Skip to main content
Top
Published in: Breast Cancer Research 4/2006

Open Access 01-08-2006 | Research article

β3Integrin and Src facilitate transforming growth factor-β mediated induction of epithelial-mesenchymal transition in mammary epithelial cells

Authors: Amy J Galliher, William P Schiemann

Published in: Breast Cancer Research | Issue 4/2006

Login to get access

Abstract

Introduction

Transforming growth factor (TGF)-β suppresses breast cancer formation by preventing cell cycle progression in mammary epithelial cells (MECs). During the course of mammary tumorigenesis, genetic and epigenetic changes negate the cytostatic actions of TGF-β, thus enabling TGF-β to promote the acquisition and development of metastatic phenotypes. The molecular mechanisms underlying this conversion of TGF-β function remain poorly understood but may involve signaling inputs from integrins.

Methods

β3 Integrin expression or function in MECs was manipulated by retroviral transduction of active or inactive β3 integrins, or by transient transfection of small interfering RNA (siRNA) against β3 integrin. Altered proliferation, invasion, and epithelial-mesenchymal transition (EMT) stimulated by TGF-β in control and β3 integrin manipulated MECs was determined. Src involvement in β3 integrin mediated alterations in TGF-β signaling was assessed by performing Src protein kinase assays, and by interdicting Src function pharmacologically and genetically.

Results

TGF-β stimulation induced αvβ3 integrin expression in a manner that coincided with EMT in MECs. Introduction of siRNA against β3 integrin blocked its induction by TGF-β and prevented TGF-β stimulation of EMT in MECs. β3 integrin interacted physically with the TGF-β receptor (TβR) type II, thereby enhancing TGF-β stimulation of mitogen-activated protein kinases (MAPKs), and of Smad2/3-mediated gene transcription in MECs. Formation of β3 integrin:TβR-II complexes blocked TGF-β mediated growth arrest and increased TGF-β mediated invasion and EMT. Dual β3 integrin:TβR-II activation induced tyrosine phosphorylation of TβR-II, a phosphotransferase reaction mediated by Src in vitro. Inhibiting Src activity in MECs prevented the ability of β3 integrin to induce TβR-II tyrosine phosphorylation, MAPK activation, and EMT stimulated by TGF-β. Lastly, wild-type and D119A β3 integrin expression enhanced and abolished, respectively, TGF-β stimulation of invasion in human breast cancer cells.

Conclusion

We show that β3 integrin alters TGF-β signaling in MECs via Src-mediated TβR-II tyrosine phosphorylation, which significantly enhanced the ability of TGF-β to induce EMT and invasion. Our findings suggest that β3 integrin interdiction strategies may represent an innovative approach to re-establishing TGF-β mediated tumor suppression in progressing human breast cancers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shi Y, Massague J: Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 2003, 113: 685-700. 10.1016/S0092-8674(03)00432-X.CrossRefPubMed Shi Y, Massague J: Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 2003, 113: 685-700. 10.1016/S0092-8674(03)00432-X.CrossRefPubMed
2.
go back to reference Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL: p38 mitogen-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci. 2002, 115: 3193-3206.PubMed Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL: p38 mitogen-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci. 2002, 115: 3193-3206.PubMed
3.
go back to reference Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL: Phosphatidylinositol 3-kinase function is required for transforming growth factor b-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem. 2000, 275: 36803-36810. 10.1074/jbc.M005912200.CrossRefPubMed Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL: Phosphatidylinositol 3-kinase function is required for transforming growth factor b-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem. 2000, 275: 36803-36810. 10.1074/jbc.M005912200.CrossRefPubMed
4.
go back to reference Perlman R, Schiemann WP, Brooks MW, Lodish HF, Weinberg RA: TGF-β-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol. 2001, 3: 708-714. 10.1038/35087019.CrossRefPubMed Perlman R, Schiemann WP, Brooks MW, Lodish HF, Weinberg RA: TGF-β-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol. 2001, 3: 708-714. 10.1038/35087019.CrossRefPubMed
5.
go back to reference Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E, Bottinger EP: Genetic programs of epithelial cell plasticity directed by transforming growth factor-β. Proc Natl Acad Sci USA. 2001, 98: 6686-6691. 10.1073/pnas.111614398.CrossRefPubMedPubMedCentral Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E, Bottinger EP: Genetic programs of epithelial cell plasticity directed by transforming growth factor-β. Proc Natl Acad Sci USA. 2001, 98: 6686-6691. 10.1073/pnas.111614398.CrossRefPubMedPubMedCentral
6.
go back to reference Derynck R, Zhang YE: Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature. 2003, 425: 577-584. 10.1038/nature02006.CrossRefPubMed Derynck R, Zhang YE: Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature. 2003, 425: 577-584. 10.1038/nature02006.CrossRefPubMed
7.
go back to reference Bottinger EP, Jakubczak JL, Haines DC, Bagnall K, Wakefield LM: Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor β receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene. Cancer Res. 1997, 57: 5564-5570.PubMed Bottinger EP, Jakubczak JL, Haines DC, Bagnall K, Wakefield LM: Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor β receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene. Cancer Res. 1997, 57: 5564-5570.PubMed
8.
go back to reference Derynck R, Akhurst RJ, Balmain A: TGF-β signaling in tumor suppression and cancer progression. Nat Genet. 2001, 29: 117-129. 10.1038/ng1001-117.CrossRefPubMed Derynck R, Akhurst RJ, Balmain A: TGF-β signaling in tumor suppression and cancer progression. Nat Genet. 2001, 29: 117-129. 10.1038/ng1001-117.CrossRefPubMed
9.
go back to reference Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR, Wakefield LM: TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest. 2003, 112: 1116-1124. 10.1172/JCI200318899.CrossRefPubMedPubMedCentral Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR, Wakefield LM: TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest. 2003, 112: 1116-1124. 10.1172/JCI200318899.CrossRefPubMedPubMedCentral
10.
go back to reference Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J, Patel SC, Khozin S, Liu ZY, Green J, et al: Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J Clin Invest. 2002, 109: 1607-1615. 10.1172/JCI200215333.CrossRefPubMedPubMedCentral Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J, Patel SC, Khozin S, Liu ZY, Green J, et al: Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J Clin Invest. 2002, 109: 1607-1615. 10.1172/JCI200215333.CrossRefPubMedPubMedCentral
11.
go back to reference Savagner P: Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. BioEssays. 2001, 23: 912-923. 10.1002/bies.1132.CrossRefPubMed Savagner P: Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. BioEssays. 2001, 23: 912-923. 10.1002/bies.1132.CrossRefPubMed
12.
go back to reference Blobe GC, Schiemann WP, Lodish HF: Role of transforming growth factor β in human disease. N Engl J Med. 2000, 342: 1350-1358. 10.1056/NEJM200005043421807.CrossRefPubMed Blobe GC, Schiemann WP, Lodish HF: Role of transforming growth factor β in human disease. N Engl J Med. 2000, 342: 1350-1358. 10.1056/NEJM200005043421807.CrossRefPubMed
13.
go back to reference Massague J, Blain SW, Lo RS: TGFβ signaling in growth control, cancer, and heritable disorders. Cell. 2000, 103: 295-309. 10.1016/S0092-8674(00)00121-5.CrossRefPubMed Massague J, Blain SW, Lo RS: TGFβ signaling in growth control, cancer, and heritable disorders. Cell. 2000, 103: 295-309. 10.1016/S0092-8674(00)00121-5.CrossRefPubMed
14.
go back to reference Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL: Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell. 2001, 12: 27-36.CrossRefPubMedPubMedCentral Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL: Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell. 2001, 12: 27-36.CrossRefPubMedPubMedCentral
15.
go back to reference Lehmann K, Janda E, Pierreux CE, Rytèomaa M, Schulze A, McMahon M, Hill CS, Beug H, Downward J: Raf induces TGFβ production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev. 2000, 14: 2610-2622. 10.1101/gad.181700.CrossRefPubMedPubMedCentral Lehmann K, Janda E, Pierreux CE, Rytèomaa M, Schulze A, McMahon M, Hill CS, Beug H, Downward J: Raf induces TGFβ production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev. 2000, 14: 2610-2622. 10.1101/gad.181700.CrossRefPubMedPubMedCentral
16.
go back to reference Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL: Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro. Neoplasia. 2004, 6: 603-610. 10.1593/neo.04241.CrossRefPubMedPubMedCentral Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL: Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro. Neoplasia. 2004, 6: 603-610. 10.1593/neo.04241.CrossRefPubMedPubMedCentral
17.
go back to reference Wakefield LM, Roberts AB: TGF-β signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev. 2002, 12: 22-29. 10.1016/S0959-437X(01)00259-3.CrossRefPubMed Wakefield LM, Roberts AB: TGF-β signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev. 2002, 12: 22-29. 10.1016/S0959-437X(01)00259-3.CrossRefPubMed
18.
go back to reference Ignotz RA, Heino J, Massague J: Regulation of cell adhesion receptors by transforming growth factor-β. Regulation of vitronectin receptor and LFA-1. J Biol Chem. 1989, 264: 389-392.PubMed Ignotz RA, Heino J, Massague J: Regulation of cell adhesion receptors by transforming growth factor-β. Regulation of vitronectin receptor and LFA-1. J Biol Chem. 1989, 264: 389-392.PubMed
19.
go back to reference Cary LA, Han DC, Guan JL: Integrin-mediated signal transduction pathways. Histol Histopathol. 1999, 14: 1001-1009.PubMed Cary LA, Han DC, Guan JL: Integrin-mediated signal transduction pathways. Histol Histopathol. 1999, 14: 1001-1009.PubMed
20.
go back to reference Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ: Src kinase activation by direct interaction with the integrin β cytoplasmic domain. Proc Natl Acad Sci USA. 2003, 100: 13298-13302. 10.1073/pnas.2336149100.CrossRefPubMedPubMedCentral Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ: Src kinase activation by direct interaction with the integrin β cytoplasmic domain. Proc Natl Acad Sci USA. 2003, 100: 13298-13302. 10.1073/pnas.2336149100.CrossRefPubMedPubMedCentral
21.
go back to reference Cary LA, Guan JL: Focal adhesion kinase in integrin-mediated signaling. Front Biosci. 1999, 4: D102-113.CrossRefPubMed Cary LA, Guan JL: Focal adhesion kinase in integrin-mediated signaling. Front Biosci. 1999, 4: D102-113.CrossRefPubMed
22.
go back to reference Schlaepfer DD, Hauck CR, Sieg DJ: Signaling through focal adhesion kinase. Prog Biophys Mol Biol. 1999, 71: 435-478. 10.1016/S0079-6107(98)00052-2.CrossRefPubMed Schlaepfer DD, Hauck CR, Sieg DJ: Signaling through focal adhesion kinase. Prog Biophys Mol Biol. 1999, 71: 435-478. 10.1016/S0079-6107(98)00052-2.CrossRefPubMed
23.
go back to reference Guo W, Giancotti FG: Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 2004, 5: 816-826. 10.1038/nrm1490.CrossRefPubMed Guo W, Giancotti FG: Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 2004, 5: 816-826. 10.1038/nrm1490.CrossRefPubMed
24.
go back to reference Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD: FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol. 2000, 2: 249-256. 10.1038/35010517.CrossRefPubMed Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD: FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol. 2000, 2: 249-256. 10.1038/35010517.CrossRefPubMed
25.
go back to reference Hood JD, Cheresh DA: Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002, 2: 91-100. 10.1038/nrc727.CrossRefPubMed Hood JD, Cheresh DA: Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002, 2: 91-100. 10.1038/nrc727.CrossRefPubMed
26.
go back to reference Gui GP, Wells CA, Yeomans P, Jordan SE, Vinson GP, Carpenter R: Integrin expression in breast cancer cytology: a novel predictor of axillary metastasis. Eur J Surg Oncol. 1996, 22: 254-258. 10.1016/S0748-7983(96)80013-8.CrossRefPubMed Gui GP, Wells CA, Yeomans P, Jordan SE, Vinson GP, Carpenter R: Integrin expression in breast cancer cytology: a novel predictor of axillary metastasis. Eur J Surg Oncol. 1996, 22: 254-258. 10.1016/S0748-7983(96)80013-8.CrossRefPubMed
27.
go back to reference Mizejewski GJ: Role of integrins in cancer: survey of expression patterns. Proc Soc Exp Biol Med. 1999, 222: 124-138. 10.1046/j.1525-1373.1999.d01-122.x.CrossRefPubMed Mizejewski GJ: Role of integrins in cancer: survey of expression patterns. Proc Soc Exp Biol Med. 1999, 222: 124-138. 10.1046/j.1525-1373.1999.d01-122.x.CrossRefPubMed
28.
go back to reference Berry MG, Goode AW, Puddefoot JR, Vinson GP, Carpenter R: Integrin β1-mediated invasion of human breast cancer cells: an ex vivo assay for invasiveness. Breast Cancer. 2003, 10: 214-219.CrossRefPubMed Berry MG, Goode AW, Puddefoot JR, Vinson GP, Carpenter R: Integrin β1-mediated invasion of human breast cancer cells: an ex vivo assay for invasiveness. Breast Cancer. 2003, 10: 214-219.CrossRefPubMed
29.
go back to reference Dabrowska K, Opolski A, Wietrzyk J, Switala-Jelen K, Boratynski J, Nasulewicz A, Lipinska L, Chybicka A, Kujawa M, Zabel M, et al: Antitumor activity of bacteriophages in murine experimental cancer models caused possibly by inhibition of β3 integrin signaling pathway. Acta Virol. 2004, 48: 241-248.PubMed Dabrowska K, Opolski A, Wietrzyk J, Switala-Jelen K, Boratynski J, Nasulewicz A, Lipinska L, Chybicka A, Kujawa M, Zabel M, et al: Antitumor activity of bacteriophages in murine experimental cancer models caused possibly by inhibition of β3 integrin signaling pathway. Acta Virol. 2004, 48: 241-248.PubMed
30.
go back to reference Felding-Habermann B, O'Toole TE, Smith JW, Fransvea E, Ruggeri ZM, Ginsberg MH, Hughes PE, Pampori N, Shattil SJ, Saven A, et al: Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci USA. 2001, 98: 1853-1858. 10.1073/pnas.98.4.1853.CrossRefPubMedPubMedCentral Felding-Habermann B, O'Toole TE, Smith JW, Fransvea E, Ruggeri ZM, Ginsberg MH, Hughes PE, Pampori N, Shattil SJ, Saven A, et al: Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci USA. 2001, 98: 1853-1858. 10.1073/pnas.98.4.1853.CrossRefPubMedPubMedCentral
31.
go back to reference Furger KA, Allan AL, Wilson SM, Hota C, Vantyghem SA, Postenka CO, Al-Katib W, Chambers AF, Tuck AB: β3 integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Mol Cancer Res. 2003, 1: 810-819.PubMed Furger KA, Allan AL, Wilson SM, Hota C, Vantyghem SA, Postenka CO, Al-Katib W, Chambers AF, Tuck AB: β3 integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Mol Cancer Res. 2003, 1: 810-819.PubMed
32.
go back to reference Bhowmick NA, Zent R, Ghiassi M, McDonnell M, Moses HL: Integrin β1 signaling is necessary for transforming growth factor-b activation of p38MAPK and epithelial plasticity. J Biol Chem. 2001, 276: 46707-46713. 10.1074/jbc.M106176200.CrossRefPubMed Bhowmick NA, Zent R, Ghiassi M, McDonnell M, Moses HL: Integrin β1 signaling is necessary for transforming growth factor-b activation of p38MAPK and epithelial plasticity. J Biol Chem. 2001, 276: 46707-46713. 10.1074/jbc.M106176200.CrossRefPubMed
33.
go back to reference Thannickal VJ, Lee DY, White ES, Cui Z, Larios JM, Chacon R, Horowitz JC, Day RM, Thomas PE: Myofibroblast differentiation by transforming growth factor-β1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem. 2003, 278: 12384-12389. 10.1074/jbc.M208544200.CrossRefPubMed Thannickal VJ, Lee DY, White ES, Cui Z, Larios JM, Chacon R, Horowitz JC, Day RM, Thomas PE: Myofibroblast differentiation by transforming growth factor-β1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem. 2003, 278: 12384-12389. 10.1074/jbc.M208544200.CrossRefPubMed
35.
go back to reference Schiemann WP, Blobe GC, Kalume DE, Pandey A, Lodish HF: Context-specific effects of fibulin-5 (DANCE/EVEC) on cell proliferation, motility, and invasion: fibulin-5 is induced by TGF-β and affects protein kinase cascades. J Biol Chem. 2002, 277: 27367-27377. 10.1074/jbc.M200148200.CrossRefPubMed Schiemann WP, Blobe GC, Kalume DE, Pandey A, Lodish HF: Context-specific effects of fibulin-5 (DANCE/EVEC) on cell proliferation, motility, and invasion: fibulin-5 is induced by TGF-β and affects protein kinase cascades. J Biol Chem. 2002, 277: 27367-27377. 10.1074/jbc.M200148200.CrossRefPubMed
36.
go back to reference Schiemann BJ, Neil JR, Schiemann WP: SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-β-signaling system. Mol Biol Cell. 2003, 14: 3977-3988. 10.1091/mbc.E03-01-0001.CrossRefPubMedPubMedCentral Schiemann BJ, Neil JR, Schiemann WP: SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-β-signaling system. Mol Biol Cell. 2003, 14: 3977-3988. 10.1091/mbc.E03-01-0001.CrossRefPubMedPubMedCentral
37.
go back to reference Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P: TGF-β type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci. 1999, 112: 4557-4568.PubMed Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P: TGF-β type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci. 1999, 112: 4557-4568.PubMed
38.
go back to reference Sokol J, Neil J, Schiemann B, Schiemann W: The use of cystatin C to inhibit epithelial-mesenchymal transition and morphological transformation stimulated by transforming growth factor-β. Breast Cancer Res. 2005, 7: R844-R853. 10.1186/bcr1312.CrossRefPubMedPubMedCentral Sokol J, Neil J, Schiemann B, Schiemann W: The use of cystatin C to inhibit epithelial-mesenchymal transition and morphological transformation stimulated by transforming growth factor-β. Breast Cancer Res. 2005, 7: R844-R853. 10.1186/bcr1312.CrossRefPubMedPubMedCentral
39.
go back to reference Yu L, Hebert MC, Zhang YE: TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J. 2002, 21: 3749-3759. 10.1093/emboj/cdf366.CrossRefPubMedPubMedCentral Yu L, Hebert MC, Zhang YE: TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J. 2002, 21: 3749-3759. 10.1093/emboj/cdf366.CrossRefPubMedPubMedCentral
40.
go back to reference Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, McEwan RN: A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 1987, 47: 3239-3245.PubMed Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, McEwan RN: A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 1987, 47: 3239-3245.PubMed
41.
go back to reference DeCoteau JF, Knaus PI, Yankelev H, Reis MD, Lowsky R, Lodish HF, Kadin ME: Loss of functional cell surface transforming growth factor β (TGF-β) type 1 receptor correlates with insensitivity to TGF-beta in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 1997, 94: 5877-5881. 10.1073/pnas.94.11.5877.CrossRefPubMedPubMedCentral DeCoteau JF, Knaus PI, Yankelev H, Reis MD, Lowsky R, Lodish HF, Kadin ME: Loss of functional cell surface transforming growth factor β (TGF-β) type 1 receptor correlates with insensitivity to TGF-beta in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 1997, 94: 5877-5881. 10.1073/pnas.94.11.5877.CrossRefPubMedPubMedCentral
42.
go back to reference Scaffidi AK, Petrovic N, Moodley YP, Fogel-Petrovic M, Kroeger KM, Seeber RM, Eidne KA, Thompson PJ, Knight DA: αvβ3 integrin interacts with the transforming growth factor β (TGFβ) type II receptor to potentiate the proliferative effects of TGFβ1 in living human lung fibroblasts. J Biol Chem. 2004, 279: 37726-37733. 10.1074/jbc.M403010200.CrossRefPubMed Scaffidi AK, Petrovic N, Moodley YP, Fogel-Petrovic M, Kroeger KM, Seeber RM, Eidne KA, Thompson PJ, Knight DA: αvβ3 integrin interacts with the transforming growth factor β (TGFβ) type II receptor to potentiate the proliferative effects of TGFβ1 in living human lung fibroblasts. J Biol Chem. 2004, 279: 37726-37733. 10.1074/jbc.M403010200.CrossRefPubMed
43.
go back to reference Moustakas A, Lin HY, Henis YI, Plamondon J, O'Connor-McCourt MD, Lodish HF: The transforming growth factor β receptors types I, II, and III form hetero-oligomeric complexes in the presence of ligand. J Biol Chem. 1993, 268: 22215-22218.PubMed Moustakas A, Lin HY, Henis YI, Plamondon J, O'Connor-McCourt MD, Lodish HF: The transforming growth factor β receptors types I, II, and III form hetero-oligomeric complexes in the presence of ligand. J Biol Chem. 1993, 268: 22215-22218.PubMed
44.
go back to reference Schiemann WP, Graves LM, Baumann H, Morella KK, Gearing DP, Nielsen MD, Krebs EG, Nathanson NM: Phosphorylation of the human leukemia inhibitory factor (LIF) receptor by mitogen-activated protein kinase and the regulation of LIF receptor function by heterologous receptor activation. Proc Natl Acad Sci USA. 1995, 92: 5361-5365. 10.1073/pnas.92.12.5361.CrossRefPubMedPubMedCentral Schiemann WP, Graves LM, Baumann H, Morella KK, Gearing DP, Nielsen MD, Krebs EG, Nathanson NM: Phosphorylation of the human leukemia inhibitory factor (LIF) receptor by mitogen-activated protein kinase and the regulation of LIF receptor function by heterologous receptor activation. Proc Natl Acad Sci USA. 1995, 92: 5361-5365. 10.1073/pnas.92.12.5361.CrossRefPubMedPubMedCentral
45.
go back to reference Schiemann WP, Pfeifer WM, Levi E, Kadin ME, Lodish HF: A deletion in the gene for transforming growth factor b type I receptor abolishes growth regulation by transforming growth factor b in a cutaneous T-cell lymphoma. Blood. 1999, 94: 2854-2861.PubMed Schiemann WP, Pfeifer WM, Levi E, Kadin ME, Lodish HF: A deletion in the gene for transforming growth factor b type I receptor abolishes growth regulation by transforming growth factor b in a cutaneous T-cell lymphoma. Blood. 1999, 94: 2854-2861.PubMed
46.
go back to reference Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW: The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation. 2002, 70: 537-546. 10.1046/j.1432-0436.2002.700907.x.CrossRefPubMedPubMedCentral Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW: The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation. 2002, 70: 537-546. 10.1046/j.1432-0436.2002.700907.x.CrossRefPubMedPubMedCentral
47.
go back to reference Fata JE, Werb Z, Bissell MJ: Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res. 2004, 6: 1-11.CrossRefPubMed Fata JE, Werb Z, Bissell MJ: Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res. 2004, 6: 1-11.CrossRefPubMed
49.
go back to reference Lee JO, Bankston LA, Arnaout MA, Liddington RC: Two conformations of the integrin A-domain (I-domain): a pathway for activation?. Structure. 1995, 3: 1333-1340. 10.1016/S0969-2126(01)00271-4.CrossRefPubMed Lee JO, Bankston LA, Arnaout MA, Liddington RC: Two conformations of the integrin A-domain (I-domain): a pathway for activation?. Structure. 1995, 3: 1333-1340. 10.1016/S0969-2126(01)00271-4.CrossRefPubMed
51.
go back to reference Loftus J, Smith J, Ginsberg M: Integrin-mediated cell adhesion: the extracellular face. J Biol Chem. 1994, 269: 25235-25238.PubMed Loftus J, Smith J, Ginsberg M: Integrin-mediated cell adhesion: the extracellular face. J Biol Chem. 1994, 269: 25235-25238.PubMed
52.
go back to reference Giancotti FG, Tarone G: Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu Rev Cell Dev Biol. 2003, 19: 173-206. 10.1146/annurev.cellbio.19.031103.133334.CrossRefPubMed Giancotti FG, Tarone G: Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu Rev Cell Dev Biol. 2003, 19: 173-206. 10.1146/annurev.cellbio.19.031103.133334.CrossRefPubMed
53.
go back to reference Maeda M, Shintani Y, Wheelock MJ, Johnson KR: Src activation is not necessary for transforming growth factor (TGF)-β-mediated epithelial to mesenchymal transitions (EMT) in mammary epithelial cells. PP1 directly inhibits TGF-β receptors I and II. J Biol Chem. 2006, 281: 59-68. 10.1074/jbc.M503304200.CrossRefPubMed Maeda M, Shintani Y, Wheelock MJ, Johnson KR: Src activation is not necessary for transforming growth factor (TGF)-β-mediated epithelial to mesenchymal transitions (EMT) in mammary epithelial cells. PP1 directly inhibits TGF-β receptors I and II. J Biol Chem. 2006, 281: 59-68. 10.1074/jbc.M503304200.CrossRefPubMed
54.
go back to reference Bose R, Wrana JL: Regulation of Par6 by extracellular signals. Curr Opin Cell Biol. 2006, 18: 206-212. 10.1016/j.ceb.2006.02.005.CrossRefPubMed Bose R, Wrana JL: Regulation of Par6 by extracellular signals. Curr Opin Cell Biol. 2006, 18: 206-212. 10.1016/j.ceb.2006.02.005.CrossRefPubMed
55.
go back to reference Santner SJ, Dawson PJ, Tait L, Soule HD, Eliason J, Mohamed AN, Wolman SR, Heppner GH, Miller FR: Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res Treat. 2001, 65: 101-110. 10.1023/A:1006461422273.CrossRefPubMed Santner SJ, Dawson PJ, Tait L, Soule HD, Eliason J, Mohamed AN, Wolman SR, Heppner GH, Miller FR: Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res Treat. 2001, 65: 101-110. 10.1023/A:1006461422273.CrossRefPubMed
56.
go back to reference Siegel PM, Massague J: Cytostatic and apoptotic actions of TGF-b in homeostasis and cancer. Nat Rev Cancer. 2003, 3: 807-821. 10.1038/nrc1208.CrossRefPubMed Siegel PM, Massague J: Cytostatic and apoptotic actions of TGF-b in homeostasis and cancer. Nat Rev Cancer. 2003, 3: 807-821. 10.1038/nrc1208.CrossRefPubMed
57.
go back to reference Hocevar BA, Smine A, Xu XX, Howe PH: The adaptor molecule Disabled-2 links the transforming growth factor β receptors to the Smad pathway. EMBO J. 2001, 20: 2789-2801. 10.1093/emboj/20.11.2789.CrossRefPubMedPubMedCentral Hocevar BA, Smine A, Xu XX, Howe PH: The adaptor molecule Disabled-2 links the transforming growth factor β receptors to the Smad pathway. EMBO J. 2001, 20: 2789-2801. 10.1093/emboj/20.11.2789.CrossRefPubMedPubMedCentral
58.
go back to reference Prunier C, Howe PH: Disabled-2 (Dab2) is required for transforming growth factor β-induced epithelial to mesenchymal transition (EMT). J Biol Chem. 2005, 280: 17540-17548. 10.1074/jbc.M500974200.CrossRefPubMed Prunier C, Howe PH: Disabled-2 (Dab2) is required for transforming growth factor β-induced epithelial to mesenchymal transition (EMT). J Biol Chem. 2005, 280: 17540-17548. 10.1074/jbc.M500974200.CrossRefPubMed
59.
go back to reference Wrana JL, Attisano L, Wieser R, Ventura F, Massague J: Mechanism of activation of the TGF-β receptor. Nature. 1994, 370: 341-347. 10.1038/370341a0.CrossRefPubMed Wrana JL, Attisano L, Wieser R, Ventura F, Massague J: Mechanism of activation of the TGF-β receptor. Nature. 1994, 370: 341-347. 10.1038/370341a0.CrossRefPubMed
60.
go back to reference Luo K, Lodish HF: Positive and negative regulation of type II TGF-β receptor signal transduction by autophosphorylation on multiple serine residues. EMBO J. 1997, 16: 1970-1981. 10.1093/emboj/16.8.1970.CrossRefPubMedPubMedCentral Luo K, Lodish HF: Positive and negative regulation of type II TGF-β receptor signal transduction by autophosphorylation on multiple serine residues. EMBO J. 1997, 16: 1970-1981. 10.1093/emboj/16.8.1970.CrossRefPubMedPubMedCentral
61.
go back to reference Lawler S, Feng XH, Chen RH, Maruoka EM, Turck CW, Griswold-Prenner I, Derynck R: The type II transforming growth factor-β receptor autophosphorylates not only on serine and threonine but also on tyrosine residues. J Biol Chem. 1997, 272: 14850-14859. 10.1074/jbc.272.23.14850.CrossRefPubMed Lawler S, Feng XH, Chen RH, Maruoka EM, Turck CW, Griswold-Prenner I, Derynck R: The type II transforming growth factor-β receptor autophosphorylates not only on serine and threonine but also on tyrosine residues. J Biol Chem. 1997, 272: 14850-14859. 10.1074/jbc.272.23.14850.CrossRefPubMed
62.
go back to reference Murillo MM, del Castillo G, Sanchez A, Fernandez M, Fabregat I: Involvement of EGF receptor and c-Src in the survival signals induced by TGF-β1 in hepatocytes. Oncogene. 2005, 24: 4580-4587. 10.1038/sj.onc.1208664.CrossRefPubMed Murillo MM, del Castillo G, Sanchez A, Fernandez M, Fabregat I: Involvement of EGF receptor and c-Src in the survival signals induced by TGF-β1 in hepatocytes. Oncogene. 2005, 24: 4580-4587. 10.1038/sj.onc.1208664.CrossRefPubMed
63.
go back to reference Park SS, Eom YW, Kim EH, Lee JH, Min do S, Kim S, Kim SJ, Choi KS: Involvement of c-Src kinase in the regulation of TGF-β1-induced apoptosis. Oncogene. 2004, 23: 6272-6281. 10.1038/sj.onc.1207856.CrossRefPubMed Park SS, Eom YW, Kim EH, Lee JH, Min do S, Kim S, Kim SJ, Choi KS: Involvement of c-Src kinase in the regulation of TGF-β1-induced apoptosis. Oncogene. 2004, 23: 6272-6281. 10.1038/sj.onc.1207856.CrossRefPubMed
64.
go back to reference Valdes F, Murillo MM, Valverde AM, Herrera B, Sanchez A, Benito M, Fernandez M, Fabregat I: Transforming growth factor-β activates both pro-apoptotic and survival signals in fetal rat hepatocytes. Exp Cell Res. 2004, 292: 209-218. 10.1016/j.yexcr.2003.08.015.CrossRefPubMed Valdes F, Murillo MM, Valverde AM, Herrera B, Sanchez A, Benito M, Fernandez M, Fabregat I: Transforming growth factor-β activates both pro-apoptotic and survival signals in fetal rat hepatocytes. Exp Cell Res. 2004, 292: 209-218. 10.1016/j.yexcr.2003.08.015.CrossRefPubMed
65.
go back to reference Wakahara K, Kobayashi H, Yagyu T, Matsuzaki H, Kondo T, Kurita N, Sekino H, Inagaki K, Suzuki M, Kanayama N, et al: Transforming growth factor-β-dependent activation of Smad2/3 and up-regulation of PAI-1 expression is negatively regulated by Src in SKOV-3 human ovarian cancer cells. J Cell Biochem. 2004, 93: 437-453. 10.1002/jcb.20160.CrossRefPubMed Wakahara K, Kobayashi H, Yagyu T, Matsuzaki H, Kondo T, Kurita N, Sekino H, Inagaki K, Suzuki M, Kanayama N, et al: Transforming growth factor-β-dependent activation of Smad2/3 and up-regulation of PAI-1 expression is negatively regulated by Src in SKOV-3 human ovarian cancer cells. J Cell Biochem. 2004, 93: 437-453. 10.1002/jcb.20160.CrossRefPubMed
66.
go back to reference Wang SE, Wu FY, Shin I, Qu S, Arteaga CL: Transforming growth factor β (TGF-β)-Smad target gene protein tyrosine phosphatase receptor type κ is required for TGF-β function. Mol Cell Biol. 2005, 25: 4703-4715. 10.1128/MCB.25.11.4703-4715.2005.CrossRefPubMedPubMedCentral Wang SE, Wu FY, Shin I, Qu S, Arteaga CL: Transforming growth factor β (TGF-β)-Smad target gene protein tyrosine phosphatase receptor type κ is required for TGF-β function. Mol Cell Biol. 2005, 25: 4703-4715. 10.1128/MCB.25.11.4703-4715.2005.CrossRefPubMedPubMedCentral
67.
go back to reference Songyang Z: Recognition and regulation of primary-sequence motifs by signaling modular domains. Prog Biophys Mol Biol. 1999, 71: 359-372. 10.1016/S0079-6107(98)00045-5.CrossRefPubMed Songyang Z: Recognition and regulation of primary-sequence motifs by signaling modular domains. Prog Biophys Mol Biol. 1999, 71: 359-372. 10.1016/S0079-6107(98)00045-5.CrossRefPubMed
68.
go back to reference Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A: TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell. 2005, 16: 1987-2002. 10.1091/mbc.E04-08-0658.CrossRefPubMedPubMedCentral Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A: TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell. 2005, 16: 1987-2002. 10.1091/mbc.E04-08-0658.CrossRefPubMedPubMedCentral
Metadata
Title
β3Integrin and Src facilitate transforming growth factor-β mediated induction of epithelial-mesenchymal transition in mammary epithelial cells
Authors
Amy J Galliher
William P Schiemann
Publication date
01-08-2006
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 4/2006
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr1524

Other articles of this Issue 4/2006

Breast Cancer Research 4/2006 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine