Skip to main content
Top
Published in: Breast Cancer Research 1/2007

Open Access 01-02-2007 | Research article

SirT1 modulates the estrogen–insulin-like growth factor-1 signaling for postnatal development of mammary gland in mice

Authors: Hongzhe Li, Grace K Rajendran, Ninning Liu, Carol Ware, Brian P Rubin, Yansong Gu

Published in: Breast Cancer Research | Issue 1/2007

Login to get access

Abstract

Introduction

Estrogen and insulin-like growth factor-1 (IGF-1) play important roles in mammary gland development and breast cancer. SirT1 is a highly conserved protein deacetylase that can regulate the insulin/IGF-1 signaling in lower organisms, as well as a growing number of transcription factors, including NF-κB, in mammalian cells. Whether SirT1 regulates the IGF-1 signaling for mammary gland development and function, however, is not clear. In the present study, this role of SirT1 was examined by studying SirT1-deficient mice.

Methods

SirT1-deficient (SirT1ko/ko) mice were generated by crossing a new strain of mice harboring a conditional targeted mutation in the SirT1 gene (SirT1co/co) with CMV-Cre transgenic mice. Whole mount and histology analyses, immunofluorescence staining, immunohistochemistry, and western blotting were used to characterize mammary gland development in virgin and pregnant mice. The effect of exogenous estrogen was also examined by subcutaneous implantation of a slow-releasing pellet in the subscapular region.

Results

Both male and female SirT1ko/ko mice can be fertile despite the growth retardation phenotype. Virgin SirT1ko/ko mice displayed impeded ductal morphogenesis, whereas pregnant SirT1ko/ko mice manifested lactation failure due to an underdeveloped lobuloalveolar network. Estrogen implantation was sufficient to rescue ductal morphogenesis. Exogenous estrogen reversed the increased basal level of IGF-1 binding protein-1 expression in SirT1ko/ko mammary tissues, but not that of IκBα expression, suggesting that increased levels of estrogen enhanced the production of local IGF-1 and rescued ductal morphogenesis. Additionally, TNFα treatment enhanced the level of the newly synthesized IκBα in SirT1ko/ko cells. SirT1 deficiency therefore affects the cellular response to multiple extrinsic signals.

Conclusion

SirT1 modulates the IGF-1 signaling critical for both growth regulation and mammary gland development in mice. SirT1 deficiency deregulates the expression of IGF-1 binding protein-1 and attenuates the effect of IGF-1 signals, including estrogen-stimulated local IGF-1 signaling for the onset of ductal morphogenesis. These findings suggest that the enzymatic activity of SirT1 may influence both normal growth and malignant growth of mammary epithelial cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Imai S, Armstrong CM, Kaeberlein M, Guarente L: Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000, 403: 795-800. 10.1038/35001622.CrossRefPubMed Imai S, Armstrong CM, Kaeberlein M, Guarente L: Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000, 403: 795-800. 10.1038/35001622.CrossRefPubMed
2.
go back to reference Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R: The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA. 2000, 97: 5807-5811. 10.1073/pnas.110148297.CrossRefPubMedPubMedCentral Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R: The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA. 2000, 97: 5807-5811. 10.1073/pnas.110148297.CrossRefPubMedPubMedCentral
3.
go back to reference Aparicio OM, Billington BL, Gottschling DE: Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell. 1991, 66: 1279-1287. 10.1016/0092-8674(91)90049-5.CrossRefPubMed Aparicio OM, Billington BL, Gottschling DE: Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell. 1991, 66: 1279-1287. 10.1016/0092-8674(91)90049-5.CrossRefPubMed
4.
go back to reference Grunstein M: Molecular model for telomeric heterochromatin in yeast. Curr Opin Cell Biol. 1997, 9: 383-387. 10.1016/S0955-0674(97)80011-7.CrossRefPubMed Grunstein M: Molecular model for telomeric heterochromatin in yeast. Curr Opin Cell Biol. 1997, 9: 383-387. 10.1016/S0955-0674(97)80011-7.CrossRefPubMed
5.
go back to reference Lin SJ, Defossez PA, Guarente L: Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000, 289: 2126-2128. 10.1126/science.289.5487.2126.CrossRefPubMed Lin SJ, Defossez PA, Guarente L: Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000, 289: 2126-2128. 10.1126/science.289.5487.2126.CrossRefPubMed
6.
go back to reference Tissenbaum HA, Guarente L: Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001, 410: 227-230. 10.1038/35065638.CrossRefPubMed Tissenbaum HA, Guarente L: Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001, 410: 227-230. 10.1038/35065638.CrossRefPubMed
7.
go back to reference Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo VD: Sir2 blocks extreme life-span extension. Cell. 2005, 123: 655-667. 10.1016/j.cell.2005.08.042.CrossRefPubMed Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo VD: Sir2 blocks extreme life-span extension. Cell. 2005, 123: 655-667. 10.1016/j.cell.2005.08.042.CrossRefPubMed
8.
go back to reference Kenyon C: The plasticity of aging: insights from long-lived mutants. Cell. 2005, 120: 449-460. 10.1016/j.cell.2005.02.002.CrossRefPubMed Kenyon C: The plasticity of aging: insights from long-lived mutants. Cell. 2005, 120: 449-460. 10.1016/j.cell.2005.02.002.CrossRefPubMed
9.
go back to reference Katic M, Kahn CR: The role of insulin and IGF-1 signaling in longevity. Cell Mol Life Sci. 2005, 62: 320-343. 10.1007/s00018-004-4297-y.CrossRefPubMed Katic M, Kahn CR: The role of insulin and IGF-1 signaling in longevity. Cell Mol Life Sci. 2005, 62: 320-343. 10.1007/s00018-004-4297-y.CrossRefPubMed
10.
go back to reference Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, et al: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004, 303: 2011-2015. 10.1126/science.1094637.CrossRefPubMed Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, et al: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004, 303: 2011-2015. 10.1126/science.1094637.CrossRefPubMed
11.
go back to reference Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L: Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004, 116: 551-563. 10.1016/S0092-8674(04)00126-6.CrossRefPubMed Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L: Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004, 116: 551-563. 10.1016/S0092-8674(04)00126-6.CrossRefPubMed
12.
go back to reference Daitoku H, Hatta M, Matsuzaki H, Aratani S, Ohshima T, Miyagishi M, Nakajima T, Fukamizu A: Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci USA. 2004, 101: 10042-10047. 10.1073/pnas.0400593101.CrossRefPubMedPubMedCentral Daitoku H, Hatta M, Matsuzaki H, Aratani S, Ohshima T, Miyagishi M, Nakajima T, Fukamizu A: Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci USA. 2004, 101: 10042-10047. 10.1073/pnas.0400593101.CrossRefPubMedPubMedCentral
13.
go back to reference Datta SR, Brunet A, Greenberg ME: Cellular survival: a play in three Akts. Genes Dev. 1999, 13: 2905-2927. 10.1101/gad.13.22.2905.CrossRefPubMed Datta SR, Brunet A, Greenberg ME: Cellular survival: a play in three Akts. Genes Dev. 1999, 13: 2905-2927. 10.1101/gad.13.22.2905.CrossRefPubMed
14.
go back to reference Guarente L, Picard F: Calorie restriction – the SIR2 connection. Cell. 2005, 120: 473-482. 10.1016/j.cell.2005.01.029.CrossRefPubMed Guarente L, Picard F: Calorie restriction – the SIR2 connection. Cell. 2005, 120: 473-482. 10.1016/j.cell.2005.01.029.CrossRefPubMed
15.
go back to reference Baker ME: Steroid receptor phylogeny and vertebrate origins. Mol Cell Endocrinol. 1997, 135: 101-107. 10.1016/S0303-7207(97)00207-4.CrossRefPubMed Baker ME: Steroid receptor phylogeny and vertebrate origins. Mol Cell Endocrinol. 1997, 135: 101-107. 10.1016/S0303-7207(97)00207-4.CrossRefPubMed
16.
go back to reference Wood TL, Richert MM, Stull MA, Allar MA: The insulin-like growth factors (IGFs) and IGF binding proteins in postnatal development of murine mammary glands. J Mammary Gland Biol Neoplasia. 2000, 5: 31-42. 10.1023/A:1009511131541.CrossRefPubMed Wood TL, Richert MM, Stull MA, Allar MA: The insulin-like growth factors (IGFs) and IGF binding proteins in postnatal development of murine mammary glands. J Mammary Gland Biol Neoplasia. 2000, 5: 31-42. 10.1023/A:1009511131541.CrossRefPubMed
17.
go back to reference Hovey RC, Trott JF, Vonderhaar BK: Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia. 2002, 7: 17-38. 10.1023/A:1015766322258.CrossRefPubMed Hovey RC, Trott JF, Vonderhaar BK: Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia. 2002, 7: 17-38. 10.1023/A:1015766322258.CrossRefPubMed
18.
go back to reference Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W: Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell. 2001, 107: 137-148. 10.1016/S0092-8674(01)00524-4.CrossRefPubMed Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W: Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell. 2001, 107: 137-148. 10.1016/S0092-8674(01)00524-4.CrossRefPubMed
19.
go back to reference Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA: hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001, 107: 149-159. 10.1016/S0092-8674(01)00527-X.CrossRefPubMed Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA: hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001, 107: 149-159. 10.1016/S0092-8674(01)00527-X.CrossRefPubMed
20.
go back to reference Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW: Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004, 23: 2369-2380. 10.1038/sj.emboj.7600244.CrossRefPubMedPubMedCentral Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW: Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004, 23: 2369-2380. 10.1038/sj.emboj.7600244.CrossRefPubMedPubMedCentral
21.
go back to reference Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005, 434: 113-118. 10.1038/nature03354.CrossRefPubMed Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005, 434: 113-118. 10.1038/nature03354.CrossRefPubMed
22.
go back to reference McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, Lansdorp PM, Lemieux M: The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol. 2003, 23: 38-54. 10.1128/MCB.23.1.38-54.2003.CrossRefPubMedPubMedCentral McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, Lansdorp PM, Lemieux M: The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol. 2003, 23: 38-54. 10.1128/MCB.23.1.38-54.2003.CrossRefPubMedPubMedCentral
23.
go back to reference Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF: Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA. 2003, 100: 10794-10799. 10.1073/pnas.1934713100.CrossRefPubMedPubMedCentral Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF: Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA. 2003, 100: 10794-10799. 10.1073/pnas.1934713100.CrossRefPubMedPubMedCentral
24.
go back to reference Silberstein GB: Postnatal mammary gland morphogenesis. Microsc Res Tech. 2001, 52: 155-162. 10.1002/1097-0029(20010115)52:2<155::AID-JEMT1001>3.0.CO;2-P.CrossRefPubMed Silberstein GB: Postnatal mammary gland morphogenesis. Microsc Res Tech. 2001, 52: 155-162. 10.1002/1097-0029(20010115)52:2<155::AID-JEMT1001>3.0.CO;2-P.CrossRefPubMed
25.
go back to reference Parmar H, Cunha GR: Epithelial–stromal interactions in the mouse and human mammary gland in vivo. Endocr Relat Cancer. 2004, 11: 437-458. 10.1677/erc.1.00659.CrossRefPubMed Parmar H, Cunha GR: Epithelial–stromal interactions in the mouse and human mammary gland in vivo. Endocr Relat Cancer. 2004, 11: 437-458. 10.1677/erc.1.00659.CrossRefPubMed
26.
go back to reference Richards RG, Klotz DM, Walker MP, Diaugustine RP: Mammary gland branching morphogenesis is diminished in mice with a deficiency of insulin-like growth factor-I (IGF-I), but not in mice with a liver-specific deletion of IGF-I. Endocrinology. 2004, 145: 3106-3110. 10.1210/en.2003-1112.CrossRefPubMed Richards RG, Klotz DM, Walker MP, Diaugustine RP: Mammary gland branching morphogenesis is diminished in mice with a deficiency of insulin-like growth factor-I (IGF-I), but not in mice with a liver-specific deletion of IGF-I. Endocrinology. 2004, 145: 3106-3110. 10.1210/en.2003-1112.CrossRefPubMed
27.
go back to reference Mueller SO, Clark JA, Myers PH, Korach KS: Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha. Endocrinology. 2002, 143: 2357-2365. 10.1210/en.143.6.2357.CrossRefPubMed Mueller SO, Clark JA, Myers PH, Korach KS: Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha. Endocrinology. 2002, 143: 2357-2365. 10.1210/en.143.6.2357.CrossRefPubMed
28.
go back to reference Baker J, Hardy MP, Zhou J, Bondy C, Lupu F, Bellve AR, Efstratiadis A: Effects of an Igf1 gene null mutation on mouse reproduction. Mol Endocrinol. 1996, 10: 903-918. 10.1210/me.10.7.903.PubMed Baker J, Hardy MP, Zhou J, Bondy C, Lupu F, Bellve AR, Efstratiadis A: Effects of an Igf1 gene null mutation on mouse reproduction. Mol Endocrinol. 1996, 10: 903-918. 10.1210/me.10.7.903.PubMed
29.
go back to reference Kleinberg DL: Early mammary development: growth hormone and IGF-1. J Mammary Gland Biol Neoplasia. 1997, 2: 49-57. 10.1023/A:1026373513521.CrossRefPubMed Kleinberg DL: Early mammary development: growth hormone and IGF-1. J Mammary Gland Biol Neoplasia. 1997, 2: 49-57. 10.1023/A:1026373513521.CrossRefPubMed
30.
go back to reference Walden PD, Ruan W, Feldman M, Kleinberg DL: Evidence that the mammary fat pad mediates the action of growth hormone in mammary gland development. Endocrinology. 1998, 139: 659-662. 10.1210/en.139.2.659.CrossRefPubMed Walden PD, Ruan W, Feldman M, Kleinberg DL: Evidence that the mammary fat pad mediates the action of growth hormone in mammary gland development. Endocrinology. 1998, 139: 659-662. 10.1210/en.139.2.659.CrossRefPubMed
31.
go back to reference Ruan W, Kleinberg DL: Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology. 1999, 140: 5075-5081. 10.1210/en.140.11.5075.CrossRefPubMed Ruan W, Kleinberg DL: Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology. 1999, 140: 5075-5081. 10.1210/en.140.11.5075.CrossRefPubMed
32.
go back to reference Tsukamoto Y, Kato J, Ikeda H: Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature. 1997, 388: 900-903. 10.1038/42288.CrossRefPubMed Tsukamoto Y, Kato J, Ikeda H: Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature. 1997, 388: 900-903. 10.1038/42288.CrossRefPubMed
33.
go back to reference Mills KD, Sinclair DA, Guarente L: MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell. 1999, 97: 609-620. 10.1016/S0092-8674(00)80772-2.CrossRefPubMed Mills KD, Sinclair DA, Guarente L: MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell. 1999, 97: 609-620. 10.1016/S0092-8674(00)80772-2.CrossRefPubMed
34.
go back to reference Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, et al: Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006, 124: 315-329. 10.1016/j.cell.2005.11.044.CrossRefPubMed Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, et al: Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006, 124: 315-329. 10.1016/j.cell.2005.11.044.CrossRefPubMed
35.
go back to reference Gu Y, Seidl KJ, Rathbun GA, Zhu C, Manis JP, van der Stoep N, Davidson L, Cheng HL, Sekiguchi JM, Frank K, et al: Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity. 1997, 7: 653-665. 10.1016/S1074-7613(00)80386-6.CrossRefPubMed Gu Y, Seidl KJ, Rathbun GA, Zhu C, Manis JP, van der Stoep N, Davidson L, Cheng HL, Sekiguchi JM, Frank K, et al: Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity. 1997, 7: 653-665. 10.1016/S1074-7613(00)80386-6.CrossRefPubMed
36.
go back to reference Borghesani PR, Alt FW, Bottaro A, Davidson L, Aksoy S, Rathbun GA, Roberts TM, Swat W, Segal RA, Gu Y: Abnormal development of Purkinje cells and lymphocytes in Atm mutant mice. Proc Natl Acad Sci USA. 2000, 97: 3336-3341. 10.1073/pnas.050584897.CrossRefPubMedPubMedCentral Borghesani PR, Alt FW, Bottaro A, Davidson L, Aksoy S, Rathbun GA, Roberts TM, Swat W, Segal RA, Gu Y: Abnormal development of Purkinje cells and lymphocytes in Atm mutant mice. Proc Natl Acad Sci USA. 2000, 97: 3336-3341. 10.1073/pnas.050584897.CrossRefPubMedPubMedCentral
37.
go back to reference Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, Karin M: IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell. 2001, 107: 763-775. 10.1016/S0092-8674(01)00599-2.CrossRefPubMed Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, Karin M: IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell. 2001, 107: 763-775. 10.1016/S0092-8674(01)00599-2.CrossRefPubMed
38.
go back to reference Clarkson RW, Heeley JL, Chapman R, Aillet F, Hay RT, Wyllie A, Watson CJ: NF-κB inhibits apoptosis in murine mammary epithelia. J Biol Chem. 2000, 275: 12737-12742. 10.1074/jbc.275.17.12737.CrossRefPubMed Clarkson RW, Heeley JL, Chapman R, Aillet F, Hay RT, Wyllie A, Watson CJ: NF-κB inhibits apoptosis in murine mammary epithelia. J Biol Chem. 2000, 275: 12737-12742. 10.1074/jbc.275.17.12737.CrossRefPubMed
39.
go back to reference Geymayer S, Doppler W: Activation of NF-kappaB p50/p65 is regulated in the developing mammary gland and inhibits STAT5-mediated beta-casein gene expression. FASEB J. 2000, 14: 1159-1170.PubMed Geymayer S, Doppler W: Activation of NF-kappaB p50/p65 is regulated in the developing mammary gland and inhibits STAT5-mediated beta-casein gene expression. FASEB J. 2000, 14: 1159-1170.PubMed
40.
go back to reference Murphy LJ: Overexpression of insulin-like growth factor binding protein-1 in transgenic mice. Pediatr Nephrol. 2000, 14: 567-571. 10.1007/s004670000347.CrossRefPubMed Murphy LJ: Overexpression of insulin-like growth factor binding protein-1 in transgenic mice. Pediatr Nephrol. 2000, 14: 567-571. 10.1007/s004670000347.CrossRefPubMed
41.
go back to reference Hoffmann A, Levchenko A, Scott ML, Baltimore D: The IkapppaB-NF-kappaB signalling module:temporal control and selective gene activation. Science. 2002, 298: 1241-1245. 10.1126/science.1071914.CrossRefPubMed Hoffmann A, Levchenko A, Scott ML, Baltimore D: The IkapppaB-NF-kappaB signalling module:temporal control and selective gene activation. Science. 2002, 298: 1241-1245. 10.1126/science.1071914.CrossRefPubMed
42.
go back to reference Covert MW, Leung TH, Gaston JE, Baltimore D: Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science. 2005, 309: 1854-1857. 10.1126/science.1112304.CrossRefPubMed Covert MW, Leung TH, Gaston JE, Baltimore D: Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science. 2005, 309: 1854-1857. 10.1126/science.1112304.CrossRefPubMed
43.
go back to reference Werner SL, Barken D, Hoffmann A: Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science. 2005, 309: 1857-1861. 10.1126/science.1113319.CrossRefPubMed Werner SL, Barken D, Hoffmann A: Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science. 2005, 309: 1857-1861. 10.1126/science.1113319.CrossRefPubMed
44.
go back to reference Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A: Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 1993, 75: 59-72.PubMed Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A: Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 1993, 75: 59-72.PubMed
45.
go back to reference Powell-Braxton L, Hollingshead P, Warburton C, Dowd M, Pitts-Meek S, Dalton D, Gillett N, Stewart TA: IGF-I is required for normal embryonic growth in mice. Genes Dev. 1993, 7: 2609-2617.CrossRefPubMed Powell-Braxton L, Hollingshead P, Warburton C, Dowd M, Pitts-Meek S, Dalton D, Gillett N, Stewart TA: IGF-I is required for normal embryonic growth in mice. Genes Dev. 1993, 7: 2609-2617.CrossRefPubMed
46.
go back to reference Peng XD, Xu PZ, Chen ML, Hahn-Windgassen A, Skeen J, Jacobs J, Sundararajan D, Chen WS, Crawford SE, Coleman KG, Hay N: Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev. 2003, 17: 1352-1365. 10.1101/gad.1089403.CrossRefPubMedPubMedCentral Peng XD, Xu PZ, Chen ML, Hahn-Windgassen A, Skeen J, Jacobs J, Sundararajan D, Chen WS, Crawford SE, Coleman KG, Hay N: Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev. 2003, 17: 1352-1365. 10.1101/gad.1089403.CrossRefPubMedPubMedCentral
47.
go back to reference Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA: Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003, 301: 215-218. 10.1126/science.1086336.CrossRefPubMed Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA: Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003, 301: 215-218. 10.1126/science.1086336.CrossRefPubMed
48.
go back to reference Unterman TG, Glick RP, Waites GT, Bell SC: Production of insulin-like growth factor-binding proteins by human central nervous system tumors. Cancer Res. 1991, 51: 3030-3036.PubMed Unterman TG, Glick RP, Waites GT, Bell SC: Production of insulin-like growth factor-binding proteins by human central nervous system tumors. Cancer Res. 1991, 51: 3030-3036.PubMed
49.
go back to reference Schneider MR, Lahm H, Wu M, Hoeflich A, Wolf E: Transgenic mouse models for studying the functions of insulin-like growth factor-binding proteins. FASEB J. 2000, 14: 629-640.PubMed Schneider MR, Lahm H, Wu M, Hoeflich A, Wolf E: Transgenic mouse models for studying the functions of insulin-like growth factor-binding proteins. FASEB J. 2000, 14: 629-640.PubMed
50.
go back to reference Guo S, Rena G, Cichy S, He X, Cohen P, Unterman T: Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem. 1999, 274: 17184-17192. 10.1074/jbc.274.24.17184.CrossRefPubMed Guo S, Rena G, Cichy S, He X, Cohen P, Unterman T: Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem. 1999, 274: 17184-17192. 10.1074/jbc.274.24.17184.CrossRefPubMed
51.
go back to reference Tang ED, Nunez G, Barr FG, Guan KL: Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem. 1999, 274: 16741-16746. 10.1074/jbc.274.24.16741.CrossRefPubMed Tang ED, Nunez G, Barr FG, Guan KL: Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem. 1999, 274: 16741-16746. 10.1074/jbc.274.24.16741.CrossRefPubMed
52.
go back to reference Durham SK, Suwanichkul A, Scheimann AO, Yee D, Jackson JG, Barr FG, Powell DR: FKHR binds the insulin response element in the insulin-like growth factor binding protein-1 promoter. Endocrinology. 1999, 140: 3140-3146. 10.1210/en.140.7.3140.CrossRefPubMed Durham SK, Suwanichkul A, Scheimann AO, Yee D, Jackson JG, Barr FG, Powell DR: FKHR binds the insulin response element in the insulin-like growth factor binding protein-1 promoter. Endocrinology. 1999, 140: 3140-3146. 10.1210/en.140.7.3140.CrossRefPubMed
53.
go back to reference Hewitt SC, Korach KS: Progesterone action and responses in the alphaERKO mouse. Steroids. 2000, 65: 551-557. 10.1016/S0039-128X(00)00113-6.CrossRefPubMed Hewitt SC, Korach KS: Progesterone action and responses in the alphaERKO mouse. Steroids. 2000, 65: 551-557. 10.1016/S0039-128X(00)00113-6.CrossRefPubMed
54.
go back to reference Goswami D, Conway GS: Premature ovarian failure. Hum Reprod Update. 2005, 11: 391-410. 10.1093/humupd/dmi012.CrossRefPubMed Goswami D, Conway GS: Premature ovarian failure. Hum Reprod Update. 2005, 11: 391-410. 10.1093/humupd/dmi012.CrossRefPubMed
55.
go back to reference Hens JR, Wysolmerski JJ: Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res. 2005, 7: 220-224. 10.1186/bcr1306.CrossRefPubMedPubMedCentral Hens JR, Wysolmerski JJ: Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res. 2005, 7: 220-224. 10.1186/bcr1306.CrossRefPubMedPubMedCentral
56.
go back to reference Mallepell S, Krust A, Chambon P, Brisken C: Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci USA. 2006, 103: 2196-2201. 10.1073/pnas.0510974103.CrossRefPubMedPubMedCentral Mallepell S, Krust A, Chambon P, Brisken C: Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci USA. 2006, 103: 2196-2201. 10.1073/pnas.0510974103.CrossRefPubMedPubMedCentral
57.
go back to reference Nemoto S, Fergusson MM, Finkel T: Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science. 2004, 306: 2105-2108. 10.1126/science.1101731.CrossRefPubMed Nemoto S, Fergusson MM, Finkel T: Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science. 2004, 306: 2105-2108. 10.1126/science.1101731.CrossRefPubMed
58.
go back to reference van Noord PA: Breast cancer and the brain: a neurodevelopmental hypothesis to explain the opposing effects of caloric deprivation during the Dutch famine of 1944–1945 on breast cancer and its risk factors. J Nutr. 2004, 134: 3399S-3406S.PubMed van Noord PA: Breast cancer and the brain: a neurodevelopmental hypothesis to explain the opposing effects of caloric deprivation during the Dutch famine of 1944–1945 on breast cancer and its risk factors. J Nutr. 2004, 134: 3399S-3406S.PubMed
59.
go back to reference de Boer VC, de Goffau MC, Arts IC, Hollman PC, Keijer J: SIRT1 stimulation by polyphenols is affected by their stability and metabolism. Mech Ageing Dev. 2006, 127: 618-627. 10.1016/j.mad.2006.02.007.CrossRefPubMed de Boer VC, de Goffau MC, Arts IC, Hollman PC, Keijer J: SIRT1 stimulation by polyphenols is affected by their stability and metabolism. Mech Ageing Dev. 2006, 127: 618-627. 10.1016/j.mad.2006.02.007.CrossRefPubMed
60.
go back to reference Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, Goehle S, Kollipara R, Depinho RA, Gu Y, Simon JA, Bedalov A: Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 2006, 66: 4368-4377. 10.1158/0008-5472.CAN-05-3617.CrossRefPubMed Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, Goehle S, Kollipara R, Depinho RA, Gu Y, Simon JA, Bedalov A: Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 2006, 66: 4368-4377. 10.1158/0008-5472.CAN-05-3617.CrossRefPubMed
Metadata
Title
SirT1 modulates the estrogen–insulin-like growth factor-1 signaling for postnatal development of mammary gland in mice
Authors
Hongzhe Li
Grace K Rajendran
Ninning Liu
Carol Ware
Brian P Rubin
Yansong Gu
Publication date
01-02-2007
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2007
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr1632

Other articles of this Issue 1/2007

Breast Cancer Research 1/2007 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine