Skip to main content
Top
Published in: Alzheimer's Research & Therapy 4/2012

01-08-2012 | Review

Measuring clinical progression in MCI and pre-MCI populations: enrichment and optimizing clinical outcomes over time

Author: Suzanne B Hendrix

Published in: Alzheimer's Research & Therapy | Issue 4/2012

Login to get access

Abstract

Recent biomarker research has improved the identification of individuals with very early stages of Alzheimer's disease (AD) and has demonstrated that biomarkers are sensitive for measuring progression in the pre-dementia or mild cognitive impairment (MCI) stage and even pre-symptomatic or pre-MCI stage of AD. Because there are no validated biomarkers in AD, it is important to seek out clinical outcomes that are also sensitive for measuring progression in these very early stages of disease. Clinical outcomes are more subjective and more affected by measurement error than biomarkers but represent the core aspects of the disease and are critical for validation of biomarkers and for evaluation of clinical relevance. Identification of individuals with pre-MCI stages of AD will need to continue to rely on biomarkers, but the identification of individuals with MCI who will progress to AD can be achieved with biomarkers or clinical criteria. Although standard clinical outcomes have been shown to be less sensitive to progression than biomarker outcomes in MCI and pre-MCI populations, non-standard scoring has improved the performance of the Alzheimer's Disease Assessment Scale cognitive subscale, making it more sensitive to progression. Neuropsychological cognitive testing items are optimal for measuring progression in pre-MCI populations, and current research is exploring the best ways to combine these items into a composite cognitive score with maximum responsiveness. In an MCI stage, cognitive, functional, and global items all change, and the best single composite score for measuring progression may involve all of these aspects of the disease. The best chance of success in demonstrating treatment effects in clinical trials will be achieved in a well-defined pre-MCI or MCI population and with an outcome that tracks well with clinical progression over time and with time. A partial least squares model can be used to identify these optimal weighted combinations.
Literature
1.
go back to reference Brooks LG, Loewenstein DA: Assessing the progression of mild cognitive impairment to Alzheimer's disease: current trends and future directions. Alzheimers Res Ther. 2010, 2: 28-PubMedCentralPubMed Brooks LG, Loewenstein DA: Assessing the progression of mild cognitive impairment to Alzheimer's disease: current trends and future directions. Alzheimers Res Ther. 2010, 2: 28-PubMedCentralPubMed
2.
go back to reference Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011, 7: 280-292. 10.1016/j.jalz.2011.03.003.PubMedCentralCrossRefPubMed Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011, 7: 280-292. 10.1016/j.jalz.2011.03.003.PubMedCentralCrossRefPubMed
3.
go back to reference Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Liu E, Morris JC, Petersen RC, Saykin AJ, Schmidt ME, Shaw L, Siuciak JA, Soares H, Toga AW, Trojanowski JQ: The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement. 2012, 8 (1 Suppl): S1-S68.PubMedCentralCrossRefPubMed Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Liu E, Morris JC, Petersen RC, Saykin AJ, Schmidt ME, Shaw L, Siuciak JA, Soares H, Toga AW, Trojanowski JQ: The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement. 2012, 8 (1 Suppl): S1-S68.PubMedCentralCrossRefPubMed
4.
go back to reference Cummings J: Biomarkers in Alzheimer's disease drug development. Alzheimers Dement. 2011, 7: e13-44.CrossRefPubMed Cummings J: Biomarkers in Alzheimer's disease drug development. Alzheimers Dement. 2011, 7: e13-44.CrossRefPubMed
5.
go back to reference Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P, Dean R, Siemers E, Potter W, Lee VM, Trojanowski JQ, Alzheimer's Disease Neuroimaging Initiative: Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol. 2009, 65: 403-413. 10.1002/ana.21610.PubMedCentralCrossRefPubMed Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P, Dean R, Siemers E, Potter W, Lee VM, Trojanowski JQ, Alzheimer's Disease Neuroimaging Initiative: Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol. 2009, 65: 403-413. 10.1002/ana.21610.PubMedCentralCrossRefPubMed
6.
go back to reference Ho AJ, Hua X, Lee S, Leow AD, Yanovsky I, Gutman B, Dinov ID, Leporé N, Stein JL, Toga AW, Jack CR, Bernstein MA, Reiman EM, Harvey DJ, Kornak J, Schuff N, Alexander GE, Weiner MW, Thompson PM, Alzheimer's Disease Neuroimaging Initiative: Comparing 3 T and 1.5 T MRI for tracking Alzheimer's disease progression with tensor-based morphometry. Hum Brain Mapp. 2010, 31: 499-514. 10.1002/hbm.20882.PubMedCentralCrossRefPubMed Ho AJ, Hua X, Lee S, Leow AD, Yanovsky I, Gutman B, Dinov ID, Leporé N, Stein JL, Toga AW, Jack CR, Bernstein MA, Reiman EM, Harvey DJ, Kornak J, Schuff N, Alexander GE, Weiner MW, Thompson PM, Alzheimer's Disease Neuroimaging Initiative: Comparing 3 T and 1.5 T MRI for tracking Alzheimer's disease progression with tensor-based morphometry. Hum Brain Mapp. 2010, 31: 499-514. 10.1002/hbm.20882.PubMedCentralCrossRefPubMed
7.
go back to reference Hill D: Neuroimaging to assess safety and efficacy of AD therapies. Expert Opin Investig Drugs. 2010, 19: 23-26. 10.1517/13543780903381320.CrossRefPubMed Hill D: Neuroimaging to assess safety and efficacy of AD therapies. Expert Opin Investig Drugs. 2010, 19: 23-26. 10.1517/13543780903381320.CrossRefPubMed
8.
go back to reference Llano DA, Laforet G, Devanarayan V, Alzheimer’s Disease Neuroimaging Initiative: Derivation of a new ADAS-cog composite using tree-based multivariate analysis: prediction of conversion from mild cognitive impairment to Alzheimer disease. Alzheimer Dis Assoc Disord. 2011, 25: 73-84. 10.1097/WAD.0b013e3181f5b8d8.CrossRefPubMed Llano DA, Laforet G, Devanarayan V, Alzheimer’s Disease Neuroimaging Initiative: Derivation of a new ADAS-cog composite using tree-based multivariate analysis: prediction of conversion from mild cognitive impairment to Alzheimer disease. Alzheimer Dis Assoc Disord. 2011, 25: 73-84. 10.1097/WAD.0b013e3181f5b8d8.CrossRefPubMed
9.
go back to reference Fleisher AS, Sun S, Taylor C, Ward CP, Gamst AC, Petersen RC, Jack CR, Aisen PS, Thal LJ: Volumetric MRI vs clinical predictors of Alzheimer disease in mild cognitive impairment. Neurology. 2008, 70: 191-199. 10.1212/01.wnl.0000287091.57376.65.CrossRefPubMed Fleisher AS, Sun S, Taylor C, Ward CP, Gamst AC, Petersen RC, Jack CR, Aisen PS, Thal LJ: Volumetric MRI vs clinical predictors of Alzheimer disease in mild cognitive impairment. Neurology. 2008, 70: 191-199. 10.1212/01.wnl.0000287091.57376.65.CrossRefPubMed
10.
go back to reference Jack CR, Petersen RC, Xu YC, O'Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E: Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology. 1999, 52: 1397-1407. 10.1212/WNL.52.7.1397.PubMedCentralCrossRefPubMed Jack CR, Petersen RC, Xu YC, O'Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E: Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology. 1999, 52: 1397-1407. 10.1212/WNL.52.7.1397.PubMedCentralCrossRefPubMed
11.
go back to reference Schuff N, Woerner N, Boreta L, Kornfield T, Shaw LM, Trojanowski JQ, Thompson PM, Jack CR, Weiner MW, Alzheimer's Disease Neuroimaging Initiative: MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers. Brain. 2009, 132 (Pt 4): 1067-1077.PubMedCentralPubMed Schuff N, Woerner N, Boreta L, Kornfield T, Shaw LM, Trojanowski JQ, Thompson PM, Jack CR, Weiner MW, Alzheimer's Disease Neuroimaging Initiative: MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers. Brain. 2009, 132 (Pt 4): 1067-1077.PubMedCentralPubMed
12.
go back to reference Holland D, Brewer JB, Hagler DJ, Fennema-Notestine C, Dale AM, Alzheimer's Disease Neuroimaging Initiative: Subregional neuroanatomical change as a biomarker for Alzheimer's disease. Proc Natl Acad Sci USA. 2009, 106: 20954-20959. 10.1073/pnas.0906053106.PubMedCentralCrossRefPubMed Holland D, Brewer JB, Hagler DJ, Fennema-Notestine C, Dale AM, Alzheimer's Disease Neuroimaging Initiative: Subregional neuroanatomical change as a biomarker for Alzheimer's disease. Proc Natl Acad Sci USA. 2009, 106: 20954-20959. 10.1073/pnas.0906053106.PubMedCentralCrossRefPubMed
13.
go back to reference Beckett LA, Harvey DJ, Gamst A, Donohue M, Kornak J, Zhang H, Kuo JH, Alzheimer's Disease Neuroimaging Initiative: The Alzheimer's Disease Neuroimaging Initiative: annual change in biomarkers and clinical outcomes. Alzheimers Dement. 2010, 6: 257-264. 10.1016/j.jalz.2010.03.002.PubMedCentralCrossRefPubMed Beckett LA, Harvey DJ, Gamst A, Donohue M, Kornak J, Zhang H, Kuo JH, Alzheimer's Disease Neuroimaging Initiative: The Alzheimer's Disease Neuroimaging Initiative: annual change in biomarkers and clinical outcomes. Alzheimers Dement. 2010, 6: 257-264. 10.1016/j.jalz.2010.03.002.PubMedCentralCrossRefPubMed
14.
go back to reference Husted JA, Cook RJ, Farewell VT, Gladman DD: Methods for assessing responsiveness: a critical review and recommendations. J Clin Epidemiol. 2000, 53: 459-468. 10.1016/S0895-4356(99)00206-1.CrossRefPubMed Husted JA, Cook RJ, Farewell VT, Gladman DD: Methods for assessing responsiveness: a critical review and recommendations. J Clin Epidemiol. 2000, 53: 459-468. 10.1016/S0895-4356(99)00206-1.CrossRefPubMed
15.
go back to reference Coley N, Andrieu S, Jaros M, Weiner M, Cedarbaum J, Vellas B: Suitability of the Clinical Dementia Rating-Sum of Boxes as a single primary endpoint for Alzheimer's disease trials. Alzheimers Dement. 2011, 7: 602-610. 10.1016/j.jalz.2011.01.005. e2CrossRefPubMed Coley N, Andrieu S, Jaros M, Weiner M, Cedarbaum J, Vellas B: Suitability of the Clinical Dementia Rating-Sum of Boxes as a single primary endpoint for Alzheimer's disease trials. Alzheimers Dement. 2011, 7: 602-610. 10.1016/j.jalz.2011.01.005. e2CrossRefPubMed
16.
go back to reference Grober E, Ocepek-Welikson K, Teresi JA: The Free and Cued Selective Reminding Test: evidence of psychometric adequacy. Psychology Science Quarterly. 2009, 51: 266-282. Grober E, Ocepek-Welikson K, Teresi JA: The Free and Cued Selective Reminding Test: evidence of psychometric adequacy. Psychology Science Quarterly. 2009, 51: 266-282.
17.
go back to reference Rosen WG, Mohs RC, Davis KL: A new rating scale for Alzheimer's disease. Am J Psychiatry. 1984, 141: 1356-1364.CrossRefPubMed Rosen WG, Mohs RC, Davis KL: A new rating scale for Alzheimer's disease. Am J Psychiatry. 1984, 141: 1356-1364.CrossRefPubMed
18.
go back to reference Hendrix SB: Requiring an amyloid-β1-42 biomarker may improve the efficiency of a study, and simulations may help in planning studies. Alzheimers Res Ther. 2011, 3: 10-10.1186/alzrt69.PubMedCentralCrossRefPubMed Hendrix SB: Requiring an amyloid-β1-42 biomarker may improve the efficiency of a study, and simulations may help in planning studies. Alzheimers Res Ther. 2011, 3: 10-10.1186/alzrt69.PubMedCentralCrossRefPubMed
19.
go back to reference Shankle R, Atri A, Hendrix S: Improving measurement methodology to detect treatment effect in clinical trials. J Nutr Health Aging. 2011, 15 (Suppl 1): s3. Abstract Shankle R, Atri A, Hendrix S: Improving measurement methodology to detect treatment effect in clinical trials. J Nutr Health Aging. 2011, 15 (Suppl 1): s3. Abstract
20.
go back to reference Cano SJ, Posner HB, Moline ML, Hurt SW, Swartz J, Hsu T, Hobart JC: The ADAS-cog in Alzheimer's disease clinical trials: psychometric evaluation of the sum and its parts. J Neurol Neurosurg Psychiatry. 2010, 81: 1363-1368. 10.1136/jnnp.2009.204008.CrossRefPubMed Cano SJ, Posner HB, Moline ML, Hurt SW, Swartz J, Hsu T, Hobart JC: The ADAS-cog in Alzheimer's disease clinical trials: psychometric evaluation of the sum and its parts. J Neurol Neurosurg Psychiatry. 2010, 81: 1363-1368. 10.1136/jnnp.2009.204008.CrossRefPubMed
21.
go back to reference Donohue MC, Gamst AC, Thomas RG, Xu R, Beckett L, Petersen RC, Weiner MW, Aisen P, Alzheimer's Disease Neuroimaging Initiative: The relative efficiency of time-to-threshold and rate of change in longitudinal data. Contemp Clin Trials. 2011, 32: 685-693. 10.1016/j.cct.2011.04.007.PubMedCentralCrossRefPubMed Donohue MC, Gamst AC, Thomas RG, Xu R, Beckett L, Petersen RC, Weiner MW, Aisen P, Alzheimer's Disease Neuroimaging Initiative: The relative efficiency of time-to-threshold and rate of change in longitudinal data. Contemp Clin Trials. 2011, 32: 685-693. 10.1016/j.cct.2011.04.007.PubMedCentralCrossRefPubMed
Metadata
Title
Measuring clinical progression in MCI and pre-MCI populations: enrichment and optimizing clinical outcomes over time
Author
Suzanne B Hendrix
Publication date
01-08-2012
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 4/2012
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/alzrt127

Other articles of this Issue 4/2012

Alzheimer's Research & Therapy 4/2012 Go to the issue