Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2013

Open Access 01-12-2013 | Research

Focal cortical dysplasias in autism spectrum disorders

Authors: Manuel F Casanova, Ayman S El-Baz, Shweta S Kamat, Brynn A Dombroski, Fahmi Khalifa, Ahmed Elnakib, Ahmed Soliman, Anita Allison-McNutt, Andrew E Switala

Published in: Acta Neuropathologica Communications | Issue 1/2013

Login to get access

Abstract

Background

Previous reports indicate the presence of histological abnormalities in the brains of individuals with autism spectrum disorders (ASD) suggestive of a dysplastic process. In this study we identified areas of abnormal cortical thinning within the cerebral cortex of ASD individuals and examined the same for neuronal morphometric abnormalities by using computerized image analysis.

Results

The study analyzed celloidin-embedded and Nissl-stained serial full coronal brain sections of 7 autistic (ADI-R diagnosed) and 7 age/sex-matched neurotypicals. Sections were scanned and manually segmented before implementing an algorithm using Laplace’s equation to measure cortical width. Identified areas were then subjected to analysis for neuronal morphometry. Results of our study indicate the presence within our ASD population of circumscribed foci of diminished cortical width that varied among affected individuals both in terms of location and overall size with the frontal lobes being particularly involved. Spatial statistic indicated a reduction in size of neurons within affected areas. Granulometry confirmed the presence of smaller pyramidal cells and suggested a concomitant reduction in the total number of interneurons.

Conclusions

The neuropathology is consistent with a diagnosis of focal cortical dysplasia (FCD). Results from the medical literature (e.g., heterotopias) and our own study suggest that the genesis of this cortical malformation seemingly resides in the heterochronic divisions of periventricular germinal cells. The end result is that during corticogenesis radially migrating neuroblasts (future pyramidal cells) are desynchronized in their development from those that follow a tangential route (interneurons). The possible presence of a pathological mechanism in common among different conditions expressing an autism-like phenotype argue in favor of considering ASD a “sequence” rather than a syndrome. Focal cortical dysplasias in ASD may serve to explain the high prevalence of seizures and sensory abnormalities in this patient population.
Appendix
Available only for authorised users
Literature
1.
go back to reference Casanova MF: The neuropathology of autism. Brain Pathol 2007, 17: 422–433. 10.1111/j.1750-3639.2007.00100.xCrossRefPubMed Casanova MF: The neuropathology of autism. Brain Pathol 2007, 17: 422–433. 10.1111/j.1750-3639.2007.00100.xCrossRefPubMed
2.
go back to reference Schmitz C, Rezaie P: The neuropathology of autism: where do we stand? Neuropathol Appl Neurobiol 2008, 34: 4–11.PubMed Schmitz C, Rezaie P: The neuropathology of autism: where do we stand? Neuropathol Appl Neurobiol 2008, 34: 4–11.PubMed
3.
go back to reference Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, Carter Barnes C, Pierce K: Neuron number and size in prefrontal cortex of children with autism. JAMA 2011, 306: 2001–2010. 10.1001/jama.2011.1638CrossRefPubMed Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, Carter Barnes C, Pierce K: Neuron number and size in prefrontal cortex of children with autism. JAMA 2011, 306: 2001–2010. 10.1001/jama.2011.1638CrossRefPubMed
4.
go back to reference Casanova MF: The minicolumnopathy of autism. In Neuroscience of autism spectrum disorders. Edited by: Hof PR, Buxbaum J. Amsterdam: Academic Press; 2012:327–334. Casanova MF: The minicolumnopathy of autism. In Neuroscience of autism spectrum disorders. Edited by: Hof PR, Buxbaum J. Amsterdam: Academic Press; 2012:327–334.
5.
go back to reference Bailey A, Luthert PJ, Dean AF, Harding B, Janota I, Montgomery M, Rutter M, Lantos PL: A clinicopathological study of autism. Brain 1998, 121: 889–905. 10.1093/brain/121.5.889CrossRefPubMed Bailey A, Luthert PJ, Dean AF, Harding B, Janota I, Montgomery M, Rutter M, Lantos PL: A clinicopathological study of autism. Brain 1998, 121: 889–905. 10.1093/brain/121.5.889CrossRefPubMed
6.
go back to reference Weidenheim KM, Goodman L, Dickson DW, Gillberg C, Rästam M, Rapin I: Etiology and pathophysiology of autistic behavior: clues from two cases with an unusual variant of neuroaxonal dystrophy. J Child Neurol 2001, 16: 809–819. 10.1177/08830738010160110601CrossRefPubMed Weidenheim KM, Goodman L, Dickson DW, Gillberg C, Rästam M, Rapin I: Etiology and pathophysiology of autistic behavior: clues from two cases with an unusual variant of neuroaxonal dystrophy. J Child Neurol 2001, 16: 809–819. 10.1177/08830738010160110601CrossRefPubMed
7.
go back to reference Kemper TL, Bauman ML: Neuropathology of infantile autism. J Neuropathol Exp Neurol 1998, 57: 645–652. 10.1097/00005072-199807000-00001CrossRefPubMed Kemper TL, Bauman ML: Neuropathology of infantile autism. J Neuropathol Exp Neurol 1998, 57: 645–652. 10.1097/00005072-199807000-00001CrossRefPubMed
8.
go back to reference Bauman ML, Kemper TL: Neuroanatomic observations of the brain in autism. In The neurobiology of autism. Edited by: Bauman ML, Kemper TL. Baltimore: Johns Hopkins University Press; 1994:119–145. Bauman ML, Kemper TL: Neuroanatomic observations of the brain in autism. In The neurobiology of autism. Edited by: Bauman ML, Kemper TL. Baltimore: Johns Hopkins University Press; 1994:119–145.
9.
go back to reference Mukaetova-Ladinska EB, Arnold H, Jaros E, Perry RH, Perry EK: Depletion of MAP2 expression and laminar cytoarchitectonic changes in dorsolateral prefrontal cortex in adult autistic individuals. Neuropathol Appl Neurobiol 2004, 30: 615–623. 10.1111/j.1365-2990.2004.00574.xCrossRefPubMed Mukaetova-Ladinska EB, Arnold H, Jaros E, Perry RH, Perry EK: Depletion of MAP2 expression and laminar cytoarchitectonic changes in dorsolateral prefrontal cortex in adult autistic individuals. Neuropathol Appl Neurobiol 2004, 30: 615–623. 10.1111/j.1365-2990.2004.00574.xCrossRefPubMed
10.
go back to reference Hutsler JJ, Love T, Zhang H: Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol Psychiatry 2007, 61: 449–457. 10.1016/j.biopsych.2006.01.015CrossRefPubMed Hutsler JJ, Love T, Zhang H: Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol Psychiatry 2007, 61: 449–457. 10.1016/j.biopsych.2006.01.015CrossRefPubMed
11.
go back to reference Avino TA, Hutsler JJ: Abnormal cell patterning at the cortical gray-white matter boundary in autism spectrum disorders. Brain Res 2010, 1360: 138–146.CrossRefPubMed Avino TA, Hutsler JJ: Abnormal cell patterning at the cortical gray-white matter boundary in autism spectrum disorders. Brain Res 2010, 1360: 138–146.CrossRefPubMed
12.
go back to reference Thom M, Sisodiya S, Harkness W, Scaravilli F: Microdysgenesis in temporal lobe epilepsy: a quantitative and immunohistochemical study of white matter neurones. Brain 2001, 124: 2299–2309. 10.1093/brain/124.11.2299CrossRefPubMed Thom M, Sisodiya S, Harkness W, Scaravilli F: Microdysgenesis in temporal lobe epilepsy: a quantitative and immunohistochemical study of white matter neurones. Brain 2001, 124: 2299–2309. 10.1093/brain/124.11.2299CrossRefPubMed
13.
go back to reference Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E, Ma SY, Chauhan A, Chauhan V, Wierzba Bobrowicz T, et al.: The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 2010, 119: 755–770. 10.1007/s00401-010-0655-4PubMedCentralCrossRefPubMed Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E, Ma SY, Chauhan A, Chauhan V, Wierzba Bobrowicz T, et al.: The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 2010, 119: 755–770. 10.1007/s00401-010-0655-4PubMedCentralCrossRefPubMed
14.
go back to reference Hutsler JJ, Avino TA: Sigmoid fits to locate and characterize cortical boundaries in human cerebral cortex. J Neurosci Methods 2012, 212: 242–246.CrossRefPubMed Hutsler JJ, Avino TA: Sigmoid fits to locate and characterize cortical boundaries in human cerebral cortex. J Neurosci Methods 2012, 212: 242–246.CrossRefPubMed
15.
go back to reference Heinsen H, Heinsen YL: Serial thick, frozen, gallocyanin stained sections of human central nervous system. J Histotechnol 1991, 14: 167–173. 10.1179/014788891794667005CrossRef Heinsen H, Heinsen YL: Serial thick, frozen, gallocyanin stained sections of human central nervous system. J Histotechnol 1991, 14: 167–173. 10.1179/014788891794667005CrossRef
16.
go back to reference Jones SE, Buchbinder BR, Aharon I: Three-dimensional mapping of cortical thickness using Laplace’s equation. Hum Brain Mapp 2000, 11: 12–32. 10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO;2-KCrossRefPubMed Jones SE, Buchbinder BR, Aharon I: Three-dimensional mapping of cortical thickness using Laplace’s equation. Hum Brain Mapp 2000, 11: 12–32. 10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO;2-KCrossRefPubMed
17.
go back to reference Hubert M, Van der Veeken S: Outlier detection for skewed data. J Chemom 2008, 22: 235–246. 10.1002/cem.1123CrossRef Hubert M, Van der Veeken S: Outlier detection for skewed data. J Chemom 2008, 22: 235–246. 10.1002/cem.1123CrossRef
18.
go back to reference Bouman C, Sauer K: A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans Image Process 1993, 2: 296–310. 10.1109/83.236536CrossRefPubMed Bouman C, Sauer K: A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans Image Process 1993, 2: 296–310. 10.1109/83.236536CrossRefPubMed
19.
go back to reference Casanova MF, El-Baz AS, Vanbogaert E, Narahari P, Trippe J: Minicolumnar width: comparison between supragranular and infragranular layers. J Neurosci Methods 2009, 184: 19–24. 10.1016/j.jneumeth.2009.07.011CrossRefPubMed Casanova MF, El-Baz AS, Vanbogaert E, Narahari P, Trippe J: Minicolumnar width: comparison between supragranular and infragranular layers. J Neurosci Methods 2009, 184: 19–24. 10.1016/j.jneumeth.2009.07.011CrossRefPubMed
20.
go back to reference Gao H, Lin W, Xue P, Siu W-C: Marker-based image segmentation relying on disjoint set union. Signal Process Image Commun 2006, 21: 100–112. 10.1016/j.image.2005.06.008CrossRef Gao H, Lin W, Xue P, Siu W-C: Marker-based image segmentation relying on disjoint set union. Signal Process Image Commun 2006, 21: 100–112. 10.1016/j.image.2005.06.008CrossRef
21.
go back to reference Stoyan D, Kendall WS, Mecke J: Stochastic geometry and its applications. 2nd edition. Chichester: Wiley; 1995. Stoyan D, Kendall WS, Mecke J: Stochastic geometry and its applications. 2nd edition. Chichester: Wiley; 1995.
22.
go back to reference Gwet KL: Computing inter-rater reliability and its variance in the presence of high agreement. Br J Math Stat Psychol 2008, 61: 29–48. 10.1348/000711006X126600CrossRefPubMed Gwet KL: Computing inter-rater reliability and its variance in the presence of high agreement. Br J Math Stat Psychol 2008, 61: 29–48. 10.1348/000711006X126600CrossRefPubMed
23.
go back to reference Sheline YI, Black KJ, Lin DY, Christensen GE, Gado MH, Brunsden BS, Vannier MW: Stereological MRI volumetry of the frontal lobe. Psychiatry Res 1996, 67: 203–214. 10.1016/0925-4927(96)02831-4CrossRefPubMed Sheline YI, Black KJ, Lin DY, Christensen GE, Gado MH, Brunsden BS, Vannier MW: Stereological MRI volumetry of the frontal lobe. Psychiatry Res 1996, 67: 203–214. 10.1016/0925-4927(96)02831-4CrossRefPubMed
24.
go back to reference Sawada K, Watanabe M: Development of cerebral sulci and gyri in ferrets ( Mustela putorius ). Congenit Anom 2012, 52: 168–175. 10.1111/j.1741-4520.2012.00372.xCrossRef Sawada K, Watanabe M: Development of cerebral sulci and gyri in ferrets ( Mustela putorius ). Congenit Anom 2012, 52: 168–175. 10.1111/j.1741-4520.2012.00372.xCrossRef
25.
go back to reference Sansom SN, Livesey FJ: Gradients in the brain: the control of the development of form and function in the cerebral cortex. Cold Spring Harbor Perspect Biol 2009, 1: a002519. 10.1101/cshperspect.a002519CrossRef Sansom SN, Livesey FJ: Gradients in the brain: the control of the development of form and function in the cerebral cortex. Cold Spring Harbor Perspect Biol 2009, 1: a002519. 10.1101/cshperspect.a002519CrossRef
26.
go back to reference Mountcastle VB: Perceptual neuroscience: the cerebral cortex. Cambridge, Mass: Harvard University Press; 1998. Mountcastle VB: Perceptual neuroscience: the cerebral cortex. Cambridge, Mass: Harvard University Press; 1998.
27.
go back to reference Levitt JG, Blanton RE, Smalley S, Thompson PM, Guthrie D, McCracken JT, Sadoun T, Heinichen L, Toga AW: Cortical sulcal maps in autism. Cereb Cortex 2003, 13: 728–735. 10.1093/cercor/13.7.728CrossRefPubMed Levitt JG, Blanton RE, Smalley S, Thompson PM, Guthrie D, McCracken JT, Sadoun T, Heinichen L, Toga AW: Cortical sulcal maps in autism. Cereb Cortex 2003, 13: 728–735. 10.1093/cercor/13.7.728CrossRefPubMed
28.
go back to reference Rojas DC, Camou SL, Reite ML, Rogers SJ: Planum temporale volume in children and adolescents with autism. J Autism Dev Disord 2005, 35: 479–486. 10.1007/s10803-005-5038-7CrossRefPubMed Rojas DC, Camou SL, Reite ML, Rogers SJ: Planum temporale volume in children and adolescents with autism. J Autism Dev Disord 2005, 35: 479–486. 10.1007/s10803-005-5038-7CrossRefPubMed
29.
go back to reference Casanova MF, Van Kooten IAJ, Switala AE, Van Engeland H, Heinsen H, Steinbusch HWM, Hof PR, Trippe J, Stone J, Schmitz C: Minicolumnar abnormalities in autism. Acta Neuropathol 2006, 112: 287–303. 10.1007/s00401-006-0085-5CrossRefPubMed Casanova MF, Van Kooten IAJ, Switala AE, Van Engeland H, Heinsen H, Steinbusch HWM, Hof PR, Trippe J, Stone J, Schmitz C: Minicolumnar abnormalities in autism. Acta Neuropathol 2006, 112: 287–303. 10.1007/s00401-006-0085-5CrossRefPubMed
30.
go back to reference Casanova MF, El-Baz AS, Vanbogaert E, Narahari P, Switala A: A topographic study of minicolumnar core width by lamina comparison between autistic subjects and controls: possible minicolumnar disruption due to an anatomical element in-common to multiple laminae. Brain Pathol 2010, 20: 451–458. 10.1111/j.1750-3639.2009.00319.xCrossRefPubMed Casanova MF, El-Baz AS, Vanbogaert E, Narahari P, Switala A: A topographic study of minicolumnar core width by lamina comparison between autistic subjects and controls: possible minicolumnar disruption due to an anatomical element in-common to multiple laminae. Brain Pathol 2010, 20: 451–458. 10.1111/j.1750-3639.2009.00319.xCrossRefPubMed
31.
go back to reference Casanova MF, Buxhoeveden DP, Gomez J: Disruption in the inhibitory architecture of the cell minicolumn: implications for autism. Neuroscientist 2003, 9: 496–507. 10.1177/1073858403253552CrossRefPubMed Casanova MF, Buxhoeveden DP, Gomez J: Disruption in the inhibitory architecture of the cell minicolumn: implications for autism. Neuroscientist 2003, 9: 496–507. 10.1177/1073858403253552CrossRefPubMed
32.
go back to reference Casanova MF, Buxhoeveden DP, Switala AE, Roy E: Minicolumnar pathology in autism. Neurology 2002, 58: 428–432. 10.1212/WNL.58.3.428CrossRefPubMed Casanova MF, Buxhoeveden DP, Switala AE, Roy E: Minicolumnar pathology in autism. Neurology 2002, 58: 428–432. 10.1212/WNL.58.3.428CrossRefPubMed
33.
go back to reference Golden JA, Harding BN: Developmental neuropathology. Lawrence: Allen Press; 2004. Golden JA, Harding BN: Developmental neuropathology. Lawrence: Allen Press; 2004.
34.
go back to reference Sidman RL, Rakic P: Neuronal migration with special reference to developing human brain: a review. Brain Res 1973, 62: 1–35. 10.1016/0006-8993(73)90617-3CrossRefPubMed Sidman RL, Rakic P: Neuronal migration with special reference to developing human brain: a review. Brain Res 1973, 62: 1–35. 10.1016/0006-8993(73)90617-3CrossRefPubMed
35.
go back to reference Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB: Classification system for malformations of cortical development. Neurology 2001, 57: 2168–2178. 10.1212/WNL.57.12.2168CrossRefPubMed Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB: Classification system for malformations of cortical development. Neurology 2001, 57: 2168–2178. 10.1212/WNL.57.12.2168CrossRefPubMed
36.
go back to reference Golden JA, Harding BN: Cortical malformations: unfolding polymicrogyria. Nat Rev Neurol 2010, 6: 471–472. 10.1038/nrneurol.2010.118CrossRefPubMed Golden JA, Harding BN: Cortical malformations: unfolding polymicrogyria. Nat Rev Neurol 2010, 6: 471–472. 10.1038/nrneurol.2010.118CrossRefPubMed
37.
go back to reference Barkovich AJ: Congenital malformations of the brain and skull. In Pediatric neuroimaging. 3rd edition. Edited by: Barkovich AJ. Philadelphia: Lippincott Williams & Wilkins; 2000:252–381. Barkovich AJ: Congenital malformations of the brain and skull. In Pediatric neuroimaging. 3rd edition. Edited by: Barkovich AJ. Philadelphia: Lippincott Williams & Wilkins; 2000:252–381.
38.
go back to reference Patel S, Barkovich AJ: Analysis and classification of cerebellar malformations. AJNR 2002, 23: 1074–1087.PubMed Patel S, Barkovich AJ: Analysis and classification of cerebellar malformations. AJNR 2002, 23: 1074–1087.PubMed
39.
go back to reference Kaufmann WE, Galaburda AM: Cerebrocortical microdysgenesis in neurologically normal subjects: a histopathologic study. Neurology 1989, 39: 238–244. 10.1212/WNL.39.2.238CrossRefPubMed Kaufmann WE, Galaburda AM: Cerebrocortical microdysgenesis in neurologically normal subjects: a histopathologic study. Neurology 1989, 39: 238–244. 10.1212/WNL.39.2.238CrossRefPubMed
40.
go back to reference Palmini A, Najm I, Avanzini G, Babb TL, Guerrini R, Foldvary-Schaefer N, Jackson G, Lüders HO, Prayson RA, Spreafico R, Vinters HV: Terminology and classification of the cortical dysplasias. Neurology 2004,62(6 Suppl 3):S2-S8.CrossRefPubMed Palmini A, Najm I, Avanzini G, Babb TL, Guerrini R, Foldvary-Schaefer N, Jackson G, Lüders HO, Prayson RA, Spreafico R, Vinters HV: Terminology and classification of the cortical dysplasias. Neurology 2004,62(6 Suppl 3):S2-S8.CrossRefPubMed
41.
go back to reference Eriksson SH, Malmgren K, Nordborg C: Microdysgenesis in epilepsy. Acta Neurol Scand 2005, 111: 279–290. 10.1111/j.1600-0404.2005.00386.xCrossRefPubMed Eriksson SH, Malmgren K, Nordborg C: Microdysgenesis in epilepsy. Acta Neurol Scand 2005, 111: 279–290. 10.1111/j.1600-0404.2005.00386.xCrossRefPubMed
42.
go back to reference Blümcke I, Vinters HV, Armstrong D, Aronica E, Thom M, Spreafico R: Malformations of cortical development and epilepsies. Epileptic Disord 2009, 11: 181–193.PubMed Blümcke I, Vinters HV, Armstrong D, Aronica E, Thom M, Spreafico R: Malformations of cortical development and epilepsies. Epileptic Disord 2009, 11: 181–193.PubMed
43.
go back to reference Goldberg E: The new executive brain: frontal lobes in a complex world. New York: Oxford University Press; 2009. Goldberg E: The new executive brain: frontal lobes in a complex world. New York: Oxford University Press; 2009.
44.
go back to reference Fuster JM: Frontal lobe and cognitive development. J Neurocytol 2002, 31: 373–385. 10.1023/A:1024190429920CrossRefPubMed Fuster JM: Frontal lobe and cognitive development. J Neurocytol 2002, 31: 373–385. 10.1023/A:1024190429920CrossRefPubMed
45.
go back to reference Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW: In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci 1999, 2: 859–861. 10.1038/13154CrossRefPubMed Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW: In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci 1999, 2: 859–861. 10.1038/13154CrossRefPubMed
46.
go back to reference Sowell ER, Thompson PM, Tessner KD, Toga AW: Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. J Neurosci 2001, 21: 8819–8829.PubMed Sowell ER, Thompson PM, Tessner KD, Toga AW: Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. J Neurosci 2001, 21: 8819–8829.PubMed
47.
go back to reference Russell J: How executive disorders can bring about an inadequate “theory of mind”. In Autism as an executive disorder. Edited by: Russell J. Oxford: Oxford University Press; 1997:256–304. Russell J: How executive disorders can bring about an inadequate “theory of mind”. In Autism as an executive disorder. Edited by: Russell J. Oxford: Oxford University Press; 1997:256–304.
48.
go back to reference Robinson S, Goddard L, Dritschel B, Wisley M, Howlin P: Executive functions in children with autism spectrum disorders. Brain Cogn 2009, 71: 362–368. 10.1016/j.bandc.2009.06.007CrossRefPubMed Robinson S, Goddard L, Dritschel B, Wisley M, Howlin P: Executive functions in children with autism spectrum disorders. Brain Cogn 2009, 71: 362–368. 10.1016/j.bandc.2009.06.007CrossRefPubMed
50.
go back to reference Guerrini R, Carrozzo R: Epilepsy and genetic malformations of the cerebral cortex. Am J Med Genet 2001, 106: 160–173. 10.1002/ajmg.1569CrossRefPubMed Guerrini R, Carrozzo R: Epilepsy and genetic malformations of the cerebral cortex. Am J Med Genet 2001, 106: 160–173. 10.1002/ajmg.1569CrossRefPubMed
51.
go back to reference Tannan V, Holden JK, Zhang Z, Baranek GT, Tommerdahl M: Perceptual metrics of individuals with autism provide evidence for disinhibition. Autism Res 2008, 1: 223–230. 10.1002/aur.34PubMedCentralCrossRefPubMed Tannan V, Holden JK, Zhang Z, Baranek GT, Tommerdahl M: Perceptual metrics of individuals with autism provide evidence for disinhibition. Autism Res 2008, 1: 223–230. 10.1002/aur.34PubMedCentralCrossRefPubMed
52.
go back to reference Najm I, Ying Z, Babb TL, Crino PB, Macdonald R, Mathern GW, Spreafico R: Mechanisms of epileptogenicity in cortical dysplasias. Neurology 2004, 2004: S9-S13.CrossRef Najm I, Ying Z, Babb TL, Crino PB, Macdonald R, Mathern GW, Spreafico R: Mechanisms of epileptogenicity in cortical dysplasias. Neurology 2004, 2004: S9-S13.CrossRef
53.
go back to reference Foldvary-Schaefer N, Bautista J, Andermann F, Cascino G, Spencer S: Neurology. 2004,62(6 Suppl 3):S14-S19.CrossRefPubMed Foldvary-Schaefer N, Bautista J, Andermann F, Cascino G, Spencer S: Neurology. 2004,62(6 Suppl 3):S14-S19.CrossRefPubMed
54.
go back to reference Hara H: Autism and epilepsy: a retrospective follow-up study. Brain Dev 2007, 29: 486–490. 10.1016/j.braindev.2006.12.012CrossRefPubMed Hara H: Autism and epilepsy: a retrospective follow-up study. Brain Dev 2007, 29: 486–490. 10.1016/j.braindev.2006.12.012CrossRefPubMed
55.
go back to reference Kasper BS, Chang BS, Kasper EM: Microdysgenesis: historical roots of an important concept in epilepsy. Epilepsy Behav 2009, 15: 146–153. 10.1016/j.yebeh.2009.03.026CrossRefPubMed Kasper BS, Chang BS, Kasper EM: Microdysgenesis: historical roots of an important concept in epilepsy. Epilepsy Behav 2009, 15: 146–153. 10.1016/j.yebeh.2009.03.026CrossRefPubMed
56.
go back to reference Zhang Y, Xu Q, Liu J, Li S-c, Xu X: Risk factors for autistic regression: results of an ambispective cohort study. J Child Neurol 2012, 27: 975–981. 10.1177/0883073811430163CrossRefPubMed Zhang Y, Xu Q, Liu J, Li S-c, Xu X: Risk factors for autistic regression: results of an ambispective cohort study. J Child Neurol 2012, 27: 975–981. 10.1177/0883073811430163CrossRefPubMed
57.
58.
go back to reference Nobile M, Perego P, Piccinini L, Mani E, Rossi A, Bellina M, Molteni M: Further evidence of complex motor dysfunction in drug naïve children with autism using automatic motion analysis of gait. Autism 2011, 15: 263–283. 10.1177/1362361309356929CrossRefPubMed Nobile M, Perego P, Piccinini L, Mani E, Rossi A, Bellina M, Molteni M: Further evidence of complex motor dysfunction in drug naïve children with autism using automatic motion analysis of gait. Autism 2011, 15: 263–283. 10.1177/1362361309356929CrossRefPubMed
59.
go back to reference Kotagal S, Broomall E: Sleep in children with autism spectrum disorder. Pediatr Neurol 2012, 47: 242–251. 10.1016/j.pediatrneurol.2012.05.007CrossRefPubMed Kotagal S, Broomall E: Sleep in children with autism spectrum disorder. Pediatr Neurol 2012, 47: 242–251. 10.1016/j.pediatrneurol.2012.05.007CrossRefPubMed
60.
go back to reference Gluckman BJ, Netoff TI, Neel EJ, Ditto WL, Spano ML, Schiff SJ: Stochastic resonance in a neuronal network from mammalian brain. Phys Rev Lett 1996, 77: 4098–4101. 10.1103/PhysRevLett.77.4098CrossRefPubMed Gluckman BJ, Netoff TI, Neel EJ, Ditto WL, Spano ML, Schiff SJ: Stochastic resonance in a neuronal network from mammalian brain. Phys Rev Lett 1996, 77: 4098–4101. 10.1103/PhysRevLett.77.4098CrossRefPubMed
Metadata
Title
Focal cortical dysplasias in autism spectrum disorders
Authors
Manuel F Casanova
Ayman S El-Baz
Shweta S Kamat
Brynn A Dombroski
Fahmi Khalifa
Ahmed Elnakib
Ahmed Soliman
Anita Allison-McNutt
Andrew E Switala
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2013
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/2051-5960-1-67

Other articles of this Issue 1/2013

Acta Neuropathologica Communications 1/2013 Go to the issue