Skip to main content
Top
Published in: Arthritis Research & Therapy 5/2009

Open Access 01-10-2009 | Research article

Are CD4+CD25-Foxp3+cells in untreated new-onset lupus patients regulatory T cells?

Authors: Hua-xia Yang, Wen Zhang, Li-dan Zhao, Yang Li, Feng-chun Zhang, Fu-lin Tang, Wei He, Xuan Zhang

Published in: Arthritis Research & Therapy | Issue 5/2009

Login to get access

Abstract

Introduction

Our previous study has reported that, in patients with untreated new-onset lupus (UNOL), there was an abnormal increase in the number of CD4+CD25-Foxp3+ T cells that correlated with disease activity and significantly decreased after treatment. However, little is known about the nature of this cell entity. The aim of this study was to explore the nature of abnormally increased CD4+CD25-Foxp3+ T cells in UNOL patients.

Methods

The expressions of surface (CD4, CD25, CD127, chemokine receptor 4 [CCR4], glucocorticoid-induced tumor necrosis factor receptor [GITR], and cytotoxic T lymphocyte-associated antigen 4 [CTLA-4]) and intracellular (Foxp3) molecules as well as cytokine synthesis of peripheral blood mononuclear cells from 22 UNOL patients were analyzed by flow cytometry. The proliferative and suppressive capacities of different T-cell subgroups from UNOL patients were also assessed.

Results

In UNOL patients, the percentages of CD127low/- in CD25high, CD25low, and CD25- subpopulations of CD4+Foxp3+ T cells were 93.79% ± 3.48%, 93.66% ± 2.31%, and 91.98% ± 2.14%, respectively (P > 0.05), whereas the expressions of Foxp3 showed significant differences in CD25high (91.38% ± 2.57%), CD25low (71.89% ± 3.31%), and CD25- (9.02% ± 2.21%) subpopulations of CD4+CD127low/- T cells (P < 0.01). The expressions of surface CCR4, GITR, and CTLA-4 on CD4+CD25-Foxp3+ T cells were significantly less than CD4+CD25+Foxp3+ T cells (P < 0.05). Moreover, unlike CD4+CD25+Foxp3+ T cells, CD4+CD25-Foxp3+ T cells also synthesized interferon-gamma, interleukin (IL)-4, IL-2, and IL-17 (P < 0.05), though less than CD4+CD25+Foxp3- T cells. The suppressive capacity was most prominent in CD4+CD25highCD127low/-, followed by CD4+CD25lowCD127low/-. CD4+CD25-CD127- T cells showed the least suppressive capacity, which was similar to the effector T cells.

Conclusions

CD4+CD25-Foxp3+ T cells in UNOL patients are different from regulatory T cells, both phenotypically and functionally. CD127 is not an appropriate surface marker for intracellular Foxp3 in CD4+CD25- T cells.
Appendix
Available only for authorised users
Literature
2.
go back to reference Zhang B, Zhang X, Tang FL, Zhu LP, Liu Y, Lipsky PE: Clinical significance of increased CD4+CD25-Foxp3+ T cells in patients with new-onset systemic lupus erythematosus. Ann Rheum Dis. 2008, 67: 1037-1040. 10.1136/ard.2007.083543.CrossRefPubMed Zhang B, Zhang X, Tang FL, Zhu LP, Liu Y, Lipsky PE: Clinical significance of increased CD4+CD25-Foxp3+ T cells in patients with new-onset systemic lupus erythematosus. Ann Rheum Dis. 2008, 67: 1037-1040. 10.1136/ard.2007.083543.CrossRefPubMed
3.
go back to reference Kramer S, Schimpl A, Hunig T: Immunopathology of interleukin (IL) 2-deficient mice: thymus dependence and suppression by thymus-dependent cells with an intact IL-2 gene. J Exp Med. 1995, 182: 1769-1776. 10.1084/jem.182.6.1769.CrossRefPubMed Kramer S, Schimpl A, Hunig T: Immunopathology of interleukin (IL) 2-deficient mice: thymus dependence and suppression by thymus-dependent cells with an intact IL-2 gene. J Exp Med. 1995, 182: 1769-1776. 10.1084/jem.182.6.1769.CrossRefPubMed
4.
go back to reference Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S: Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002, 3: 135-142. 10.1038/ni759.CrossRefPubMed Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S: Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002, 3: 135-142. 10.1038/ni759.CrossRefPubMed
5.
go back to reference McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, Byrne MC: CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 2002, 16: 311-323. 10.1016/S1074-7613(02)00280-7.CrossRefPubMed McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, Byrne MC: CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 2002, 16: 311-323. 10.1016/S1074-7613(02)00280-7.CrossRefPubMed
6.
go back to reference Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S: Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000, 192: 303-310. 10.1084/jem.192.2.303.PubMedCentralCrossRefPubMed Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S: Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000, 192: 303-310. 10.1084/jem.192.2.303.PubMedCentralCrossRefPubMed
7.
go back to reference Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004, 10: 942-949. 10.1038/nm1093.CrossRefPubMed Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004, 10: 942-949. 10.1038/nm1093.CrossRefPubMed
8.
go back to reference Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F, D'Ambrosio D: Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med. 2001, 194: 847-853. 10.1084/jem.194.6.847.PubMedCentralCrossRefPubMed Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F, D'Ambrosio D: Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med. 2001, 194: 847-853. 10.1084/jem.194.6.847.PubMedCentralCrossRefPubMed
9.
go back to reference Imai T, Nagira M, Takagi S, Kakizaki M, Nishimura M, Wang J, Gray PW, Matsushima K, Yoshie O: Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int Immunol. 1999, 11: 81-88. 10.1093/intimm/11.1.81.CrossRefPubMed Imai T, Nagira M, Takagi S, Kakizaki M, Nishimura M, Wang J, Gray PW, Matsushima K, Yoshie O: Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int Immunol. 1999, 11: 81-88. 10.1093/intimm/11.1.81.CrossRefPubMed
10.
go back to reference Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S, Maeda M, Onodera M, Uchiyama T, Fujii S, Sakaguchi S: Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol. 2004, 16: 1643-1656. 10.1093/intimm/dxh165.CrossRefPubMed Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S, Maeda M, Onodera M, Uchiyama T, Fujii S, Sakaguchi S: Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol. 2004, 16: 1643-1656. 10.1093/intimm/dxh165.CrossRefPubMed
11.
go back to reference Bonelli M, Savitskaya A, Steiner CW, Rath E, Smolen JS, Scheinecker C: Phenotypic and functional analysis of CD4+ CD25- Foxp3+ T cells in patients with systemic lupus erythematosus. J Immunol. 2009, 182: 1689-1695.CrossRefPubMed Bonelli M, Savitskaya A, Steiner CW, Rath E, Smolen JS, Scheinecker C: Phenotypic and functional analysis of CD4+ CD25- Foxp3+ T cells in patients with systemic lupus erythematosus. J Immunol. 2009, 182: 1689-1695.CrossRefPubMed
12.
go back to reference Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, Roncarolo MG, Levings MK: Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol. 2007, 19: 345-354. 10.1093/intimm/dxm014.CrossRefPubMed Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, Roncarolo MG, Levings MK: Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol. 2007, 19: 345-354. 10.1093/intimm/dxm014.CrossRefPubMed
13.
go back to reference Bonelli M, von Dalwigk K, Savitskaya A, Smolen JS, Scheinecker C: Foxp3 expression in CD4+ T cells of patients with systemic lupus erythematosus: a comparative phenotypic analysis. Ann Rheum Dis. 2008, 67: 664-671. 10.1136/ard.2007.074690.CrossRefPubMed Bonelli M, von Dalwigk K, Savitskaya A, Smolen JS, Scheinecker C: Foxp3 expression in CD4+ T cells of patients with systemic lupus erythematosus: a comparative phenotypic analysis. Ann Rheum Dis. 2008, 67: 664-671. 10.1136/ard.2007.074690.CrossRefPubMed
14.
go back to reference Kang J, Der SD: Cytokine functions in the formative stages of a lymphocyte's life. Curr Opin Immunol. 2004, 16: 180-190. 10.1016/j.coi.2004.02.002.CrossRefPubMed Kang J, Der SD: Cytokine functions in the formative stages of a lymphocyte's life. Curr Opin Immunol. 2004, 16: 180-190. 10.1016/j.coi.2004.02.002.CrossRefPubMed
15.
go back to reference Palmer MJ, Mahajan VS, Trajman LC, Irvine DJ, Lauffenburger DA, Chen J: Interleukin-7 receptor signaling network: an integrated systems perspective. Cell Mol Immunol. 2008, 5: 79-89. 10.1038/cmi.2008.10.PubMedCentralCrossRefPubMed Palmer MJ, Mahajan VS, Trajman LC, Irvine DJ, Lauffenburger DA, Chen J: Interleukin-7 receptor signaling network: an integrated systems perspective. Cell Mol Immunol. 2008, 5: 79-89. 10.1038/cmi.2008.10.PubMedCentralCrossRefPubMed
16.
go back to reference Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW: Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity. 1995, 3: 521-530. 10.1016/1074-7613(95)90180-9.CrossRefPubMed Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW: Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity. 1995, 3: 521-530. 10.1016/1074-7613(95)90180-9.CrossRefPubMed
Metadata
Title
Are CD4+CD25-Foxp3+cells in untreated new-onset lupus patients regulatory T cells?
Authors
Hua-xia Yang
Wen Zhang
Li-dan Zhao
Yang Li
Feng-chun Zhang
Fu-lin Tang
Wei He
Xuan Zhang
Publication date
01-10-2009
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 5/2009
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/ar2829

Other articles of this Issue 5/2009

Arthritis Research & Therapy 5/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine