmos B: Dual specificity phosphatase 6 (DUSP6) is an ETS-regulated negative feedback mediator of oncogenic ERK signaling in lung cancer cells. Carcinogenesis. 2010, 31: 577-586. 10.1093/carcin/bgq020.CrossRefPubMedPubMedCentral
45.
46.
go back to reference Sahu B, Laakso M, Ovaska K, Mirtti T, Lundin J, Rannikko A, Sankila A, Turunen JP, Lundin M, Konsti J, Vesterinen T, Nordling S, Kallioniemi O, Hautaniemi S, Janne OA: Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. Embo J. 2011, 30: 3962-3976. 10.1038/emboj.2011.328.CrossRefPubMedPubMedCentral Sahu B, Laakso M, Ovaska K, Mirtti T, Lundin J, Rannikko A, Sankila A, Turunen JP, Lundin M, Konsti J, Vesterinen T, Nordling S, Kallioniemi O, Hautaniemi S, Janne OA: Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. Embo J. 2011, 30: 3962-3976. 10.1038/emboj.2011.328.CrossRefPubMedPubMedCentral
47.
go back to reference Gebhardt C, Nemeth J, Angel P, Hess J: S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol. 2006, 72: 1622-1631. 10.1016/j.bcp.2006.05.017.CrossRefPubMed Gebhardt C, Nemeth J, Angel P, Hess J: S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol. 2006, 72: 1622-1631. 10.1016/j.bcp.2006.05.017.CrossRefPubMed
48.
go back to reference Moon A, Yong HY, Song JI, Cukovic D, Salagrama S, Kaplan D, Putt D, Kim H, Dombkowski A, Kim HR: Global gene expression profiling unveils S100A8/A9 as candidate markers in H-ras-mediated human breast epithelial cell invasion. Mol Cancer Res. 2008, 6: 1544-1553. 10.1158/1541-7786.MCR-08-0189.CrossRefPubMed Moon A, Yong HY, Song JI, Cukovic D, Salagrama S, Kaplan D, Putt D, Kim H, Dombkowski A, Kim HR: Global gene expression profiling unveils S100A8/A9 as candidate markers in H-ras-mediated human breast epithelial cell invasion. Mol Cancer Res. 2008, 6: 1544-1553. 10.1158/1541-7786.MCR-08-0189.CrossRefPubMed
49.
go back to reference Pagani A, Sapino A, Eusebi V, Bergnolo P, Bussolati G: PIP/GCDFP-15 gene expression and apocrine differentiation in carcinomas of the breast. Virchows Arch. 1994, 425: 459-465.CrossRefPubMed Pagani A, Sapino A, Eusebi V, Bergnolo P, Bussolati G: PIP/GCDFP-15 gene expression and apocrine differentiation in carcinomas of the breast. Virchows Arch. 1994, 425: 459-465.CrossRefPubMed
50.
go back to reference Fritzsche FR, Thomas A, Winzer KJ, Beyer B, Dankof A, Bellach J, Dahl E, Dietel M, Kristiansen G: Co-expression and prognostic value of gross cystic disease fluid protein 15 and mammaglobin in primary breast cancer. Histol Histopathol. 2007, 22: 1221-1230.PubMed Fritzsche FR, Thomas A, Winzer KJ, Beyer B, Dankof A, Bellach J, Dahl E, Dietel M, Kristiansen G: Co-expression and prognostic value of gross cystic disease fluid protein 15 and mammaglobin in primary breast cancer. Histol Histopathol. 2007, 22: 1221-1230.PubMed
51.
go back to reference Nonami Y, Hisa S, Yamamoto A, Sasaguri S, Kiyoku H, Kurumaya H: Immunohistochemical study with antibody to glycoprotein GCDFP-15 for metastatic lung cancer from breast cancer. J Cardiovasc Surg (Torino). 2001, 42: 561-564. Nonami Y, Hisa S, Yamamoto A, Sasaguri S, Kiyoku H, Kurumaya H: Immunohistochemical study with antibody to glycoprotein GCDFP-15 for metastatic lung cancer from breast cancer. J Cardiovasc Surg (Torino). 2001, 42: 561-564.
52.
go back to reference Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA: Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011, 121: 2750-2767. 10.1172/JCI45014.CrossRefPubMedPubMedCentral Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA: Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011, 121: 2750-2767. 10.1172/JCI45014.CrossRefPubMedPubMedCentral
53.
go back to reference Wiggin GR, Soloaga A, Foster JM, Murray-Tait V, Cohen P, Arthur JS: MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol Biol Cell. 2002, 22: 2871-2881. 10.1128/MCB.22.8.2871-2881.2002.CrossRef Wiggin GR, Soloaga A, Foster JM, Murray-Tait V, Cohen P, Arthur JS: MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol Biol Cell. 2002, 22: 2871-2881. 10.1128/MCB.22.8.2871-2881.2002.CrossRef
54.
go back to reference Mayr B, Montminy M: Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001, 2: 599-609. 10.1038/35085068.CrossRefPubMed Mayr B, Montminy M: Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001, 2: 599-609. 10.1038/35085068.CrossRefPubMed
55.
go back to reference Myal Y, Robinson DB, Iwasiow B, Tsuyuki D, Wong P, Shiu RP: The prolactin-inducible protein (PIP/GCDFP-15) gene: cloning, structure and regulation. Mol Cell Endocrinol. 1991, 80: 165-175. 10.1016/0303-7207(91)90153-J.CrossRefPubMed Myal Y, Robinson DB, Iwasiow B, Tsuyuki D, Wong P, Shiu RP: The prolactin-inducible protein (PIP/GCDFP-15) gene: cloning, structure and regulation. Mol Cell Endocrinol. 1991, 80: 165-175. 10.1016/0303-7207(91)90153-J.CrossRefPubMed
56.
go back to reference Carsol JL, Gingras S, Simard J: Synergistic action of prolactin (PRL) and androgen on PRL-inducible protein gene expression in human breast cancer cells: a unique model for functional cooperation between signal transducer and activator of transcription-5 and androgen receptor. Mol Endocrinol. 2002, 16: 1696-1710. 10.1210/me.16.7.1696.CrossRefPubMed Carsol JL, Gingras S, Simard J: Synergistic action of prolactin (PRL) and androgen on PRL-inducible protein gene expression in human breast cancer cells: a unique model for functional cooperation between signal transducer and activator of transcription-5 and androgen receptor. Mol Endocrinol. 2002, 16: 1696-1710. 10.1210/me.16.7.1696.CrossRefPubMed
57.
go back to reference Baniwal SK, Little GH, Chimge NO, Frenkel B: Runx2 controls a feed-forward loop between androgen and prolactin-induced protein (PIP) in stimulating T47D cell proliferation. J Cell Physiol. 2012, 227: 2276-2282. 10.1002/jcp.22966.CrossRefPubMedPubMedCentral Baniwal SK, Little GH, Chimge NO, Frenkel B: Runx2 controls a feed-forward loop between androgen and prolactin-induced protein (PIP) in stimulating T47D cell proliferation. J Cell Physiol. 2012, 227: 2276-2282. 10.1002/jcp.22966.CrossRefPubMedPubMedCentral
58.
go back to reference Dart DA, Brooke GN, Sita-Lumsden A, Waxman J, Bevan CL: Reducing prohibitin increases histone acetylation, and promotes androgen independence in prostate tumours by increasing androgen receptor activation by adrenal androgens. Oncogene. 2011, doi:10.1038/onc.2011.591 Dart DA, Brooke GN, Sita-Lumsden A, Waxman J, Bevan CL: Reducing prohibitin increases histone acetylation, and promotes androgen independence in prostate tumours by increasing androgen receptor activation by adrenal androgens. Oncogene. 2011, doi:10.1038/onc.2011.591
59.
go back to reference Murphy LC, Tsuyuki D, Myal Y, Shiu RP: Isolation and sequencing of a cDNA clone for a prolactin-inducible protein (PIP). Regulation of PIP gene expression in the human breast cancer cell line, T-47D. J Biol Chem. 1987, 262: 15236-15241.PubMed Murphy LC, Tsuyuki D, Myal Y, Shiu RP: Isolation and sequencing of a cDNA clone for a prolactin-inducible protein (PIP). Regulation of PIP gene expression in the human breast cancer cell line, T-47D. J Biol Chem. 1987, 262: 15236-15241.PubMed
60.
go back to reference Tabe Y, Jin L, Tsutsumi-Ishii Y, Xu Y, McQueen T, Priebe W, Mills GB, Ohsaka A, Nagaoka I, Andreeff M, Konopleva M: Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer Res. 2007, 67: 684-694. 10.1158/0008-5472.CAN-06-3166.CrossRefPubMed Tabe Y, Jin L, Tsutsumi-Ishii Y, Xu Y, McQueen T, Priebe W, Mills GB, Ohsaka A, Nagaoka I, Andreeff M, Konopleva M: Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer Res. 2007, 67: 684-694. 10.1158/0008-5472.CAN-06-3166.CrossRefPubMed
61.
go back to reference Kuwada SK, Li X: Integrin alpha5/beta1 mediates fibronectin-dependent epithelial cell proliferation through epidermal growth factor receptor activation. Mol Biol Cell. 2000, 11: 2485-2496.CrossRefPubMedPubMedCentral Kuwada SK, Li X: Integrin alpha5/beta1 mediates fibronectin-dependent epithelial cell proliferation through epidermal growth factor receptor activation. Mol Biol Cell. 2000, 11: 2485-2496.CrossRefPubMedPubMedCentral
62.
go back to reference Hauzenberger D, Bergstrom SE, Klominek J, Sundqvist KG: Spectrum of extracellular matrix degrading enzymes in normal and malignant T lymphocytes. Anticancer Res. 1999, 19: 1945-1952.PubMed Hauzenberger D, Bergstrom SE, Klominek J, Sundqvist KG: Spectrum of extracellular matrix degrading enzymes in normal and malignant T lymphocytes. Anticancer Res. 1999, 19: 1945-1952.PubMed
Metadata
Title
Prolactin-induced protein mediates cell invasion and regulates integrin signaling in estrogen receptor-negative breast cancer
Authors
Ali Naderi
Michelle Meyer
Publication date
01-08-2012
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 4/2012
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr3232

Other articles of this Issue 4/2012

Breast Cancer Research 4/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine