Skip to main content
Top
Published in: Breast Cancer Research 4/2007

Open Access 01-08-2007 | Research article

Application of the multicellular tumour spheroid model to screen PET tracers for analysis of early response of chemotherapy in breast cancer

Authors: Azita Monazzam, Raymond Josephsson, Carl Blomqvist, Jörgen Carlsson, Bengt Långström, Mats Bergström

Published in: Breast Cancer Research | Issue 4/2007

Login to get access

Abstract

Introduction

Positron emission tomography (PET) is suggested for early monitoring of treatment response, assuming that effective anticancer treatment induces metabolic changes that precede morphology alterations and changes in growth. The aim of this study was to introduce multicellular tumour spheroids (MTS) to study the effect of anticancer drugs and suggest an appropriate PET tracer for further studies.

Methods

MTS of the breast cancer cell line MCF7 were exposed to doxorubicin, paclitaxel, docetaxel, tamoxifen or imatinib for 7 days for growth pattern studies and for 3 or 5 days for PET tracer studies. The effect on growth was computed using the semi-automated size determination method (SASDM). The effect on the uptake of PET tracers [18F]3'-deoxy-3'-fluorothymidine (FLT), [1-11C]acetate (ACE), [11C]choline (CHO), [11C]methionine (MET), and 2-[18F]fluoro-2-deoxyglucose (FDG) was calculated in form of uptake/viable volume of the MTS at the end of the drug exposures, and finally the uptake was related to effects on growth rate.

Results

The drugs paclitaxel, docetaxel and doxorubicin gave severe growth inhibition, which correlated well with inhibition of the FLT uptake. FLT had, compared with ACE, CHO, MET and FDG, higher sensitivity in monitoring the therapy effects.

Conclusion

SASDM provides an effective, user-friendly, time-saving and accurate method to record the growth pattern of the MTS, and also to calculate the effect of the drug on PET tracer uptake. This study demonstrate the use of MTS and SASDM in combination with PET tracers as a promising approach to probe and select PET tracer for treatment monitoring of anticancer drugs and that can hopefully be applied for optimisation in breast cancer treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kostakoglu L, Goldsmith SJ: 18F-FDG PET evaluation of the response to therapy for lymphoma and for breast, lung, and colorectal carcinoma. J Nucl Med. 2003, 44: 224-239.PubMed Kostakoglu L, Goldsmith SJ: 18F-FDG PET evaluation of the response to therapy for lymphoma and for breast, lung, and colorectal carcinoma. J Nucl Med. 2003, 44: 224-239.PubMed
2.
go back to reference Burcombe RJ, Makris A, Pittam M, Lowe J, Emmott J, Wong WL: Evaluation of good clinical response to neoadjuvant chemotherapy in primary breast cancer using [18F]-fluorodeoxyglucose positron emission tomography. Eur J Cancer. 2002, 38: 375-379. 10.1016/S0959-8049(01)00379-3.CrossRefPubMed Burcombe RJ, Makris A, Pittam M, Lowe J, Emmott J, Wong WL: Evaluation of good clinical response to neoadjuvant chemotherapy in primary breast cancer using [18F]-fluorodeoxyglucose positron emission tomography. Eur J Cancer. 2002, 38: 375-379. 10.1016/S0959-8049(01)00379-3.CrossRefPubMed
3.
4.
go back to reference Quon A, Gambhir SS: FDG-PET and beyond: molecular breast cancer imaging. J Clin Oncol. 2005, 23: 1664-1673. 10.1200/JCO.2005.11.024.CrossRefPubMed Quon A, Gambhir SS: FDG-PET and beyond: molecular breast cancer imaging. J Clin Oncol. 2005, 23: 1664-1673. 10.1200/JCO.2005.11.024.CrossRefPubMed
5.
go back to reference Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L, Ricaud M, Bourbouloux E, Doutriaux I, Clouet M, et al: Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2006, 24: 5366-5372. 10.1200/JCO.2006.05.7406.CrossRefPubMed Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L, Ricaud M, Bourbouloux E, Doutriaux I, Clouet M, et al: Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2006, 24: 5366-5372. 10.1200/JCO.2006.05.7406.CrossRefPubMed
6.
go back to reference Khaitan D, Chandna S, Arya MB, Dwarakanath BS: Establishment and characterization of multicellular spheroids from a human glioma cell line; Implications for tumor therapy. J Transl Med. 2006, 4: 12-10.1186/1479-5876-4-12.CrossRefPubMedPubMedCentral Khaitan D, Chandna S, Arya MB, Dwarakanath BS: Establishment and characterization of multicellular spheroids from a human glioma cell line; Implications for tumor therapy. J Transl Med. 2006, 4: 12-10.1186/1479-5876-4-12.CrossRefPubMedPubMedCentral
7.
go back to reference Oktem G, Vatansever S, Ayla S, Uysal A, Aktas S, Karabulut B, Bilir A: Effect of apoptosis and response of extracellular matrix proteins after chemotherapy application on human breast cancer cell spheroids. Oncol Rep. 2006, 15: 335-340.PubMed Oktem G, Vatansever S, Ayla S, Uysal A, Aktas S, Karabulut B, Bilir A: Effect of apoptosis and response of extracellular matrix proteins after chemotherapy application on human breast cancer cell spheroids. Oncol Rep. 2006, 15: 335-340.PubMed
9.
go back to reference Mueller-Klieser W: Tumor biology and experimental therapeutics. Crit Rev Oncol Hematol. 2000, 36: 123-139. 10.1016/S1040-8428(00)00082-2.CrossRefPubMed Mueller-Klieser W: Tumor biology and experimental therapeutics. Crit Rev Oncol Hematol. 2000, 36: 123-139. 10.1016/S1040-8428(00)00082-2.CrossRefPubMed
10.
go back to reference Desoize B, Jardillier J: Multicellular resistance: a paradigm for clinical resistance?. Crit Rev Oncol Hematol. 2000, 36: 193-207. 10.1016/S1040-8428(00)00086-X.CrossRefPubMed Desoize B, Jardillier J: Multicellular resistance: a paradigm for clinical resistance?. Crit Rev Oncol Hematol. 2000, 36: 193-207. 10.1016/S1040-8428(00)00086-X.CrossRefPubMed
11.
go back to reference Shoemaker RH: Genetic and epigenetic factors in anticancer drug resistance. J Natl Cancer Inst. 2000, 92: 4-5. 10.1093/jnci/92.1.4.CrossRefPubMed Shoemaker RH: Genetic and epigenetic factors in anticancer drug resistance. J Natl Cancer Inst. 2000, 92: 4-5. 10.1093/jnci/92.1.4.CrossRefPubMed
12.
go back to reference Dubessy C, Merlin JM, Marchal C, Guillemin F: Spheroids in radiobiology and photodynamic therapy. Crit Rev Oncol Hematol. 2000, 36: 179-192. 10.1016/S1040-8428(00)00085-8.CrossRefPubMed Dubessy C, Merlin JM, Marchal C, Guillemin F: Spheroids in radiobiology and photodynamic therapy. Crit Rev Oncol Hematol. 2000, 36: 179-192. 10.1016/S1040-8428(00)00085-8.CrossRefPubMed
13.
go back to reference Fracasso G, Colombatti M: Effect of therapeutic macromolecules in spheroids. Crit Rev Oncol Hematol. 2000, 36: 159-178. 10.1016/S1040-8428(00)00084-6.CrossRefPubMed Fracasso G, Colombatti M: Effect of therapeutic macromolecules in spheroids. Crit Rev Oncol Hematol. 2000, 36: 159-178. 10.1016/S1040-8428(00)00084-6.CrossRefPubMed
14.
go back to reference Bates RC, Edwards NS, Yates JD: Spheroids and cell survival. Crit Rev Oncol Hematol. 2000, 36: 61-74. 10.1016/S1040-8428(00)00077-9.CrossRefPubMed Bates RC, Edwards NS, Yates JD: Spheroids and cell survival. Crit Rev Oncol Hematol. 2000, 36: 61-74. 10.1016/S1040-8428(00)00077-9.CrossRefPubMed
15.
go back to reference Monazzam A, Razifar P, Lindhe O, Josephsson R, Langstrom B, Bergstrom M: A new, fast and semi-automated size determination method (SASDM) for studying multicellular tumor spheroids. Cancer Cell Int. 2005, 5: 32-10.1186/1475-2867-5-32.CrossRefPubMedPubMedCentral Monazzam A, Razifar P, Lindhe O, Josephsson R, Langstrom B, Bergstrom M: A new, fast and semi-automated size determination method (SASDM) for studying multicellular tumor spheroids. Cancer Cell Int. 2005, 5: 32-10.1186/1475-2867-5-32.CrossRefPubMedPubMedCentral
16.
go back to reference Monazzam A, Razifar P, Simonsson M, Qvarnstrom F, Josephsson R, Blomqvist C, Langstrom B, Bergstrom M: Multicellular tumour spheroid as a model for evaluation of [18F]FDG as biomarker for breast cancer treatment monitoring. Cancer Cell Int. 2006, 6: 6-10.1186/1475-2867-6-6.CrossRefPubMedPubMedCentral Monazzam A, Razifar P, Simonsson M, Qvarnstrom F, Josephsson R, Blomqvist C, Langstrom B, Bergstrom M: Multicellular tumour spheroid as a model for evaluation of [18F]FDG as biomarker for breast cancer treatment monitoring. Cancer Cell Int. 2006, 6: 6-10.1186/1475-2867-6-6.CrossRefPubMedPubMedCentral
17.
go back to reference Yoshimoto M, Waki A, Yonekura Y, Sadato N, Murata T, Omata N, Takahashi N, Welch MJ, Fujibayashi Y: Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol. 2001, 28: 117-122. 10.1016/S0969-8051(00)00195-5.CrossRefPubMed Yoshimoto M, Waki A, Yonekura Y, Sadato N, Murata T, Omata N, Takahashi N, Welch MJ, Fujibayashi Y: Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol. 2001, 28: 117-122. 10.1016/S0969-8051(00)00195-5.CrossRefPubMed
18.
go back to reference Katz-Brull R, Degani H: Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res. 1996, 16: 1375-1380.PubMed Katz-Brull R, Degani H: Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res. 1996, 16: 1375-1380.PubMed
19.
go back to reference Katz-Brull R, Seger D, Rivenson-Segal D, Rushkin E, Degani H: Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Cancer Res. 2002, 62: 1966-1970.PubMed Katz-Brull R, Seger D, Rivenson-Segal D, Rushkin E, Degani H: Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Cancer Res. 2002, 62: 1966-1970.PubMed
20.
go back to reference Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA: Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med. 2001, 42: 432-445.PubMed Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA: Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med. 2001, 42: 432-445.PubMed
21.
go back to reference Inoue T, Kim EE, Wong FC, Yang DJ, Bassa P, Wong WH, Korkmaz M, Tansey W, Hicks K, Podoloff DA: Comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine PET in detection of malignant tumors. J Nucl Med. 1996, 37: 1472-1476.PubMed Inoue T, Kim EE, Wong FC, Yang DJ, Bassa P, Wong WH, Korkmaz M, Tansey W, Hicks K, Podoloff DA: Comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine PET in detection of malignant tumors. J Nucl Med. 1996, 37: 1472-1476.PubMed
22.
go back to reference Amano S, Inoue T, Tomiyoshi K, Ando T, Endo K: In vivo comparison of PET and SPECT radiopharmaceuticals in detecting breast cancer. J Nucl Med. 1998, 39: 1424-1427.PubMed Amano S, Inoue T, Tomiyoshi K, Ando T, Endo K: In vivo comparison of PET and SPECT radiopharmaceuticals in detecting breast cancer. J Nucl Med. 1998, 39: 1424-1427.PubMed
23.
go back to reference Pio BS, Park CK, Pietras R, Hsueh WA, Satyamurthy N, Pegram MD, Czernin J, Phelps ME, Silverman DH: Usefulness of 3'-[F-18]fluoro-3'-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol. 2006, 8: 36-42. 10.1007/s11307-005-0029-9.CrossRefPubMed Pio BS, Park CK, Pietras R, Hsueh WA, Satyamurthy N, Pegram MD, Czernin J, Phelps ME, Silverman DH: Usefulness of 3'-[F-18]fluoro-3'-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol. 2006, 8: 36-42. 10.1007/s11307-005-0029-9.CrossRefPubMed
24.
go back to reference Barthel H, Cleij MC, Collingridge DR, Hutchinson OC, Osman S, He Q, Luthra SK, Brady F, Price PM, Aboagye EO: 3'-deoxy-3'-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res. 2003, 63: 3791-3798.PubMed Barthel H, Cleij MC, Collingridge DR, Hutchinson OC, Osman S, He Q, Luthra SK, Brady F, Price PM, Aboagye EO: 3'-deoxy-3'-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res. 2003, 63: 3791-3798.PubMed
25.
go back to reference Leyton J, Latigo JR, Perumal M, Dhaliwal H, He Q, Aboagye EO: Early detection of tumor response to chemotherapy by 3'-deoxy-3'-[18F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res. 2005, 65: 4202-4210. 10.1158/0008-5472.CAN-04-4008.CrossRefPubMed Leyton J, Latigo JR, Perumal M, Dhaliwal H, He Q, Aboagye EO: Early detection of tumor response to chemotherapy by 3'-deoxy-3'-[18F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res. 2005, 65: 4202-4210. 10.1158/0008-5472.CAN-04-4008.CrossRefPubMed
26.
go back to reference Kenny LM, Vigushin DM, Al-Nahhas A, Osman S, Luthra SK, Shousha S, Coombes RC, Aboagye EO: Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res. 2005, 65: 10104-10112. 10.1158/0008-5472.CAN-04-4297.CrossRefPubMed Kenny LM, Vigushin DM, Al-Nahhas A, Osman S, Luthra SK, Shousha S, Coombes RC, Aboagye EO: Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res. 2005, 65: 10104-10112. 10.1158/0008-5472.CAN-04-4297.CrossRefPubMed
Metadata
Title
Application of the multicellular tumour spheroid model to screen PET tracers for analysis of early response of chemotherapy in breast cancer
Authors
Azita Monazzam
Raymond Josephsson
Carl Blomqvist
Jörgen Carlsson
Bengt Långström
Mats Bergström
Publication date
01-08-2007
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 4/2007
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr1747

Other articles of this Issue 4/2007

Breast Cancer Research 4/2007 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine