Skip to main content
Top
Published in: Breast Cancer Research 1/2011

Open Access 01-02-2011 | Research article

Proliferation-associated POU4F2/Brn-3b transcription factor expression is regulated by oestrogen through ERα and growth factors via MAPK pathway

Authors: Samir Ounzain, Samantha Bowen, Chandrakant Patel, Rieko Fujita, Richard J Heads, Vishwanie S Budhram-Mahadeo

Published in: Breast Cancer Research | Issue 1/2011

Login to get access

Abstract

Introduction

In cancer cells, elevated transcription factor-related Brn-3a regulator isolated from brain cDNA (Brn-3b) transcription factor enhances proliferation in vitro and increases tumour growth in vivo whilst conferring drug resistance and migratory potential, whereas reducing Brn-3b slows growth both in vitro and in vivo. Brn-3b regulates distinct groups of key target genes that control cell growth and behaviour. Brn-3b is elevated in >65% of breast cancer biopsies, but mechanisms controlling its expression in these cells are not known.

Methods

Bioinformatics analysis was used to identify the regulatory promoter region and map transcription start site as well as transcription factor binding sites. Polymerase chain reaction (PCR) cloning was used to generate promoter constructs for reporter assays. Chromatin immunoprecipitation and site-directed mutagenesis were used to confirm the transcription start site and autoregulation. MCF-7 and Cos-7 breast cancer cells were used. Cells grown in culture were transfected with Brn-3b promoter and treated with growth factors or estradiol to test for effects on promoter activity. Quantitative reverse transcriptase PCR assays and immunoblotting were used to confirm changes in gene and protein expression.

Results

We cloned the Brn-3b promoter, mapped the transcription start site and showed stimulation by estradiol and growth factors, nerve growth factor and epidermal growth factor, which are implicated in breast cancer initiation and/or progression. The effects of growth factors are mediated through the mitogen-activated protein kinase pathway, whereas hormone effects act via oestrogen receptor α (ERα). Brn-3b also autoregulates its expression and cooperates with ERα to further enhance levels.

Conclusions

Key regulators of growth in cancer cells, for example, oestrogens and growth factors, can stimulate Brn-3b expression, and autoregulation also contributes to increasing Brn-3b in breast cancers. Since increasing Brn-3b profoundly enhances growth in these cells, understanding how Brn-3b is increased in breast cancers will help to identify strategies for reducing its expression and thus its effects on target genes, thereby reversing its effects in breast cancer cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Budhram-Mahadeo VS, Latchman DS: Targeting Brn-3b in breast cancer therapy. Expert Opin Ther Targets. 2006, 10: 15-25. 10.1517/14728222.10.1.15.CrossRef Budhram-Mahadeo VS, Latchman DS: Targeting Brn-3b in breast cancer therapy. Expert Opin Ther Targets. 2006, 10: 15-25. 10.1517/14728222.10.1.15.CrossRef
2.
go back to reference Irshad S, Pedley RB, Anderson J, Latchman DS, Budhram-Mahadeo V: The Brn-3b transcription factor regulates the growth, behavior, and invasiveness of human neuroblastoma cells in vitro and in vivo. J Biol Chem. 2004, 279: 21617-21627. 10.1074/jbc.M312506200.CrossRef Irshad S, Pedley RB, Anderson J, Latchman DS, Budhram-Mahadeo V: The Brn-3b transcription factor regulates the growth, behavior, and invasiveness of human neuroblastoma cells in vitro and in vivo. J Biol Chem. 2004, 279: 21617-21627. 10.1074/jbc.M312506200.CrossRef
3.
go back to reference Dennis JH, Budhram-Mahadeo V, Latchman DS: The Brn-3b POU family transcription factor regulates the cellular growth, proliferation, and anchorage dependence of MCF7 human breast cancer cells. Oncogene. 2001, 20: 4961-4971. 10.1038/sj.onc.1204491.CrossRef Dennis JH, Budhram-Mahadeo V, Latchman DS: The Brn-3b POU family transcription factor regulates the cellular growth, proliferation, and anchorage dependence of MCF7 human breast cancer cells. Oncogene. 2001, 20: 4961-4971. 10.1038/sj.onc.1204491.CrossRef
4.
go back to reference Samady L, Dennis J, Budhram-Mahadeo V, Latchman DS: Activation of CDK4 Gene Expression in Human Breast Cancer Cells by the Brn-3b POU Family Transcription Factor. Cancer Biol Ther. 2004, 3: 317-323. 10.4161/cbt.3.3.698.CrossRef Samady L, Dennis J, Budhram-Mahadeo V, Latchman DS: Activation of CDK4 Gene Expression in Human Breast Cancer Cells by the Brn-3b POU Family Transcription Factor. Cancer Biol Ther. 2004, 3: 317-323. 10.4161/cbt.3.3.698.CrossRef
5.
go back to reference Budhram-Mahadeo VS, Irshad S, Bowen S, Lee SA, Samady L, Tonini GP, Latchman DS: Proliferation-associated Brn-3b transcription factor can activate cyclin D1 expression in neuroblastoma and breast cancer cells. Oncogene. 2008, 27: 145-154. 10.1038/sj.onc.1210621.CrossRef Budhram-Mahadeo VS, Irshad S, Bowen S, Lee SA, Samady L, Tonini GP, Latchman DS: Proliferation-associated Brn-3b transcription factor can activate cyclin D1 expression in neuroblastoma and breast cancer cells. Oncogene. 2008, 27: 145-154. 10.1038/sj.onc.1210621.CrossRef
6.
go back to reference Budhram-Mahadeo V, Ndisang D, Ward T, Weber BL, Latchman DS: The Brn-3b POU family transcription factor represses expression of the BRCA-1 anti-oncogene in breast cancer cells. Oncogene. 1999, 18: 6684-6691. 10.1038/sj.onc.1203072.CrossRef Budhram-Mahadeo V, Ndisang D, Ward T, Weber BL, Latchman DS: The Brn-3b POU family transcription factor represses expression of the BRCA-1 anti-oncogene in breast cancer cells. Oncogene. 1999, 18: 6684-6691. 10.1038/sj.onc.1203072.CrossRef
7.
go back to reference Lee SA, Ndisang D, Patel C, Dennis JH, Faulkes DJ, D'Arrigo C, Samady L, Farooqui-Kabir S, Heads RJ, Latchman DS, Budhram-Mahadeo VS: Expression of the Brn-3b transcription factor correlates with expression of HSP-27 in breast cancer biopsies and is required for maximal activation of the HSP-27 promoter. Cancer Res. 2005, 65: 3072-3080.CrossRef Lee SA, Ndisang D, Patel C, Dennis JH, Faulkes DJ, D'Arrigo C, Samady L, Farooqui-Kabir S, Heads RJ, Latchman DS, Budhram-Mahadeo VS: Expression of the Brn-3b transcription factor correlates with expression of HSP-27 in breast cancer biopsies and is required for maximal activation of the HSP-27 promoter. Cancer Res. 2005, 65: 3072-3080.CrossRef
8.
go back to reference Samady L, Faulkes DJ, Budhram-Mahadeo V, Ndisang D, Potter E, Brabant G, Latchman DS: The Brn-3b POU family transcription factor represses plakoglobin gene expression in human breast cancer cells. Int J Cancer. 2006, 118: 869-878. 10.1002/ijc.21435.CrossRef Samady L, Faulkes DJ, Budhram-Mahadeo V, Ndisang D, Potter E, Brabant G, Latchman DS: The Brn-3b POU family transcription factor represses plakoglobin gene expression in human breast cancer cells. Int J Cancer. 2006, 118: 869-878. 10.1002/ijc.21435.CrossRef
9.
go back to reference Budhram-Mahadeo V, Parker M, Latchman DS: POU transcription factors Brn-3a and Brn-3b interact with the estrogen receptor and differentially regulate transcriptional activity via an estrogen response element. Mol Cell Biol. 1998, 18: 1029-1041.CrossRef Budhram-Mahadeo V, Parker M, Latchman DS: POU transcription factors Brn-3a and Brn-3b interact with the estrogen receptor and differentially regulate transcriptional activity via an estrogen response element. Mol Cell Biol. 1998, 18: 1029-1041.CrossRef
10.
go back to reference Liu YZ, Boxer LM, Latchman DS: Activation of the Bcl-2 promoter by nerve growth factor is mediated by the p42/p44 MAPK cascade. Nucleic Acids Res. 1999, 27: 2086-2090. 10.1093/nar/27.10.2086.CrossRef Liu YZ, Boxer LM, Latchman DS: Activation of the Bcl-2 promoter by nerve growth factor is mediated by the p42/p44 MAPK cascade. Nucleic Acids Res. 1999, 27: 2086-2090. 10.1093/nar/27.10.2086.CrossRef
11.
go back to reference Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I: VISTA: computational tools for comparative genomics. Nucleic Acids Res. 2004, 32: W273-W279. 10.1093/nar/gkh458.CrossRef Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I: VISTA: computational tools for comparative genomics. Nucleic Acids Res. 2004, 32: W273-W279. 10.1093/nar/gkh458.CrossRef
12.
go back to reference Loots GG: Genomic identification of regulatory elements by evolutionary sequence comparison and functional analysis. Adv Genet. 2008, 61: 269-293. full_text.CrossRef Loots GG: Genomic identification of regulatory elements by evolutionary sequence comparison and functional analysis. Adv Genet. 2008, 61: 269-293. full_text.CrossRef
13.
go back to reference Burley SK, Roeder RG: Biochemistry and structural biology of transcription factor IID (TFIID). Annu Rev Biochem. 1996, 65: 769-799. 10.1146/annurev.bi.65.070196.004005.CrossRef Burley SK, Roeder RG: Biochemistry and structural biology of transcription factor IID (TFIID). Annu Rev Biochem. 1996, 65: 769-799. 10.1146/annurev.bi.65.070196.004005.CrossRef
14.
go back to reference Lanzino M, Morelli C, Garofalo C, Panno ML, Mauro L, Ando S, Sisci D: Interaction between estrogen receptor alpha and insulin/IGF signaling in breast cancer. Curr Cancer Drug Targets. 2008, 8: 597-610. 10.2174/156800908786241104.CrossRef Lanzino M, Morelli C, Garofalo C, Panno ML, Mauro L, Ando S, Sisci D: Interaction between estrogen receptor alpha and insulin/IGF signaling in breast cancer. Curr Cancer Drug Targets. 2008, 8: 597-610. 10.2174/156800908786241104.CrossRef
15.
go back to reference Lo HW, Hsu SC, Hung MC: EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization. Breast Cancer Res Treat. 2006, 95: 211-218. 10.1007/s10549-005-9011-0.CrossRef Lo HW, Hsu SC, Hung MC: EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization. Breast Cancer Res Treat. 2006, 95: 211-218. 10.1007/s10549-005-9011-0.CrossRef
16.
go back to reference Descamps S, Toillon RA, Adriaenssens E, Pawlowski V, Cool SM, Nurcombe V, Le Bourhis X, Boilly B, Peyrat JP, Hondermarck H: Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J Biol Chem. 2001, 276: 17864-17870. 10.1074/jbc.M010499200.CrossRef Descamps S, Toillon RA, Adriaenssens E, Pawlowski V, Cool SM, Nurcombe V, Le Bourhis X, Boilly B, Peyrat JP, Hondermarck H: Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J Biol Chem. 2001, 276: 17864-17870. 10.1074/jbc.M010499200.CrossRef
17.
go back to reference Descamps S, Pawlowski V, Revillion F, Hornez L, Hebbar M, Boilly B, Hondermarck H, Peyrat JP: Expression of nerve growth factor receptors and their prognostic value in human breast cancer. Cancer Res. 2001, 61: 4337-4340.PubMed Descamps S, Pawlowski V, Revillion F, Hornez L, Hebbar M, Boilly B, Hondermarck H, Peyrat JP: Expression of nerve growth factor receptors and their prognostic value in human breast cancer. Cancer Res. 2001, 61: 4337-4340.PubMed
18.
go back to reference Buck MB, Knabbe C: TGF-beta signaling in breast cancer. Ann N Y Acad Sci. 2006, 1089: 119-126. 10.1196/annals.1386.024.CrossRef Buck MB, Knabbe C: TGF-beta signaling in breast cancer. Ann N Y Acad Sci. 2006, 1089: 119-126. 10.1196/annals.1386.024.CrossRef
19.
go back to reference Tagliabue E, Castiglioni F, Ghirelli C, Modugno M, Asnaghi L, Somenzi G, Melani C, Menard S: Nerve growth factor cooperates with p185(HER2) in activating growth of human breast carcinoma cells. J Biol Chem. 2000, 275: 5388-5394. 10.1074/jbc.275.8.5388.CrossRef Tagliabue E, Castiglioni F, Ghirelli C, Modugno M, Asnaghi L, Somenzi G, Melani C, Menard S: Nerve growth factor cooperates with p185(HER2) in activating growth of human breast carcinoma cells. J Biol Chem. 2000, 275: 5388-5394. 10.1074/jbc.275.8.5388.CrossRef
20.
go back to reference Veronesi U, Boyle P, Goldhirsch A, Orecchia R, Viale G: Breast cancer. Lancet. 2005, 365: 1727-1741. 10.1016/S0140-6736(05)66546-4.CrossRef Veronesi U, Boyle P, Goldhirsch A, Orecchia R, Viale G: Breast cancer. Lancet. 2005, 365: 1727-1741. 10.1016/S0140-6736(05)66546-4.CrossRef
21.
go back to reference Cleator S, Ashworth A: Molecular profiling of breast cancer: clinical implications. Br J Cancer. 2004, 90: 1120-1124. 10.1038/sj.bjc.6601667.CrossRef Cleator S, Ashworth A: Molecular profiling of breast cancer: clinical implications. Br J Cancer. 2004, 90: 1120-1124. 10.1038/sj.bjc.6601667.CrossRef
22.
go back to reference Liu S, Dontu G, Wicha MS: Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 2005, 7: 86-95. 10.1186/bcr1021.CrossRef Liu S, Dontu G, Wicha MS: Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 2005, 7: 86-95. 10.1186/bcr1021.CrossRef
23.
go back to reference Descamps S, Lebourhis X, Delehedde M, Boilly B, Hondermarck H: Nerve growth factor is mitogenic for cancerous but not normal human breast epithelial cells. J Biol Chem. 1998, 273: 16659-16662. 10.1074/jbc.273.27.16659.CrossRef Descamps S, Lebourhis X, Delehedde M, Boilly B, Hondermarck H: Nerve growth factor is mitogenic for cancerous but not normal human breast epithelial cells. J Biol Chem. 1998, 273: 16659-16662. 10.1074/jbc.273.27.16659.CrossRef
24.
go back to reference Melck D, Rueda D, Galve-Roperh I, De PL, Guzman M, Di MV: Involvement of the cAMP/protein kinase A pathway and of mitogen-activated protein kinase in the anti-proliferative effects of anandamide in human breast cancer cells. FEBS Lett. 1999, 463: 235-240. 10.1016/S0014-5793(99)01639-7.CrossRef Melck D, Rueda D, Galve-Roperh I, De PL, Guzman M, Di MV: Involvement of the cAMP/protein kinase A pathway and of mitogen-activated protein kinase in the anti-proliferative effects of anandamide in human breast cancer cells. FEBS Lett. 1999, 463: 235-240. 10.1016/S0014-5793(99)01639-7.CrossRef
25.
go back to reference Sommer S, Fuqua SA: Estrogen receptor and breast cancer. Semin Cancer Biol. 2001, 11: 339-352. 10.1006/scbi.2001.0389.CrossRef Sommer S, Fuqua SA: Estrogen receptor and breast cancer. Semin Cancer Biol. 2001, 11: 339-352. 10.1006/scbi.2001.0389.CrossRef
26.
go back to reference Iwase H: Molecular action of the estrogen receptor and hormone dependency in breast cancer. Breast Cancer. 2003, 10: 89-96. 10.1007/BF02967632.CrossRef Iwase H: Molecular action of the estrogen receptor and hormone dependency in breast cancer. Breast Cancer. 2003, 10: 89-96. 10.1007/BF02967632.CrossRef
27.
go back to reference Hart LL, Davie JR: The estrogen receptor: more than the average transcription factor. Biochem Cell Biol. 2002, 80: 335-341. 10.1139/o02-038.CrossRef Hart LL, Davie JR: The estrogen receptor: more than the average transcription factor. Biochem Cell Biol. 2002, 80: 335-341. 10.1139/o02-038.CrossRef
28.
go back to reference Kato S: Estrogen receptor-mediated cross-talk with growth factor signaling pathways. Breast Cancer. 2001, 8: 3-9. 10.1007/BF02967472.CrossRef Kato S: Estrogen receptor-mediated cross-talk with growth factor signaling pathways. Breast Cancer. 2001, 8: 3-9. 10.1007/BF02967472.CrossRef
29.
go back to reference Chiarenza A, Lazarovici P, Lempereur L, Cantarella G, Bianchi A, Bernardini R: Tamoxifen inhibits nerve growth factor-induced proliferation of the human breast cancerous cell line MCF-7. Cancer Res. 2001, 61: 3002-3008.PubMed Chiarenza A, Lazarovici P, Lempereur L, Cantarella G, Bianchi A, Bernardini R: Tamoxifen inhibits nerve growth factor-induced proliferation of the human breast cancerous cell line MCF-7. Cancer Res. 2001, 61: 3002-3008.PubMed
Metadata
Title
Proliferation-associated POU4F2/Brn-3b transcription factor expression is regulated by oestrogen through ERα and growth factors via MAPK pathway
Authors
Samir Ounzain
Samantha Bowen
Chandrakant Patel
Rieko Fujita
Richard J Heads
Vishwanie S Budhram-Mahadeo
Publication date
01-02-2011
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2011
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr2809

Other articles of this Issue 1/2011

Breast Cancer Research 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine