Skip to main content
Top
Published in: Arthritis Research & Therapy 3/2013

Open Access 01-06-2013 | Research article

A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose

Published in: Arthritis Research & Therapy | Issue 3/2013

Login to get access

Abstract

Introduction

Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model.

Methods

Standardized bovine cartilage discs with a central defect filled with BNC were cultured for up to eight weeks with/without stimulation with transforming growth factor-β1 (TGF-β1. Cartilage formation and integrity were analyzed by histology, immunohistochemistry and electron microscopy. Content, release and neosynthesis of the matrix molecules proteoglycan/aggrecan, collagen II and collagen I were also quantified. Finally, gene expression of these molecules was profiled in resident chondrocytes and chondrocytes migrated onto the cartilage surface or the implant material.

Results

Non-stimulated and especially TGF-β1-stimulated cartilage discs displayed a preserved structural and functional integrity of the chondrocytes and surrounding matrix, remained vital in long-term culture (eight weeks) without signs of degeneration and showed substantial synthesis of cartilage-specific molecules at the protein and mRNA level. Whereas mobilization of chondrocytes from the matrix onto the surface of cartilage and implant was pivotal for successful seeding of cell-free BNC, chondrocytes did not immigrate into the central BNC area, possibly due to the relatively small diameter of its pores (2 to 5 μm). Chondrocytes on the BNC surface showed signs of successful redifferentiation over time, including increase of aggrecan/collagen type II mRNA, decrease of collagen type I mRNA and initial deposition of proteoglycan and collagen type II in long-term high-density pellet cultures. Although TGF-β1 stimulation showed protective effects on matrix integrity, effects on other parameters were limited.

Conclusions

The present bovine cartilage punch model represents a robust, reproducible and highly suitable tool for the long-term culture of cartilage, maintaining matrix integrity and homoeostasis. As an alternative to animal studies, this model may closely reflect early stages of cartilage regeneration, allowing the evaluation of promising biomaterials with/without chondrogenic factors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hardingham TE, Fosang AJ, Dudhia J: Aggrecan, the chondroitin/ keratin sulfate proteoglycan from cartilage. Articular Cartilage and Osteoarthritis. Edited by: Kuettner KE, Peyron J, Schleyerbach R, Hascall VC. 1992, New York: Raven Press, 5-20. Hardingham TE, Fosang AJ, Dudhia J: Aggrecan, the chondroitin/ keratin sulfate proteoglycan from cartilage. Articular Cartilage and Osteoarthritis. Edited by: Kuettner KE, Peyron J, Schleyerbach R, Hascall VC. 1992, New York: Raven Press, 5-20.
2.
go back to reference Khan IM, Gilbert SJ, Singhrao SK, Duance VC, Archer CW: Cartilage integration: evaluation of the reasons for failure of integration during cartilage repair. A review. Eur Cell Mater. 2008, 16: 26-39.PubMed Khan IM, Gilbert SJ, Singhrao SK, Duance VC, Archer CW: Cartilage integration: evaluation of the reasons for failure of integration during cartilage repair. A review. Eur Cell Mater. 2008, 16: 26-39.PubMed
3.
go back to reference Steinwachs MR, Guggi TH, Kreuz PC: Marrow stimulation techniques. Injury. 2008, 39: S26-S31. 10.1016/j.injury.2008.01.042.CrossRefPubMed Steinwachs MR, Guggi TH, Kreuz PC: Marrow stimulation techniques. Injury. 2008, 39: S26-S31. 10.1016/j.injury.2008.01.042.CrossRefPubMed
4.
go back to reference Behrens P, Bosch U, Bruns J, Erggelet C, Esenwein SA, Gaissmaier C, Krackhardt T, Löhnert J, Marlovits S, Meenen NM, Mollenhauer J, Nehrer S, Niethard FU, Nöth U, Perka C, Richter W, Schäfer D, Schneider U, Steinwachs M, Weise K, German Society for Traumatology, German Society for Orthopedic Surgery: Indications and implementation of recommendations of the working group "Tissue Regeneration and Tissue Substitutes" for autologous chondrocyte transplantation (ACT). Z Orthop Ihre Grenzgeb. 2004, 142: 529-539. 10.1055/s-2004-832353. [In German]CrossRefPubMed Behrens P, Bosch U, Bruns J, Erggelet C, Esenwein SA, Gaissmaier C, Krackhardt T, Löhnert J, Marlovits S, Meenen NM, Mollenhauer J, Nehrer S, Niethard FU, Nöth U, Perka C, Richter W, Schäfer D, Schneider U, Steinwachs M, Weise K, German Society for Traumatology, German Society for Orthopedic Surgery: Indications and implementation of recommendations of the working group "Tissue Regeneration and Tissue Substitutes" for autologous chondrocyte transplantation (ACT). Z Orthop Ihre Grenzgeb. 2004, 142: 529-539. 10.1055/s-2004-832353. [In German]CrossRefPubMed
5.
go back to reference Brown WE, Potter HG, Marx RG, Wickiewicz TL, Warren RF: Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Relat Res. 2004, 422: 214-223.CrossRefPubMed Brown WE, Potter HG, Marx RG, Wickiewicz TL, Warren RF: Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Relat Res. 2004, 422: 214-223.CrossRefPubMed
6.
go back to reference Sledge SL: Microfracture techniques in the treatment of osteochondral injuries. Clin Sports Med. 2001, 20: 365-377. 10.1016/S0278-5919(05)70311-2.CrossRefPubMed Sledge SL: Microfracture techniques in the treatment of osteochondral injuries. Clin Sports Med. 2001, 20: 365-377. 10.1016/S0278-5919(05)70311-2.CrossRefPubMed
7.
go back to reference Temenoff JS, Mikos AG: Review: tissue engineering for regeneration of articular cartilage. Biomaterials. 2000, 21: 431-440. 10.1016/S0142-9612(99)00213-6.CrossRefPubMed Temenoff JS, Mikos AG: Review: tissue engineering for regeneration of articular cartilage. Biomaterials. 2000, 21: 431-440. 10.1016/S0142-9612(99)00213-6.CrossRefPubMed
8.
go back to reference Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S: Nanocelluloses as innovative polymers in research and application. Polysaccharides. 2006, 205: 49-96. Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S: Nanocelluloses as innovative polymers in research and application. Polysaccharides. 2006, 205: 49-96.
9.
go back to reference Hessler N, Klemm D: Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives. Cellulose. 2009, 16: 899-910. 10.1007/s10570-009-9301-5.CrossRef Hessler N, Klemm D: Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives. Cellulose. 2009, 16: 899-910. 10.1007/s10570-009-9301-5.CrossRef
10.
go back to reference Klemm D, Schumann D, Udhardt U, Marsch S: Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog Polym Sci. 2001, 26: 1561-1603. 10.1016/S0079-6700(01)00021-1.CrossRef Klemm D, Schumann D, Udhardt U, Marsch S: Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog Polym Sci. 2001, 26: 1561-1603. 10.1016/S0079-6700(01)00021-1.CrossRef
11.
go back to reference Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B: In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A. 2006, 76: 431-438.CrossRefPubMed Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B: In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A. 2006, 76: 431-438.CrossRefPubMed
12.
go back to reference Chen YM, Xi TF, Zheng YD, Guo TT, Hou JQ, Wan YZ, Gao C: In vitro cytotoxicity of bacterial cellulose scaffolds used for tissue-engineered bone. J Bioact Compat Pol. 2009, 24: 137-145. 10.1177/0883911509102710.CrossRef Chen YM, Xi TF, Zheng YD, Guo TT, Hou JQ, Wan YZ, Gao C: In vitro cytotoxicity of bacterial cellulose scaffolds used for tissue-engineered bone. J Bioact Compat Pol. 2009, 24: 137-145. 10.1177/0883911509102710.CrossRef
13.
go back to reference Pattison MA, Wurster S, Webster TJ, Haberstroh KM: Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials. 2005, 26: 2491-2500. 10.1016/j.biomaterials.2004.07.011.CrossRefPubMed Pattison MA, Wurster S, Webster TJ, Haberstroh KM: Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials. 2005, 26: 2491-2500. 10.1016/j.biomaterials.2004.07.011.CrossRefPubMed
14.
go back to reference Czaja WK, Young DJ, Kawecki M, Brown RM: The future prospects of microbial cellulose in biomedical applications. Biomacromolecules. 2007, 8: 1-12. 10.1021/bm060620d.CrossRefPubMed Czaja WK, Young DJ, Kawecki M, Brown RM: The future prospects of microbial cellulose in biomedical applications. Biomacromolecules. 2007, 8: 1-12. 10.1021/bm060620d.CrossRefPubMed
15.
go back to reference Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H, Wahlers T, Salehi-Gelani S: Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose. 2009, 16: 877-885. 10.1007/s10570-008-9264-y.CrossRef Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H, Wahlers T, Salehi-Gelani S: Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose. 2009, 16: 877-885. 10.1007/s10570-008-9264-y.CrossRef
16.
go back to reference Wippermann J, Schumann D, Klemm D, Kosmehl H, Satehi-Gelani S, Wahlers T: Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. Eur J Vasc Endovasc Surg. 2009, 37: 592-596. 10.1016/j.ejvs.2009.01.007.CrossRefPubMed Wippermann J, Schumann D, Klemm D, Kosmehl H, Satehi-Gelani S, Wahlers T: Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. Eur J Vasc Endovasc Surg. 2009, 37: 592-596. 10.1016/j.ejvs.2009.01.007.CrossRefPubMed
17.
go back to reference Lang N, Sigler M, Merkel E, Fuchs F, Schumann D, Klemm D, Kramer F, Meyer A, Freudenthal F, Schroeder C, Mayer S, Netz H, Kozlik-Feldmann R: Evaluation of bacterial cellulose as a new patch material for closure of muscular ventricular septal defects. J Am Coll Cardiol. 2010, 55: A43-E412. Lang N, Sigler M, Merkel E, Fuchs F, Schumann D, Klemm D, Kramer F, Meyer A, Freudenthal F, Schroeder C, Mayer S, Netz H, Kozlik-Feldmann R: Evaluation of bacterial cellulose as a new patch material for closure of muscular ventricular septal defects. J Am Coll Cardiol. 2010, 55: A43-E412.
18.
go back to reference Bodin A, Concaro S, Brittberg M, Gatenholm P: Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med. 2007, 1: 406-408. 10.1002/term.51.CrossRefPubMed Bodin A, Concaro S, Brittberg M, Gatenholm P: Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med. 2007, 1: 406-408. 10.1002/term.51.CrossRefPubMed
19.
go back to reference Hutchens SA, Benson RS, Evans BR, O'Neill HM, Rawn CJ: Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials. 2006, 27: 4661-4670. 10.1016/j.biomaterials.2006.04.032.CrossRefPubMed Hutchens SA, Benson RS, Evans BR, O'Neill HM, Rawn CJ: Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials. 2006, 27: 4661-4670. 10.1016/j.biomaterials.2006.04.032.CrossRefPubMed
20.
go back to reference Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P: Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials. 2005, 26: 419-431. 10.1016/j.biomaterials.2004.02.049.CrossRefPubMed Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P: Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials. 2005, 26: 419-431. 10.1016/j.biomaterials.2004.02.049.CrossRefPubMed
21.
go back to reference Barone-Varelas J, Schnitzer TJ, Meng Q, Otten L, Thonar EJ: Age-related differences in the metabolism of proteoglycans in bovine articular cartilage explants maintained in the presence of insulin-like growth factor I. Connect Tissue Res. 1991, 26: 101-120. 10.3109/03008209109152167.CrossRefPubMed Barone-Varelas J, Schnitzer TJ, Meng Q, Otten L, Thonar EJ: Age-related differences in the metabolism of proteoglycans in bovine articular cartilage explants maintained in the presence of insulin-like growth factor I. Connect Tissue Res. 1991, 26: 101-120. 10.3109/03008209109152167.CrossRefPubMed
22.
go back to reference Luyten FP, Hascall VC, Nissley SP, Morales TI, Reddi AH: Insulin-like growth factors maintain steady-state metabolism of proteoglycans in bovine articular cartilage explants. Arch Biochem Biophys. 1988, 267: 416-425. 10.1016/0003-9861(88)90047-1.CrossRefPubMed Luyten FP, Hascall VC, Nissley SP, Morales TI, Reddi AH: Insulin-like growth factors maintain steady-state metabolism of proteoglycans in bovine articular cartilage explants. Arch Biochem Biophys. 1988, 267: 416-425. 10.1016/0003-9861(88)90047-1.CrossRefPubMed
23.
go back to reference Sah RL, Chen AC, Grodzinsky AJ, Trippel SB: Differential effects of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch Biochem Biophys. 1994, 308: 137-147. 10.1006/abbi.1994.1020.CrossRefPubMed Sah RL, Chen AC, Grodzinsky AJ, Trippel SB: Differential effects of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch Biochem Biophys. 1994, 308: 137-147. 10.1006/abbi.1994.1020.CrossRefPubMed
24.
go back to reference van Osch GJ, van der Veen SW, Buma P, Verwoerd-Verhoef HL: Effect of transforming growth factor-beta on proteoglycan synthesis by chondrocytes in relation to differentiation stage and the presence of pericellular matrix. Matrix Biol. 1998, 17: 413-424. 10.1016/S0945-053X(98)90101-9.CrossRefPubMed van Osch GJ, van der Veen SW, Buma P, Verwoerd-Verhoef HL: Effect of transforming growth factor-beta on proteoglycan synthesis by chondrocytes in relation to differentiation stage and the presence of pericellular matrix. Matrix Biol. 1998, 17: 413-424. 10.1016/S0945-053X(98)90101-9.CrossRefPubMed
25.
go back to reference van Osch GJ, van den Berg WB, Hunziker EB, Hauselmann HJ: Differential effects of IGF-1 and TGF beta-2 on the assembly of proteoglycans in pericellular and territorial matrix by cultured bovine articular chondrocytes. Osteoarthritis Cartilage. 1998, 6: 187-195. 10.1053/joca.1998.0111.CrossRefPubMed van Osch GJ, van den Berg WB, Hunziker EB, Hauselmann HJ: Differential effects of IGF-1 and TGF beta-2 on the assembly of proteoglycans in pericellular and territorial matrix by cultured bovine articular chondrocytes. Osteoarthritis Cartilage. 1998, 6: 187-195. 10.1053/joca.1998.0111.CrossRefPubMed
26.
go back to reference van Susante JL, Buma P, van Beuningen HM, van den Berg WB, Veth RP: Responsiveness of bovine chondrocytes to growth factors in medium with different serum concentrations. J Orthop Res. 2000, 18: 68-77. 10.1002/jor.1100180111.CrossRefPubMed van Susante JL, Buma P, van Beuningen HM, van den Berg WB, Veth RP: Responsiveness of bovine chondrocytes to growth factors in medium with different serum concentrations. J Orthop Res. 2000, 18: 68-77. 10.1002/jor.1100180111.CrossRefPubMed
27.
go back to reference Osborn KD, Trippel SB, Mankin HJ: Growth factor stimulation of adult articular cartilage. J Orthop Res. 1989, 7: 35-42. 10.1002/jor.1100070106.CrossRefPubMed Osborn KD, Trippel SB, Mankin HJ: Growth factor stimulation of adult articular cartilage. J Orthop Res. 1989, 7: 35-42. 10.1002/jor.1100070106.CrossRefPubMed
28.
go back to reference Cancedda R, Descalzi CF, Castagnola P: Chondrocyte differentiation. Int Rev Cytol. 1995, 159: 265-358.CrossRefPubMed Cancedda R, Descalzi CF, Castagnola P: Chondrocyte differentiation. Int Rev Cytol. 1995, 159: 265-358.CrossRefPubMed
29.
go back to reference Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998, 238: 265-272. 10.1006/excr.1997.3858.CrossRefPubMed Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998, 238: 265-272. 10.1006/excr.1997.3858.CrossRefPubMed
30.
go back to reference Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF: Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 1998, 4: 415-428. 10.1089/ten.1998.4.415.CrossRefPubMed Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF: Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 1998, 4: 415-428. 10.1089/ten.1998.4.415.CrossRefPubMed
31.
go back to reference Matsuda C, Takagi M, Hattori T, Wakitani S, Yoshida T: Differentiation of human bone marrow mesenchymal stem cells to chondrocytes for construction of three-dimensional cartilage tissue. Cytotechnology. 2005, 47: 11-17. 10.1007/s10616-005-3751-x.PubMedCentralCrossRefPubMed Matsuda C, Takagi M, Hattori T, Wakitani S, Yoshida T: Differentiation of human bone marrow mesenchymal stem cells to chondrocytes for construction of three-dimensional cartilage tissue. Cytotechnology. 2005, 47: 11-17. 10.1007/s10616-005-3751-x.PubMedCentralCrossRefPubMed
32.
go back to reference Bujia J: Effect of growth factors on cell proliferation and matrix synthesis in cultured human chondrocytes. Laryngorhinootologie. 1995, 74: 444-449. 10.1055/s-2007-997777.CrossRefPubMed Bujia J: Effect of growth factors on cell proliferation and matrix synthesis in cultured human chondrocytes. Laryngorhinootologie. 1995, 74: 444-449. 10.1055/s-2007-997777.CrossRefPubMed
33.
go back to reference Pei M, Seidel J, Vunjak-Novakovic G, Freed LE: Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochem Biophys Res Commun. 2002, 294: 149-154. 10.1016/S0006-291X(02)00439-4.CrossRefPubMed Pei M, Seidel J, Vunjak-Novakovic G, Freed LE: Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochem Biophys Res Commun. 2002, 294: 149-154. 10.1016/S0006-291X(02)00439-4.CrossRefPubMed
34.
go back to reference Zimber MP, Tong B, Dunkelman N, Pavelec R, Grande D, New L, Purchio AF: Tgf-Beta promotes the growth of bovine chondrocytes in monolayer culture and the formation of cartilage tissue on three-dimensional scaffolds. Tissue Eng. 1995, 1: 289-300. 10.1089/ten.1995.1.289.CrossRefPubMed Zimber MP, Tong B, Dunkelman N, Pavelec R, Grande D, New L, Purchio AF: Tgf-Beta promotes the growth of bovine chondrocytes in monolayer culture and the formation of cartilage tissue on three-dimensional scaffolds. Tissue Eng. 1995, 1: 289-300. 10.1089/ten.1995.1.289.CrossRefPubMed
35.
go back to reference Redini F, Galera P, Mauviel A, Loyau G, Pujol JP: Transforming growth factor beta stimulates collagen and glycosaminoglycan biosynthesis in cultured rabbit articular chondrocytes. FEBS Lett. 1988, 234: 172-176. 10.1016/0014-5793(88)81327-9.CrossRefPubMed Redini F, Galera P, Mauviel A, Loyau G, Pujol JP: Transforming growth factor beta stimulates collagen and glycosaminoglycan biosynthesis in cultured rabbit articular chondrocytes. FEBS Lett. 1988, 234: 172-176. 10.1016/0014-5793(88)81327-9.CrossRefPubMed
36.
go back to reference Pujol JP, Galera P, Pronost S, Boumediene K, Vivien D, Macro M, Min W, Redini F, Penfornis H, Daireaux M: Transforming growth factor-beta (TGF-beta) and articular chondrocytes. Ann Endocrinol (Paris). 1994, 55: 109-120. Pujol JP, Galera P, Pronost S, Boumediene K, Vivien D, Macro M, Min W, Redini F, Penfornis H, Daireaux M: Transforming growth factor-beta (TGF-beta) and articular chondrocytes. Ann Endocrinol (Paris). 1994, 55: 109-120.
37.
go back to reference Galera P, Vivien D, Pronost S, Bonaventure J, Redini F, Loyau G, Pujol JP: Transforming growth factor-beta-1 (TGF-beta-1) up-regulation of collagen type-II in primary cultures of rabbit articular chondrocytes (Rac) involves increased messenger-RNA levels without affecting messenger-RNA stability and procollagen processing. J Cell Physiol. 1992, 153: 596-606. 10.1002/jcp.1041530322.CrossRefPubMed Galera P, Vivien D, Pronost S, Bonaventure J, Redini F, Loyau G, Pujol JP: Transforming growth factor-beta-1 (TGF-beta-1) up-regulation of collagen type-II in primary cultures of rabbit articular chondrocytes (Rac) involves increased messenger-RNA levels without affecting messenger-RNA stability and procollagen processing. J Cell Physiol. 1992, 153: 596-606. 10.1002/jcp.1041530322.CrossRefPubMed
38.
go back to reference Galera P, Redini F, Vivien D, Bonaventure J, Penfornis H, Loyau G, Pujol JP: Effect of transforming growth factor-beta-1 (TGF-beta-1) on matrix synthesis by monolayer-cultures of rabbit articular chondrocytes during the dedifferentiation process. Exp Cell Res. 1992, 200: 379-392. 10.1016/0014-4827(92)90186-C.CrossRefPubMed Galera P, Redini F, Vivien D, Bonaventure J, Penfornis H, Loyau G, Pujol JP: Effect of transforming growth factor-beta-1 (TGF-beta-1) on matrix synthesis by monolayer-cultures of rabbit articular chondrocytes during the dedifferentiation process. Exp Cell Res. 1992, 200: 379-392. 10.1016/0014-4827(92)90186-C.CrossRefPubMed
39.
go back to reference van der Kraan PM, Vitters E, van den BW: Differential effect of transforming growth factor beta on freshly isolated and cultured articular chondrocytes. J Rheumatol. 1992, 19: 140-145.PubMed van der Kraan PM, Vitters E, van den BW: Differential effect of transforming growth factor beta on freshly isolated and cultured articular chondrocytes. J Rheumatol. 1992, 19: 140-145.PubMed
40.
go back to reference van der Kraan PM, Vitters EL, van den Berg WB: Inhibition of proteoglycan synthesis by transforming growth factor beta in anatomically intact articular cartilage of murine patellae. Ann Rheum Dis. 1992, 51: 643-647. 10.1136/ard.51.5.643.PubMedCentralCrossRefPubMed van der Kraan PM, Vitters EL, van den Berg WB: Inhibition of proteoglycan synthesis by transforming growth factor beta in anatomically intact articular cartilage of murine patellae. Ann Rheum Dis. 1992, 51: 643-647. 10.1136/ard.51.5.643.PubMedCentralCrossRefPubMed
41.
42.
go back to reference Hunter CJ, Levenston ME: Maturation and integration of tissue-engineered cartilages within an in vitro defect repair model. Tissue Eng. 2004, 10: 736-746. 10.1089/1076327041348310.CrossRefPubMed Hunter CJ, Levenston ME: Maturation and integration of tissue-engineered cartilages within an in vitro defect repair model. Tissue Eng. 2004, 10: 736-746. 10.1089/1076327041348310.CrossRefPubMed
43.
go back to reference Vinardell T, Thorpe SD, Buckley CT, Kelly DJ: Chondrogenesis and integration of mesenchymal stem cells within an in vitro cartilage defect repair model. Ann Biomed Eng. 2009, 37: 2556-2565. 10.1007/s10439-009-9791-1.CrossRefPubMed Vinardell T, Thorpe SD, Buckley CT, Kelly DJ: Chondrogenesis and integration of mesenchymal stem cells within an in vitro cartilage defect repair model. Ann Biomed Eng. 2009, 37: 2556-2565. 10.1007/s10439-009-9791-1.CrossRefPubMed
44.
go back to reference Obradovic B, Martin I, Padera RF, Treppo S, Freed LE, Vunjak-Novakovic G: Integration of engineered cartilage. J Orthop Res. 2001, 19: 1089-1097. 10.1016/S0736-0266(01)00030-4.CrossRefPubMed Obradovic B, Martin I, Padera RF, Treppo S, Freed LE, Vunjak-Novakovic G: Integration of engineered cartilage. J Orthop Res. 2001, 19: 1089-1097. 10.1016/S0736-0266(01)00030-4.CrossRefPubMed
45.
go back to reference DiMicco MA, Waters SN, Akeson WH, Sah RL: Integrative articular cartilage repair: dependence on developmental stage and collagen metabolism. Osteoarthritis Cartilage. 2002, 10: 218-25. 10.1053/joca.2001.0502.CrossRefPubMed DiMicco MA, Waters SN, Akeson WH, Sah RL: Integrative articular cartilage repair: dependence on developmental stage and collagen metabolism. Osteoarthritis Cartilage. 2002, 10: 218-25. 10.1053/joca.2001.0502.CrossRefPubMed
46.
go back to reference Hestrin S, Schramm M: Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J. 1954, 58: 345-352.PubMedCentralCrossRefPubMed Hestrin S, Schramm M: Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J. 1954, 58: 345-352.PubMedCentralCrossRefPubMed
47.
go back to reference Pretzel D, Pohlers D, Weinert S, Kinne RW: In vitro model for the analysis of synovial fibroblast-mediated degradation of intact cartilage. Arthritis Res Ther. 2009, 11: R25-10.1186/ar2618.PubMedCentralCrossRefPubMed Pretzel D, Pohlers D, Weinert S, Kinne RW: In vitro model for the analysis of synovial fibroblast-mediated degradation of intact cartilage. Arthritis Res Ther. 2009, 11: R25-10.1186/ar2618.PubMedCentralCrossRefPubMed
48.
go back to reference Chandrasekhar S, Esterman MA, Hoffman HA: Microdetermination of proteoglycans and glycosaminoglycans in the presence of guanidine hydrochloride. Anal Biochem. 1987, 161: 103-108. 10.1016/0003-2697(87)90658-0.CrossRefPubMed Chandrasekhar S, Esterman MA, Hoffman HA: Microdetermination of proteoglycans and glycosaminoglycans in the presence of guanidine hydrochloride. Anal Biochem. 1987, 161: 103-108. 10.1016/0003-2697(87)90658-0.CrossRefPubMed
49.
go back to reference Secretan C, Bagnall KM, Jomha NM: Effects of introducing cultured human chondrocytes into a human articular cartilage explant model. Cell Tissue Res. 2010, 339: 421-427. 10.1007/s00441-009-0901-z.CrossRefPubMed Secretan C, Bagnall KM, Jomha NM: Effects of introducing cultured human chondrocytes into a human articular cartilage explant model. Cell Tissue Res. 2010, 339: 421-427. 10.1007/s00441-009-0901-z.CrossRefPubMed
50.
go back to reference Hung CT, Lima EG, Mauck RL, Takai E, LeRoux MA, Lu HH, Stark RG, Guo XE, Ateshian GA: Anatomically shaped osteochondral constructs for articular cartilage repair. J Biomech. 2003, 36: 1853-1864. 10.1016/S0021-9290(03)00213-6.CrossRefPubMed Hung CT, Lima EG, Mauck RL, Takai E, LeRoux MA, Lu HH, Stark RG, Guo XE, Ateshian GA: Anatomically shaped osteochondral constructs for articular cartilage repair. J Biomech. 2003, 36: 1853-1864. 10.1016/S0021-9290(03)00213-6.CrossRefPubMed
51.
go back to reference Kuo CK, Li WJ, Mauck RL, Tuan RS: Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol. 2006, 18: 64-73. 10.1097/01.bor.0000198005.88568.df.CrossRefPubMed Kuo CK, Li WJ, Mauck RL, Tuan RS: Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol. 2006, 18: 64-73. 10.1097/01.bor.0000198005.88568.df.CrossRefPubMed
52.
go back to reference Lima EG, Mauck RL, Han SH, Park S, Ng KW, Ateshian GA, Hung CT: Functional tissue engineering of chondral and osteochondral constructs. Biorheology. 2004, 41: 577-590.PubMed Lima EG, Mauck RL, Han SH, Park S, Ng KW, Ateshian GA, Hung CT: Functional tissue engineering of chondral and osteochondral constructs. Biorheology. 2004, 41: 577-590.PubMed
53.
go back to reference Huang AH, Farrell MJ, Mauck RL: Mechanics and mechanobiology of mesenchymal stem cell-based engineered cartilage. J Biomech. 2010, 43: 128-136. 10.1016/j.jbiomech.2009.09.018.PubMedCentralCrossRefPubMed Huang AH, Farrell MJ, Mauck RL: Mechanics and mechanobiology of mesenchymal stem cell-based engineered cartilage. J Biomech. 2010, 43: 128-136. 10.1016/j.jbiomech.2009.09.018.PubMedCentralCrossRefPubMed
54.
go back to reference Aurich M, Squires GR, Reiner A, Mollenhauer JA, Kuettner KE, Poole AR, Cole AA: Differential matrix degradation and turnover in early cartilage lesions of human knee and ankle joints. Arthritis Rheum. 2005, 52: 112-119. 10.1002/art.20740.CrossRefPubMed Aurich M, Squires GR, Reiner A, Mollenhauer JA, Kuettner KE, Poole AR, Cole AA: Differential matrix degradation and turnover in early cartilage lesions of human knee and ankle joints. Arthritis Rheum. 2005, 52: 112-119. 10.1002/art.20740.CrossRefPubMed
55.
go back to reference Squires GR, Okouneff S, Ionescu M, Poole AR: The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis. Arthritis Rheum. 2003, 48: 1261-1270. 10.1002/art.10976.CrossRefPubMed Squires GR, Okouneff S, Ionescu M, Poole AR: The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis. Arthritis Rheum. 2003, 48: 1261-1270. 10.1002/art.10976.CrossRefPubMed
56.
go back to reference Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, Mitchell P, Hambor J, Diekmann O, Tschesche H, Chen J, Van Wart H, Poole AR: Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest. 1997, 99: 1534-1545. 10.1172/JCI119316.PubMedCentralCrossRefPubMed Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, Mitchell P, Hambor J, Diekmann O, Tschesche H, Chen J, Van Wart H, Poole AR: Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest. 1997, 99: 1534-1545. 10.1172/JCI119316.PubMedCentralCrossRefPubMed
57.
go back to reference Pratta MA, Yao WQ, Decicco C, Tortorella MD, Liu RQ, Copeland RA, Magolda R, Newton RC, Trzaskos JM, Arner EC: Aggrecan protects cartilage collagen from proteolytic cleavage. J Biol Chem. 2003, 278: 45539-45545. 10.1074/jbc.M303737200.CrossRefPubMed Pratta MA, Yao WQ, Decicco C, Tortorella MD, Liu RQ, Copeland RA, Magolda R, Newton RC, Trzaskos JM, Arner EC: Aggrecan protects cartilage collagen from proteolytic cleavage. J Biol Chem. 2003, 278: 45539-45545. 10.1074/jbc.M303737200.CrossRefPubMed
58.
go back to reference LaPrade RF, Bursch LS, Olson EJ, Havlas V, Carlson CS: Histologic and immunohistochemical characteristics of failed articular cartilage resurfacing procedures for osteochondritis of the knee: a case series. Am J Sports Med. 2008, 36: 360-368. 10.1177/0363546507308359.CrossRefPubMed LaPrade RF, Bursch LS, Olson EJ, Havlas V, Carlson CS: Histologic and immunohistochemical characteristics of failed articular cartilage resurfacing procedures for osteochondritis of the knee: a case series. Am J Sports Med. 2008, 36: 360-368. 10.1177/0363546507308359.CrossRefPubMed
59.
go back to reference Benya PD, Shaffer JD: Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982, 30: 215-224. 10.1016/0092-8674(82)90027-7.CrossRefPubMed Benya PD, Shaffer JD: Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982, 30: 215-224. 10.1016/0092-8674(82)90027-7.CrossRefPubMed
60.
go back to reference Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vecsei V, Schlegel J: Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage. 2002, 10: 62-70. 10.1053/joca.2001.0482.CrossRefPubMed Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vecsei V, Schlegel J: Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage. 2002, 10: 62-70. 10.1053/joca.2001.0482.CrossRefPubMed
61.
go back to reference Chang C, Lauffenburger DA, Morales TI: Motile chondrocytes from newborn calf: migration properties and synthesis of collagen II. Osteoarthritis Cartilage. 2003, 11: 603-612. 10.1016/S1063-4584(03)00087-6.CrossRefPubMed Chang C, Lauffenburger DA, Morales TI: Motile chondrocytes from newborn calf: migration properties and synthesis of collagen II. Osteoarthritis Cartilage. 2003, 11: 603-612. 10.1016/S1063-4584(03)00087-6.CrossRefPubMed
62.
go back to reference Frenkel SR, Clancy RM, Ricci JL, Di Cesare PE, Rediske JJ, Abramson SB: Effects of nitric oxide on chondrocyte migration, adhesion, and cytoskeletal assembly. Arthritis Rheum. 1996, 39: 1905-1912. 10.1002/art.1780391118.CrossRefPubMed Frenkel SR, Clancy RM, Ricci JL, Di Cesare PE, Rediske JJ, Abramson SB: Effects of nitric oxide on chondrocyte migration, adhesion, and cytoskeletal assembly. Arthritis Rheum. 1996, 39: 1905-1912. 10.1002/art.1780391118.CrossRefPubMed
63.
go back to reference Gosiewska A, Rezania A, Dhanaraj S, Vyakarnam M, Zhou J, Burtis D, Brown L, Kong W, Zimmerman M, Geesin JC: Development of a three-dimensional transmigration assay for testing cell--polymer interactions for tissue engineering applications. Tissue Eng. 2001, 7: 267-277. 10.1089/10763270152044134.CrossRefPubMed Gosiewska A, Rezania A, Dhanaraj S, Vyakarnam M, Zhou J, Burtis D, Brown L, Kong W, Zimmerman M, Geesin JC: Development of a three-dimensional transmigration assay for testing cell--polymer interactions for tissue engineering applications. Tissue Eng. 2001, 7: 267-277. 10.1089/10763270152044134.CrossRefPubMed
65.
go back to reference Hunziker EB, Rosenberg LC: Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am. 1996, 78: 721-733.PubMed Hunziker EB, Rosenberg LC: Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am. 1996, 78: 721-733.PubMed
66.
go back to reference Winnemoller M, Schmidt G, Kresse H: Influence of decorin on fibroblast adhesion to fibronectin. Eur J Cell Biol. 1991, 54: 10-17.PubMed Winnemoller M, Schmidt G, Kresse H: Influence of decorin on fibroblast adhesion to fibronectin. Eur J Cell Biol. 1991, 54: 10-17.PubMed
67.
go back to reference Davies LC, Blain EJ, Caterson B, Duance VC: Chondroitin sulphate impedes the migration of a sub-population of articular cartilage chondrocytes. Osteoarthritis Cartilage. 2008, 16: 855-864. 10.1016/j.joca.2007.12.005.CrossRefPubMed Davies LC, Blain EJ, Caterson B, Duance VC: Chondroitin sulphate impedes the migration of a sub-population of articular cartilage chondrocytes. Osteoarthritis Cartilage. 2008, 16: 855-864. 10.1016/j.joca.2007.12.005.CrossRefPubMed
68.
go back to reference Bruns J, Kersten P, Silbermann M, Lierse W: Cartilage-flow phenomenon and evidence for it in perichondrial grafting. Arch Orthop Trauma Surg. 1997, 116: 66-73. 10.1007/BF00434104.CrossRefPubMed Bruns J, Kersten P, Silbermann M, Lierse W: Cartilage-flow phenomenon and evidence for it in perichondrial grafting. Arch Orthop Trauma Surg. 1997, 116: 66-73. 10.1007/BF00434104.CrossRefPubMed
69.
go back to reference Calandruccio RA, Gilmer WS: Proliferation, regeneration, and repair of articular cartilage of immature animals. J Bone Joint Surg Am. 1962, 44: 431-455. Calandruccio RA, Gilmer WS: Proliferation, regeneration, and repair of articular cartilage of immature animals. J Bone Joint Surg Am. 1962, 44: 431-455.
70.
go back to reference Buckwalter JA, Mankin HJ: Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998, 47: 487-504.PubMed Buckwalter JA, Mankin HJ: Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998, 47: 487-504.PubMed
71.
go back to reference Martinek V: Anatomy and pathophysiology of articular cartilage. Deutsche Zeit Sportmed. 2003, 54: 166-170. Martinek V: Anatomy and pathophysiology of articular cartilage. Deutsche Zeit Sportmed. 2003, 54: 166-170.
72.
go back to reference Darling EM, Athanasiou KA: Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res. 2005, 23: 425-432. 10.1016/j.orthres.2004.08.008.CrossRefPubMed Darling EM, Athanasiou KA: Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res. 2005, 23: 425-432. 10.1016/j.orthres.2004.08.008.CrossRefPubMed
73.
go back to reference Kaps C, Fuchs S, Endres M, Vetterlein S, Krenn V, Perka C, Sittinger M: Molecular characterization of tissue-engineered articular chondrocyte transplants based on resorbable polymer fleece. Orthopade. 2004, 33: 76-85. 10.1007/s00132-003-0505-3.CrossRefPubMed Kaps C, Fuchs S, Endres M, Vetterlein S, Krenn V, Perka C, Sittinger M: Molecular characterization of tissue-engineered articular chondrocyte transplants based on resorbable polymer fleece. Orthopade. 2004, 33: 76-85. 10.1007/s00132-003-0505-3.CrossRefPubMed
74.
go back to reference Velikonja NK, Wozniak G, Malicev E, Knezevic M, Jeras M: Protein synthesis of human articular chondrocytes cultured in vitro for autologous transplantation. Pflugers Arch. 2001, 442: R169-R170. 10.1007/s004240100012.CrossRefPubMed Velikonja NK, Wozniak G, Malicev E, Knezevic M, Jeras M: Protein synthesis of human articular chondrocytes cultured in vitro for autologous transplantation. Pflugers Arch. 2001, 442: R169-R170. 10.1007/s004240100012.CrossRefPubMed
75.
go back to reference Anders JO, Mollenhauer J, Beberhold A, Kinne RW, Venbrocks RA: Gelatin-based haemostyptic Spongostan as a possible three-dimensional scaffold for a chondrocyte matrix? An experimental study with bovine chondrocytes. J Bone Joint Surg Br. 2009, 91B: 409-416.CrossRef Anders JO, Mollenhauer J, Beberhold A, Kinne RW, Venbrocks RA: Gelatin-based haemostyptic Spongostan as a possible three-dimensional scaffold for a chondrocyte matrix? An experimental study with bovine chondrocytes. J Bone Joint Surg Br. 2009, 91B: 409-416.CrossRef
76.
go back to reference Goldberg AJ, Lee DA, Bader DL, Bentley G: Autologous chondrocyte implantation. Culture in a TGF-beta-containing medium enhances the re-expression of a chondrocytic phenotype in passaged human chondrocytes in pellet culture. J Bone Joint Surg Br. 2005, 87: 128-134.CrossRefPubMed Goldberg AJ, Lee DA, Bader DL, Bentley G: Autologous chondrocyte implantation. Culture in a TGF-beta-containing medium enhances the re-expression of a chondrocytic phenotype in passaged human chondrocytes in pellet culture. J Bone Joint Surg Br. 2005, 87: 128-134.CrossRefPubMed
77.
go back to reference Getgood A, Brooks R, Fortier L, Rushton N: Articular cartilage tissue engineering: today's research, tomorrow's practice?. J Bone Joint Surg Br. 2009, 91: 565-576.CrossRefPubMed Getgood A, Brooks R, Fortier L, Rushton N: Articular cartilage tissue engineering: today's research, tomorrow's practice?. J Bone Joint Surg Br. 2009, 91: 565-576.CrossRefPubMed
78.
go back to reference Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noel D: Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol. 2009, 27: 307-314. 10.1016/j.tibtech.2009.02.005.CrossRefPubMed Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noel D: Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol. 2009, 27: 307-314. 10.1016/j.tibtech.2009.02.005.CrossRefPubMed
79.
go back to reference Stoddart MJ, Grad S, Eglin D, Alini M: Cells and biomaterials in cartilage tissue engineering. Regen Med. 2009, 4: 81-98. 10.2217/17460751.4.1.81.CrossRefPubMed Stoddart MJ, Grad S, Eglin D, Alini M: Cells and biomaterials in cartilage tissue engineering. Regen Med. 2009, 4: 81-98. 10.2217/17460751.4.1.81.CrossRefPubMed
80.
go back to reference Jones AR, Flannery CR: Bioregulation of lubricin expression by growth factors and cytokines. Eur Cell Mater. 2007, 13: 40-45.PubMed Jones AR, Flannery CR: Bioregulation of lubricin expression by growth factors and cytokines. Eur Cell Mater. 2007, 13: 40-45.PubMed
81.
go back to reference Khalafi A, Schmid TM, Neu C, Reddi AH: Increased accumulation of superficial zone protein (SZP) in articular cartilage in response to bone morphogenetic protein-7 and growth factors. J Orthop Res. 2007, 25: 293-303. 10.1002/jor.20329.CrossRefPubMed Khalafi A, Schmid TM, Neu C, Reddi AH: Increased accumulation of superficial zone protein (SZP) in articular cartilage in response to bone morphogenetic protein-7 and growth factors. J Orthop Res. 2007, 25: 293-303. 10.1002/jor.20329.CrossRefPubMed
82.
go back to reference Schmidt TA, Gastelum NS, Han EH, Nugent-Derfus GE, Schumacher BL, Sah RL: Differential regulation of proteoglycan 4 metabolism in cartilage by IL-1 alpha, IGF-1, and TGF-beta 1. Osteoarthritis Cartilage. 2008, 16: 90-97. 10.1016/j.joca.2007.05.009.CrossRefPubMed Schmidt TA, Gastelum NS, Han EH, Nugent-Derfus GE, Schumacher BL, Sah RL: Differential regulation of proteoglycan 4 metabolism in cartilage by IL-1 alpha, IGF-1, and TGF-beta 1. Osteoarthritis Cartilage. 2008, 16: 90-97. 10.1016/j.joca.2007.05.009.CrossRefPubMed
83.
go back to reference Hui W, Rowan AD, Cawston T: Modulation of the expression of matrix metalloproteinase and tissue inhibitors of metalloproteinases by TGF-beta1 and IGF-1 in primary human articular and bovine nasal chondrocytes stimulated with TNF-alpha. Cytokine. 2001, 16: 31-35. 10.1006/cyto.2001.0950.CrossRefPubMed Hui W, Rowan AD, Cawston T: Modulation of the expression of matrix metalloproteinase and tissue inhibitors of metalloproteinases by TGF-beta1 and IGF-1 in primary human articular and bovine nasal chondrocytes stimulated with TNF-alpha. Cytokine. 2001, 16: 31-35. 10.1006/cyto.2001.0950.CrossRefPubMed
84.
go back to reference Qureshi HY, Sylvester J, El Mabrouk M, Zafarullah M: TGF-beta-induced expression of tissue inhibitor of metalloproteinases-3 gene in chondrocytes is mediated by extracellular signal-regulated kinase pathway and Sp1 transcription factor. J Cell Physiol. 2005, 203: 345-352. 10.1002/jcp.20228.CrossRefPubMed Qureshi HY, Sylvester J, El Mabrouk M, Zafarullah M: TGF-beta-induced expression of tissue inhibitor of metalloproteinases-3 gene in chondrocytes is mediated by extracellular signal-regulated kinase pathway and Sp1 transcription factor. J Cell Physiol. 2005, 203: 345-352. 10.1002/jcp.20228.CrossRefPubMed
85.
go back to reference Su S, DiBattista JA, Sun Y, Li WQ, Zafarullah M: Up-regulation of tissue inhibitor of metalloproteinases-3 gene expression by TGF-beta in articular chondrocytes is mediated by serine/threonine and tyrosine kinases. J Cell Biochem. 1998, 70: 517-527. 10.1002/(SICI)1097-4644(19980915)70:4<517::AID-JCB8>3.0.CO;2-M.CrossRefPubMed Su S, DiBattista JA, Sun Y, Li WQ, Zafarullah M: Up-regulation of tissue inhibitor of metalloproteinases-3 gene expression by TGF-beta in articular chondrocytes is mediated by serine/threonine and tyrosine kinases. J Cell Biochem. 1998, 70: 517-527. 10.1002/(SICI)1097-4644(19980915)70:4<517::AID-JCB8>3.0.CO;2-M.CrossRefPubMed
86.
go back to reference Enders JT, Otto TJ, Peters HC, Wu J, Hardouin S, Moed BR, Zhang Z: A model for studying human articular cartilage integration in vitro. J Biomed Mater Res A. 2010, 94: 509-514.PubMed Enders JT, Otto TJ, Peters HC, Wu J, Hardouin S, Moed BR, Zhang Z: A model for studying human articular cartilage integration in vitro. J Biomed Mater Res A. 2010, 94: 509-514.PubMed
87.
go back to reference Steinert AF, Ghivizzani SC, Rethwilm A, Tuan RS, Evans CH, Noth U: Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res Ther. 2007, 9: 213-227. 10.1186/ar2195.PubMedCentralCrossRefPubMed Steinert AF, Ghivizzani SC, Rethwilm A, Tuan RS, Evans CH, Noth U: Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res Ther. 2007, 9: 213-227. 10.1186/ar2195.PubMedCentralCrossRefPubMed
88.
go back to reference Esguerra M, Fink H, Laschke MW, Jeppsson A, Delbro D, Gatenholm P, Menger MD, Risberg B: Intravital fluorescent microscopic evaluation of bacterial cellulose as scaffold for vascular grafts. J Biomed Mater Res A. 2010, 93: 140-149.PubMed Esguerra M, Fink H, Laschke MW, Jeppsson A, Delbro D, Gatenholm P, Menger MD, Risberg B: Intravital fluorescent microscopic evaluation of bacterial cellulose as scaffold for vascular grafts. J Biomed Mater Res A. 2010, 93: 140-149.PubMed
89.
go back to reference Moreira S, Silva NB, Almeida-Lima J, Rocha HA, Medeiros SR, Alves C, Gama FM: BC nanofibres: in vitro study of genotoxicity and cell proliferation. Toxicol Lett. 2009, 189: 235-241. 10.1016/j.toxlet.2009.06.849.CrossRefPubMed Moreira S, Silva NB, Almeida-Lima J, Rocha HA, Medeiros SR, Alves C, Gama FM: BC nanofibres: in vitro study of genotoxicity and cell proliferation. Toxicol Lett. 2009, 189: 235-241. 10.1016/j.toxlet.2009.06.849.CrossRefPubMed
90.
go back to reference Zahedmanesh H, Mackle JN, Sellborn A, Drotz K, Bodin A, Gatenholm P, Lally C: Bacterial cellulose as a potential vascular graft: mechanical characterization and constitutive model development. J Biomed Mater Res B Appl Biomater. 2011, 97: 105-113.CrossRefPubMed Zahedmanesh H, Mackle JN, Sellborn A, Drotz K, Bodin A, Gatenholm P, Lally C: Bacterial cellulose as a potential vascular graft: mechanical characterization and constitutive model development. J Biomed Mater Res B Appl Biomater. 2011, 97: 105-113.CrossRefPubMed
91.
go back to reference Hua N, Sun J: Body distribution of poly(D,L-lactide-co-glycolide) copolymer degradation products in rats. J Mater Sci Mater Med. 2008, 19: 3243-3248. 10.1007/s10856-008-3460-z.CrossRefPubMed Hua N, Sun J: Body distribution of poly(D,L-lactide-co-glycolide) copolymer degradation products in rats. J Mater Sci Mater Med. 2008, 19: 3243-3248. 10.1007/s10856-008-3460-z.CrossRefPubMed
92.
go back to reference Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antonio RV, Porto LM: Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mat Sci Eng C-Bio S. 2008, 28: 549-554. 10.1016/j.msec.2007.11.011.CrossRef Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antonio RV, Porto LM: Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mat Sci Eng C-Bio S. 2008, 28: 549-554. 10.1016/j.msec.2007.11.011.CrossRef
Metadata
Title
A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose
Publication date
01-06-2013
Published in
Arthritis Research & Therapy / Issue 3/2013
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/ar4231

Other articles of this Issue 3/2013

Arthritis Research & Therapy 3/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine