Skip to main content
Top
Published in: Breast Cancer Research 3/2011

Open Access 01-06-2011 | Research article

Sunitinib inhibits lymphatic endothelial cell functions and lymph node metastasis in a breast cancer model through inhibition of vascular endothelial growth factor receptor 3

Authors: Yasuo Kodera, Yasufumi Katanasaka, Yuka Kitamura, Hitoshi Tsuda, Kazuto Nishio, Tomohide Tamura, Fumiaki Koizumi

Published in: Breast Cancer Research | Issue 3/2011

Login to get access

Abstract

Introduction

Metastasis is a common event and the main cause of death in cancer patients. Lymphangiogenesis refers to the formation of new lymphatic vessels and is thought to be involved in the development of metastasis. Sunitinib is a multi-kinase inhibitor that blocks receptor tyrosine kinase activity, including that of vascular endothelial growth factor receptors (VEGFRs). Although sunitinib is a clinically available angiogenesis inhibitor, its effects on lymphangiogenesis and lymph node metastasis remain unclear. The purpose of this study was to investigate the effects of sunitinib on vascular endothelial growth factor receptor 3 (VEGFR-3) and a related event, lymphangiogenesis.

Methods

The effects of sunitinib on the degree of phosphorylation of VEGFR-2/3 and other signaling molecules was examined in lymphatic endothelial cells (LECs) treated with the drug; VEGF-induced LEC growth, migration, and tube formation were also examined. For the in vivo study, luciferase-expressing breast cancer cells were transplanted into mammary fat pads of mice; the microvessel and lymphatic vessel density was then measured after treatment with sunitinib and anti-VEGFR-2 antibody.

Results

First, in human LECs, sunitinib blocked both VEGFR-2 and VEGFR-3 phosphorylation induced by VEGF-C or VEGF-D, and abrogated the activation of the downstream molecules extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt. Furthermore, sunitinib attenuated the cell-proliferation activity induced by VEGF-C/D and prevented VEGF-C-induced migration and tube formation of the LECs; however, anti-VEGFR2 treatment shows only a partial effect on the growth and functions of the LECs. We used a breast cancer cell line expressing luciferase as a metastatic cancer model. Sunitinib treatment (40 mg/kg/day) inhibited the growth of the primary tumor transplanted in the mammary fat pad of the mice and significantly reduced the number of blood and lymphatic vessels in the tumor. Furthermore, the development of axillary lymph node metastasis, detected by bioluminescent imaging, was markedly suppressed. This effect of sunitinib was more potent than that of DC101, an anti-mouse VEGFR-2 antibody.

Conclusions

The results suggest that sunitinib might be beneficial for the treatment of breast cancer by suppressing lymphangiogenesis and lymph node metastasis, through inhibition, particularly important, of VEGFR-3.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gupta GP, Massague J: Cancer metastasis: building a framework. Cell. 2006, 127: 679-695. 10.1016/j.cell.2006.11.001.CrossRef Gupta GP, Massague J: Cancer metastasis: building a framework. Cell. 2006, 127: 679-695. 10.1016/j.cell.2006.11.001.CrossRef
2.
go back to reference Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K: Lymphangiogenesis and cancer metastasis. Nat Rev Cancer. 2002, 2: 573-583. 10.1038/nrc863.CrossRef Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K: Lymphangiogenesis and cancer metastasis. Nat Rev Cancer. 2002, 2: 573-583. 10.1038/nrc863.CrossRef
3.
go back to reference Alitalo K, Tammela T, Petrova TV: Lymphangiogenesis in development and human disease. Nature. 2005, 438: 946-953. 10.1038/nature04480.CrossRef Alitalo K, Tammela T, Petrova TV: Lymphangiogenesis in development and human disease. Nature. 2005, 438: 946-953. 10.1038/nature04480.CrossRef
4.
go back to reference Joyce JA, Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009, 9: 239-252. 10.1038/nrc2618.CrossRef Joyce JA, Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009, 9: 239-252. 10.1038/nrc2618.CrossRef
5.
go back to reference Tammela T, Alitalo K: Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010, 140: 460-476. 10.1016/j.cell.2010.01.045.CrossRef Tammela T, Alitalo K: Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010, 140: 460-476. 10.1016/j.cell.2010.01.045.CrossRef
6.
go back to reference Achen MG, McColl BK, Stacker SA: Focus on lymphangiogenesis in tumor metastasis. Cancer Cell. 2005, 7: 121-127. 10.1016/j.ccr.2005.01.017.CrossRef Achen MG, McColl BK, Stacker SA: Focus on lymphangiogenesis in tumor metastasis. Cancer Cell. 2005, 7: 121-127. 10.1016/j.ccr.2005.01.017.CrossRef
7.
go back to reference Adams RH, Alitalo K: Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol. 2007, 8: 464-478. 10.1038/nrm2183.CrossRef Adams RH, Alitalo K: Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol. 2007, 8: 464-478. 10.1038/nrm2183.CrossRef
8.
go back to reference Zwaans BM, Bielenberg DR: Potential therapeutic strategies for lymphatic metastasis. Microvasc Res. 2007, 74: 145-158. 10.1016/j.mvr.2007.08.006.CrossRef Zwaans BM, Bielenberg DR: Potential therapeutic strategies for lymphatic metastasis. Microvasc Res. 2007, 74: 145-158. 10.1016/j.mvr.2007.08.006.CrossRef
9.
go back to reference Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M: Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001, 7: 192-198. 10.1038/84643.CrossRef Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M: Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001, 7: 192-198. 10.1038/84643.CrossRef
10.
go back to reference Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG: VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med. 2001, 7: 186-191. 10.1038/84635.CrossRef Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG: VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med. 2001, 7: 186-191. 10.1038/84635.CrossRef
11.
go back to reference Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Skobe M: Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci USA. 2002, 99: 16069-16074. 10.1073/pnas.242401399.CrossRef Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Skobe M: Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci USA. 2002, 99: 16069-16074. 10.1073/pnas.242401399.CrossRef
12.
go back to reference Zeng Y, Opeskin K, Goad J, Williams ED: Tumor-induced activation of lymphatic endothelial cells via vascular endothelial growth factor receptor-2 is critical for prostate cancer lymphatic metastasis. Cancer Res. 2006, 66: 9566-9575. 10.1158/0008-5472.CAN-06-1488.CrossRef Zeng Y, Opeskin K, Goad J, Williams ED: Tumor-induced activation of lymphatic endothelial cells via vascular endothelial growth factor receptor-2 is critical for prostate cancer lymphatic metastasis. Cancer Res. 2006, 66: 9566-9575. 10.1158/0008-5472.CAN-06-1488.CrossRef
13.
go back to reference Wissmann C, Detmar M: Pathways targeting tumor lymphangiogenesis. Clin Cancer Res. 2006, 12: 6865-6868. 10.1158/1078-0432.CCR-06-1800.CrossRef Wissmann C, Detmar M: Pathways targeting tumor lymphangiogenesis. Clin Cancer Res. 2006, 12: 6865-6868. 10.1158/1078-0432.CCR-06-1800.CrossRef
14.
go back to reference Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K: Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science. 1998, 282: 946-949.CrossRef Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K: Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science. 1998, 282: 946-949.CrossRef
15.
go back to reference Mäkinen T, Jussila L, Veikkola T, Karpanen T, Kettunen MI, Pulkkanen KJ, Kauppinen R, Jackson DG, Kubo H, Nishikawa S, Ylä-Herttuala S, Alitalo K: Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med. 2001, 7: 199-205. 10.1038/84651.CrossRef Mäkinen T, Jussila L, Veikkola T, Karpanen T, Kettunen MI, Pulkkanen KJ, Kauppinen R, Jackson DG, Kubo H, Nishikawa S, Ylä-Herttuala S, Alitalo K: Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med. 2001, 7: 199-205. 10.1038/84651.CrossRef
16.
go back to reference Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D, Maurer D: Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med. 2001, 194: 797-808. 10.1084/jem.194.6.797.CrossRef Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D, Maurer D: Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med. 2001, 194: 797-808. 10.1084/jem.194.6.797.CrossRef
17.
go back to reference Saaristo A, Veikkola T, Enholm B, Hytönen M, Arola J, Pajusola K, Turunen P, Jeltsch M, Karkkainen MJ, Kerjaschki D, Bueler H, Ylä-Herttuala S, Alitalo K: Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. Faseb J. 2002, 16: 1041-1049. 10.1096/fj.01-1042com.CrossRef Saaristo A, Veikkola T, Enholm B, Hytönen M, Arola J, Pajusola K, Turunen P, Jeltsch M, Karkkainen MJ, Kerjaschki D, Bueler H, Ylä-Herttuala S, Alitalo K: Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. Faseb J. 2002, 16: 1041-1049. 10.1096/fj.01-1042com.CrossRef
18.
go back to reference Goldman J, Rutkowski JM, Shields JD, Pasquier MC, Cui Y, Schmokel HG, Willey S, Hicklin DJ, Pytowski B, Swartz MA: Cooperative and redundant roles of VEGFR-2 and VEGFR-3 signaling in adult lymphangiogenesis. FASEB J. 2007, 21: 1003-1012. 10.1096/fj.06-6656com.CrossRef Goldman J, Rutkowski JM, Shields JD, Pasquier MC, Cui Y, Schmokel HG, Willey S, Hicklin DJ, Pytowski B, Swartz MA: Cooperative and redundant roles of VEGFR-2 and VEGFR-3 signaling in adult lymphangiogenesis. FASEB J. 2007, 21: 1003-1012. 10.1096/fj.06-6656com.CrossRef
19.
go back to reference He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T, Alitalo K: Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst. 2002, 94: 819-825.CrossRef He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T, Alitalo K: Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst. 2002, 94: 819-825.CrossRef
20.
go back to reference Roberts N, Kloos B, Cassella M, Podgrabinska S, Persaud K, Wu Y, Pytowski B, Skobe M: Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res. 2006, 66: 2650-2657. 10.1158/0008-5472.CAN-05-1843.CrossRef Roberts N, Kloos B, Cassella M, Podgrabinska S, Persaud K, Wu Y, Pytowski B, Skobe M: Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res. 2006, 66: 2650-2657. 10.1158/0008-5472.CAN-05-1843.CrossRef
21.
go back to reference Burton JB, Priceman SJ, Sung JL, Brakenhielm E, An DS, Pytowski B, Alitalo K, Wu L: Suppression of prostate cancer nodal and systemic metastasis by blockade of the lymphangiogenic axis. Cancer Res. 2008, 68: 7828-7837. 10.1158/0008-5472.CAN-08-1488.CrossRef Burton JB, Priceman SJ, Sung JL, Brakenhielm E, An DS, Pytowski B, Alitalo K, Wu L: Suppression of prostate cancer nodal and systemic metastasis by blockade of the lymphangiogenic axis. Cancer Res. 2008, 68: 7828-7837. 10.1158/0008-5472.CAN-08-1488.CrossRef
22.
go back to reference Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M: Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res. 2008, 14: 5459-5465. 10.1158/1078-0432.CCR-07-5270.CrossRef Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M: Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res. 2008, 14: 5459-5465. 10.1158/1078-0432.CCR-07-5270.CrossRef
23.
go back to reference Heckman CA, Holopainen T, Wirzenius M, Keskitalo S, Jeltsch M, Yla-Herttuala S, Wedge SR, Jurgensmeier JM, Alitalo K: The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis. Cancer Res. 2008, 68: 4754-4762. 10.1158/0008-5472.CAN-07-5809.CrossRef Heckman CA, Holopainen T, Wirzenius M, Keskitalo S, Jeltsch M, Yla-Herttuala S, Wedge SR, Jurgensmeier JM, Alitalo K: The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis. Cancer Res. 2008, 68: 4754-4762. 10.1158/0008-5472.CAN-07-5809.CrossRef
24.
go back to reference Schomber T, Zumsteg A, Strittmatter K, Crnic I, Antoniadis H, Littlewood-Evans A, Wood J, Christofori G: Differential effects of the vascular endothelial growth factor receptor inhibitor PTK787/ZK222584 on tumor angiogenesis and tumor lymphangiogenesis. Mol Cancer Ther. 2009, 8: 55-63. 10.1158/1535-7163.MCT-08-0679.CrossRef Schomber T, Zumsteg A, Strittmatter K, Crnic I, Antoniadis H, Littlewood-Evans A, Wood J, Christofori G: Differential effects of the vascular endothelial growth factor receptor inhibitor PTK787/ZK222584 on tumor angiogenesis and tumor lymphangiogenesis. Mol Cancer Ther. 2009, 8: 55-63. 10.1158/1535-7163.MCT-08-0679.CrossRef
25.
go back to reference Faivre S, Demetri G, Sargent W, Raymond E: Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov. 2007, 6: 734-745. 10.1038/nrd2380.CrossRef Faivre S, Demetri G, Sargent W, Raymond E: Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov. 2007, 6: 734-745. 10.1038/nrd2380.CrossRef
26.
go back to reference Jenkins DE, Hornig YS, Oei Y, Dusich J, Purchio T: Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice. Breast Cancer Res. 2005, 7: R444-454. 10.1186/bcr1026.CrossRef Jenkins DE, Hornig YS, Oei Y, Dusich J, Purchio T: Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice. Breast Cancer Res. 2005, 7: R444-454. 10.1186/bcr1026.CrossRef
27.
go back to reference Fukai J, Nishio K, Itakura T, Koizumi F: Antitumor activity of cetuximab against malignant glioma cells overexpressing EGFR deletion mutant variant III. Cancer Sci. 2008, 99: 2062-2069.PubMed Fukai J, Nishio K, Itakura T, Koizumi F: Antitumor activity of cetuximab against malignant glioma cells overexpressing EGFR deletion mutant variant III. Cancer Sci. 2008, 99: 2062-2069.PubMed
28.
go back to reference Dixelius J, Makinen T, Wirzenius M, Karkkainen MJ, Wernstedt C, Alitalo K, Claesson-Welsh L: Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem. 2003, 278: 40973-40979. 10.1074/jbc.M304499200.CrossRef Dixelius J, Makinen T, Wirzenius M, Karkkainen MJ, Wernstedt C, Alitalo K, Claesson-Welsh L: Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem. 2003, 278: 40973-40979. 10.1074/jbc.M304499200.CrossRef
29.
go back to reference Alam A, Herault JP, Barron P, Favier B, Fons P, Delesque-Touchard N, Senegas I, Laboudie P, Bonnin J, Cassan C, Savi P, Ruggeri B, Carmeliet P, Bono F, Herbert JM: Heterodimerization with vascular endothelial growth factor receptor-2 (VEGFR-2) is necessary for VEGFR-3 activity. Biochem Biophys Res Commun. 2004, 324: 909-915. 10.1016/j.bbrc.2004.08.237.CrossRef Alam A, Herault JP, Barron P, Favier B, Fons P, Delesque-Touchard N, Senegas I, Laboudie P, Bonnin J, Cassan C, Savi P, Ruggeri B, Carmeliet P, Bono F, Herbert JM: Heterodimerization with vascular endothelial growth factor receptor-2 (VEGFR-2) is necessary for VEGFR-3 activity. Biochem Biophys Res Commun. 2004, 324: 909-915. 10.1016/j.bbrc.2004.08.237.CrossRef
30.
go back to reference Morelli MP, Brown AM, Pitts TM, Tentler JJ, Ciardiello F, Ryan A, Jurgensmeier JM, Eckhardt SG: Targeting vascular endothelial growth factor receptor-1 and -3 with cediranib (AZD2171): effects on migration and invasion of gastrointestinal cancer cell lines. Mol Cancer Ther. 2009, 8: 2546-2558. 10.1158/1535-7163.MCT-09-0380.CrossRef Morelli MP, Brown AM, Pitts TM, Tentler JJ, Ciardiello F, Ryan A, Jurgensmeier JM, Eckhardt SG: Targeting vascular endothelial growth factor receptor-1 and -3 with cediranib (AZD2171): effects on migration and invasion of gastrointestinal cancer cell lines. Mol Cancer Ther. 2009, 8: 2546-2558. 10.1158/1535-7163.MCT-09-0380.CrossRef
31.
go back to reference Blansfield JA, Caragacianu D, Alexander HR, Tangrea MA, Morita SY, Lorang D, Schafer P, Muller G, Stirling D, Royal RE, Libutti SK: Combining agents that target the tumor microenvironment improves the efficacy of anticancer therapy. Clin Cancer Res. 2008, 14: 270-280. 10.1158/1078-0432.CCR-07-1562.CrossRef Blansfield JA, Caragacianu D, Alexander HR, Tangrea MA, Morita SY, Lorang D, Schafer P, Muller G, Stirling D, Royal RE, Libutti SK: Combining agents that target the tumor microenvironment improves the efficacy of anticancer therapy. Clin Cancer Res. 2008, 14: 270-280. 10.1158/1078-0432.CCR-07-1562.CrossRef
32.
go back to reference Zhang L, Smith KM, Chong AL, Stempak D, Yeger H, Marrano P, Thorner PS, Irwin MS, Kaplan DR, Baruchel S: In vivo antitumor and antimetastatic activity of sunitinib in preclinical neuroblastoma mouse model. Neoplasia. 2009, 11: 426-435.CrossRef Zhang L, Smith KM, Chong AL, Stempak D, Yeger H, Marrano P, Thorner PS, Irwin MS, Kaplan DR, Baruchel S: In vivo antitumor and antimetastatic activity of sunitinib in preclinical neuroblastoma mouse model. Neoplasia. 2009, 11: 426-435.CrossRef
33.
go back to reference Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS: Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009, 15: 232-239. 10.1016/j.ccr.2009.01.021.CrossRef Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS: Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009, 15: 232-239. 10.1016/j.ccr.2009.01.021.CrossRef
34.
go back to reference Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009, 15: 220-231. 10.1016/j.ccr.2009.01.027.CrossRef Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009, 15: 220-231. 10.1016/j.ccr.2009.01.027.CrossRef
Metadata
Title
Sunitinib inhibits lymphatic endothelial cell functions and lymph node metastasis in a breast cancer model through inhibition of vascular endothelial growth factor receptor 3
Authors
Yasuo Kodera
Yasufumi Katanasaka
Yuka Kitamura
Hitoshi Tsuda
Kazuto Nishio
Tomohide Tamura
Fumiaki Koizumi
Publication date
01-06-2011
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 3/2011
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr2903

Other articles of this Issue 3/2011

Breast Cancer Research 3/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine