Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2013

Open Access 01-12-2013 | Research

G-protein coupled receptor expression patterns delineate medulloblastoma subgroups

Authors: Kelsey L Whittier, Erin A Boese, Katherine N Gibson-Corley, Patricia A Kirby, Benjamin W Darbro, Qining Qian, Wendy J Ingram, Thomas Robertson, Marc Remke, Michael D Taylor, M Sue O’Dorisio

Published in: Acta Neuropathologica Communications | Issue 1/2013

Login to get access

Abstract

Background

Medulloblastoma is the most common malignant brain tumor in children. Genetic profiling has identified four principle tumor subgroups; each subgroup is characterized by different initiating mutations, genetic and clinical profiles, and prognoses. The two most well-defined subgroups are caused by overactive signaling in the WNT and SHH mitogenic pathways; less is understood about Groups 3 and 4 medulloblastoma. Identification of tumor subgroup using molecular classification is set to become an important component of medulloblastoma diagnosis and staging, and will likely guide therapeutic options. However, thus far, few druggable targets have emerged. G-protein coupled receptors (GPCRs) possess characteristics that make them ideal targets for molecular imaging and therapeutics; drugs targeting GPCRs account for 30-40% of all current pharmaceuticals. While expression patterns of many proteins in human medulloblastoma subgroups have been discerned, the expression pattern of GPCRs in medulloblastoma has not been investigated. We hypothesized that analysis of GPCR expression would identify clear subsets of medulloblastoma and suggest distinct GPCRs that might serve as molecular targets for both imaging and therapy.

Results

Our study found that medulloblastoma tumors fall into distinct clusters based solely on GPCR expression patterns. Normal cerebellum clustered separately from the tumor samples. Further, two of the tumor clusters correspond with high fidelity to the WNT and SHH subgroups of medulloblastoma. Distinct over-expressed GPCRs emerge; for example, LGR5 and GPR64 are significantly and uniquely over-expressed in the WNT subgroup of tumors, while PTGER4 is over-expressed in the SHH subgroup. Uniquely under-expressed GPCRs were also observed. Our key findings were independently validated using a large international dataset.

Conclusions

Our results identify GPCRs with potential to act as imaging and therapeutic targets. Elucidating tumorigenic pathways is a secondary benefit to identifying differential GPCR expression patterns in medulloblastoma tumors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Louis DN, Ohgaki H, Wiestler OD: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007, 114: 97–109. Doi 10.1007/s00401–007–0243–4 10.1007/s00401-007-0243-4PubMedCentralCrossRefPubMed Louis DN, Ohgaki H, Wiestler OD: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007, 114: 97–109. Doi 10.1007/s00401–007–0243–4 10.1007/s00401-007-0243-4PubMedCentralCrossRefPubMed
2.
go back to reference Mabbott DJ, Spiegler BJ, Greenberg ML, Rutka JT, Hyder DJ, Bouffet E: Serial evaluation of academic and behavioral outcome after treatment with cranial radiation in childhood. J Clin Oncol 2005, 23: 2256–2263. Doi: 10.1200/jco.2005.01.158 10.1200/JCO.2005.01.158CrossRefPubMed Mabbott DJ, Spiegler BJ, Greenberg ML, Rutka JT, Hyder DJ, Bouffet E: Serial evaluation of academic and behavioral outcome after treatment with cranial radiation in childhood. J Clin Oncol 2005, 23: 2256–2263. Doi: 10.1200/jco.2005.01.158 10.1200/JCO.2005.01.158CrossRefPubMed
3.
go back to reference Watterson J, Simonton SC, Rorke LB, et al.: Fatal brain stem necrosis after standard posterior fossa radiation and aggressive chemotherapy for metastatic medulloblastoma. Cancer 1993, 71: 4111–4117. 10.1002/1097-0142(19930615)71:12<4111::AID-CNCR2820711250>3.0.CO;2-4CrossRefPubMed Watterson J, Simonton SC, Rorke LB, et al.: Fatal brain stem necrosis after standard posterior fossa radiation and aggressive chemotherapy for metastatic medulloblastoma. Cancer 1993, 71: 4111–4117. 10.1002/1097-0142(19930615)71:12<4111::AID-CNCR2820711250>3.0.CO;2-4CrossRefPubMed
4.
go back to reference Ellison D: Classifying the medulloblastoma: insights from morphology and molecular genetics. Neuropathol Appl Neurobiol 2002, 28: 257–282. 10.1046/j.1365-2990.2002.00419.xCrossRefPubMed Ellison D: Classifying the medulloblastoma: insights from morphology and molecular genetics. Neuropathol Appl Neurobiol 2002, 28: 257–282. 10.1046/j.1365-2990.2002.00419.xCrossRefPubMed
5.
go back to reference Kool M, Korshunov A, Remke M, et al.: Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 2012, 123: 473–484. Doi 10.1007/s00401–012–0958–8 10.1007/s00401-012-0958-8PubMedCentralCrossRefPubMed Kool M, Korshunov A, Remke M, et al.: Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 2012, 123: 473–484. Doi 10.1007/s00401–012–0958–8 10.1007/s00401-012-0958-8PubMedCentralCrossRefPubMed
6.
go back to reference Northcott PA, Dubuc AM, Pfister S, Taylor MD: Molecular subgroups of medulloblastoma. Expert Rev Neurotherapeutics 2012, 12: 871–884. Doi 10.1586/ern.12.66 10.1586/ern.12.66CrossRef Northcott PA, Dubuc AM, Pfister S, Taylor MD: Molecular subgroups of medulloblastoma. Expert Rev Neurotherapeutics 2012, 12: 871–884. Doi 10.1586/ern.12.66 10.1586/ern.12.66CrossRef
7.
go back to reference Taylor MD, Northcott PA, Korshunov A, et al.: Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 2012, 123: 465–472. Doi 10.1007/s00401–011–0922-z 10.1007/s00401-011-0922-zPubMedCentralCrossRefPubMed Taylor MD, Northcott PA, Korshunov A, et al.: Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 2012, 123: 465–472. Doi 10.1007/s00401–011–0922-z 10.1007/s00401-011-0922-zPubMedCentralCrossRefPubMed
8.
go back to reference Cho YJ, Tsherniak A, Tamayo P, et al.: Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 2011, 29: 1424–1430. Doi 10.1200/jco.2010.28.5148 10.1200/JCO.2010.28.5148PubMedCentralCrossRefPubMed Cho YJ, Tsherniak A, Tamayo P, et al.: Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 2011, 29: 1424–1430. Doi 10.1200/jco.2010.28.5148 10.1200/JCO.2010.28.5148PubMedCentralCrossRefPubMed
9.
go back to reference Kool M, Koster J, Bunt J, et al.: Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 2008, 3: e3088. Doi 10.1371/journal.pone.0003088 10.1371/journal.pone.0003088PubMedCentralCrossRefPubMed Kool M, Koster J, Bunt J, et al.: Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 2008, 3: e3088. Doi 10.1371/journal.pone.0003088 10.1371/journal.pone.0003088PubMedCentralCrossRefPubMed
10.
go back to reference Northcott PA, Korshunov A, Witt H, et al.: Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 2011, 29: 1408–1414. Doi 10.1200/jco.2009.27.4324 10.1200/JCO.2009.27.4324CrossRefPubMed Northcott PA, Korshunov A, Witt H, et al.: Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 2011, 29: 1408–1414. Doi 10.1200/jco.2009.27.4324 10.1200/JCO.2009.27.4324CrossRefPubMed
11.
go back to reference Remke M, Hielscher T, Korshunov A, et al.: FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma. J Clin Oncol 2011, 29: 3852–3861. Doi 10.1200/jco.2011.36.2798 10.1200/JCO.2011.36.2798CrossRefPubMed Remke M, Hielscher T, Korshunov A, et al.: FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma. J Clin Oncol 2011, 29: 3852–3861. Doi 10.1200/jco.2011.36.2798 10.1200/JCO.2011.36.2798CrossRefPubMed
12.
go back to reference Remke M, Hielscher T, Northcott PA, et al.: Adult medulloblastoma comprises three major molecular variants. J Clin Oncol 2011, 29: 2717–2723. Doi 10.1200/jco.2011.34.9373 10.1200/JCO.2011.34.9373CrossRefPubMed Remke M, Hielscher T, Northcott PA, et al.: Adult medulloblastoma comprises three major molecular variants. J Clin Oncol 2011, 29: 2717–2723. Doi 10.1200/jco.2011.34.9373 10.1200/JCO.2011.34.9373CrossRefPubMed
13.
go back to reference Thompson MC, Fuller C, Hogg TL, et al.: Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 2006, 24: 1924–1931. Doi 10.1200/jco.2005.04.4974 10.1200/JCO.2005.04.4974CrossRefPubMed Thompson MC, Fuller C, Hogg TL, et al.: Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 2006, 24: 1924–1931. Doi 10.1200/jco.2005.04.4974 10.1200/JCO.2005.04.4974CrossRefPubMed
14.
go back to reference Northcott PA, Jones DT, Kool M, et al.: Medulloblastomics: the end of the beginning. Nat Rev Cancer 2012, 12: 818–834. Doi 10.1038/nrc3410 10.1038/nrc3410PubMedCentralCrossRefPubMed Northcott PA, Jones DT, Kool M, et al.: Medulloblastomics: the end of the beginning. Nat Rev Cancer 2012, 12: 818–834. Doi 10.1038/nrc3410 10.1038/nrc3410PubMedCentralCrossRefPubMed
15.
go back to reference Northcott PA, Nakahara Y, Wu X, et al.: Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet 2009, 41: 465–472. Doi 10.1038/ng.336 10.1038/ng.336PubMedCentralCrossRefPubMed Northcott PA, Nakahara Y, Wu X, et al.: Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet 2009, 41: 465–472. Doi 10.1038/ng.336 10.1038/ng.336PubMedCentralCrossRefPubMed
16.
go back to reference Parsons DW, Li M, Zhang X, et al.: The genetic landscape of the childhood cancer medulloblastoma. Science 2011, 331: 435–439. Doi 10.1126/science.1198056 10.1126/science.1198056PubMedCentralCrossRefPubMed Parsons DW, Li M, Zhang X, et al.: The genetic landscape of the childhood cancer medulloblastoma. Science 2011, 331: 435–439. Doi 10.1126/science.1198056 10.1126/science.1198056PubMedCentralCrossRefPubMed
17.
go back to reference Gibson P, Tong Y, Robinson G, et al.: Subtypes of medulloblastoma have distinct developmental origins. Nature 2010, 468: 1095–1099. Doi 10.1038/nature09587 10.1038/nature09587PubMedCentralCrossRefPubMed Gibson P, Tong Y, Robinson G, et al.: Subtypes of medulloblastoma have distinct developmental origins. Nature 2010, 468: 1095–1099. Doi 10.1038/nature09587 10.1038/nature09587PubMedCentralCrossRefPubMed
18.
go back to reference Gilbertson RJ, Ellison DW: The origins of medulloblastoma subtypes. Annu Rev Pathol 2008, 3: 341–365. Doi 10.1146/annurev.pathmechdis.3.121806.151518 10.1146/annurev.pathmechdis.3.121806.151518CrossRefPubMed Gilbertson RJ, Ellison DW: The origins of medulloblastoma subtypes. Annu Rev Pathol 2008, 3: 341–365. Doi 10.1146/annurev.pathmechdis.3.121806.151518 10.1146/annurev.pathmechdis.3.121806.151518CrossRefPubMed
19.
go back to reference Northcott PA, Korshunov A, Pfister SM, Taylor MD: The clinical implications of medulloblastoma subgroups. Nat Rev Neurol 2012, 8: 340–351. Doi 10.1038/nrneurol.2012.78 10.1038/nrneurol.2012.78CrossRefPubMed Northcott PA, Korshunov A, Pfister SM, Taylor MD: The clinical implications of medulloblastoma subgroups. Nat Rev Neurol 2012, 8: 340–351. Doi 10.1038/nrneurol.2012.78 10.1038/nrneurol.2012.78CrossRefPubMed
20.
go back to reference Robarge KD, Brunton SA, Castanedo GM: GDC-0449-a potent inhibitor of the hedgehog pathway. Bioorg Med Chem Lett 2009, 19: 5576–5581. Doi 10.1016/j.bmcl.2009.08.049 10.1016/j.bmcl.2009.08.049CrossRefPubMed Robarge KD, Brunton SA, Castanedo GM: GDC-0449-a potent inhibitor of the hedgehog pathway. Bioorg Med Chem Lett 2009, 19: 5576–5581. Doi 10.1016/j.bmcl.2009.08.049 10.1016/j.bmcl.2009.08.049CrossRefPubMed
21.
go back to reference Rudin CM, Hann CL, Laterra J, et al.: Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 2009, 361: 1173–1178. Doi 10.1056/NEJMoa0902903CrossRefPubMed Rudin CM, Hann CL, Laterra J, et al.: Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 2009, 361: 1173–1178. Doi 10.1056/NEJMoa0902903CrossRefPubMed
22.
go back to reference Wu J, Xie N, Zhao X, Nice EC, Huang C: Dissection of aberrant GPCR signaling in tumorigenesis–a systems biology approach. Cancer Genomics Proteomics 2012, 9: 37–50.PubMed Wu J, Xie N, Zhao X, Nice EC, Huang C: Dissection of aberrant GPCR signaling in tumorigenesis–a systems biology approach. Cancer Genomics Proteomics 2012, 9: 37–50.PubMed
23.
go back to reference Marti-Solano M, Guixa-Gonzalez R, Sanz F, Pastor M, Selent J: Novel insights into biased agonism at G protein-coupled receptors and their potential for drug design. Curr Pharm Des 2013. Marti-Solano M, Guixa-Gonzalez R, Sanz F, Pastor M, Selent J: Novel insights into biased agonism at G protein-coupled receptors and their potential for drug design. Curr Pharm Des 2013.
24.
go back to reference Khanna G, Bushnell D, O’Dorisio MS: Utility of radiolabeled somatostatin receptor analogues for staging/restaging and treatment of somatostatin receptor-positive pediatric tumors. Oncologist 2008, 13: 382–389. Doi 13/4/382 10.1634/theoncologist.2007-0175CrossRefPubMed Khanna G, Bushnell D, O’Dorisio MS: Utility of radiolabeled somatostatin receptor analogues for staging/restaging and treatment of somatostatin receptor-positive pediatric tumors. Oncologist 2008, 13: 382–389. Doi 13/4/382 10.1634/theoncologist.2007-0175CrossRefPubMed
25.
go back to reference Khanna G, O’Dorisio MS, Menda Y, et al.: Somatostatin receptor scintigraphy in surveillance of pediatric brain malignancies. Pediatr Blood Cancer 2008, 50: 561–566. Doi 10.1002/pbc.21194 10.1002/pbc.21194CrossRefPubMed Khanna G, O’Dorisio MS, Menda Y, et al.: Somatostatin receptor scintigraphy in surveillance of pediatric brain malignancies. Pediatr Blood Cancer 2008, 50: 561–566. Doi 10.1002/pbc.21194 10.1002/pbc.21194CrossRefPubMed
26.
go back to reference Beutler D, Avoledo P, Reubi JC: Three-year recurrence-free survival in a patient with recurrent medulloblastoma after resection, high-dose chemotherapy, and intrathecal Yttrium-90-labeled DOTA0-D-Phe1-Tyr3-octreotide radiopeptide brachytherapy. Cancer 2005, 103: 869–873. Doi 10.1002/cncr.20822 10.1002/cncr.20822CrossRefPubMed Beutler D, Avoledo P, Reubi JC: Three-year recurrence-free survival in a patient with recurrent medulloblastoma after resection, high-dose chemotherapy, and intrathecal Yttrium-90-labeled DOTA0-D-Phe1-Tyr3-octreotide radiopeptide brachytherapy. Cancer 2005, 103: 869–873. Doi 10.1002/cncr.20822 10.1002/cncr.20822CrossRefPubMed
27.
go back to reference Menda Y, O’Dorisio MS, Kao S, et al.: Phase I trial of 90Y-DOTATOC therapy in children and young adults with refractory solid tumors that express somatostatin receptors. J Nucl Med 2010, 51: 1524–1531. Doi jnumed.110.075226 10.2967/jnumed.110.075226PubMedCentralCrossRefPubMed Menda Y, O’Dorisio MS, Kao S, et al.: Phase I trial of 90Y-DOTATOC therapy in children and young adults with refractory solid tumors that express somatostatin receptors. J Nucl Med 2010, 51: 1524–1531. Doi jnumed.110.075226 10.2967/jnumed.110.075226PubMedCentralCrossRefPubMed
28.
go back to reference O’Dorisio MS, Khanna G, Bushnell D: Combining anatomic and molecularly targeted imaging in the diagnosis and surveillance of embryonal tumors of the nervous and endocrine systems in children. Cancer Metastasis Rev 2008, 27: 665–677. Doi 10.1007/s10555–008–9153–8 10.1007/s10555-008-9153-8CrossRefPubMed O’Dorisio MS, Khanna G, Bushnell D: Combining anatomic and molecularly targeted imaging in the diagnosis and surveillance of embryonal tumors of the nervous and endocrine systems in children. Cancer Metastasis Rev 2008, 27: 665–677. Doi 10.1007/s10555–008–9153–8 10.1007/s10555-008-9153-8CrossRefPubMed
29.
go back to reference Fredriksson R, Schioth HB: The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 2005, 67: 1414–1425. Doi 10.1124/mol.104.009001 10.1124/mol.104.009001CrossRefPubMed Fredriksson R, Schioth HB: The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 2005, 67: 1414–1425. Doi 10.1124/mol.104.009001 10.1124/mol.104.009001CrossRefPubMed
30.
go back to reference Maurel B, Le Digarcher A, Dantec C, Journot L: Genome-wide profiling of G protein-coupled receptors in cerebellar granule neurons using high-throughput, real-time PCR. BMC Genomics 2011, 12: 241. Doi 10.1186/1471–2164–12–241 10.1186/1471-2164-12-241PubMedCentralCrossRefPubMed Maurel B, Le Digarcher A, Dantec C, Journot L: Genome-wide profiling of G protein-coupled receptors in cerebellar granule neurons using high-throughput, real-time PCR. BMC Genomics 2011, 12: 241. Doi 10.1186/1471–2164–12–241 10.1186/1471-2164-12-241PubMedCentralCrossRefPubMed
31.
go back to reference Mestdagh P, Van Vlierberghe P, De Weer A, et al.: A novel and universal method for microRNA RT-qPCR data normalization. Genome biology 2009, 10: R64. Doi 10.1186/gb-2009–10–6-r64 10.1186/gb-2009-10-6-r64PubMedCentralCrossRefPubMed Mestdagh P, Van Vlierberghe P, De Weer A, et al.: A novel and universal method for microRNA RT-qPCR data normalization. Genome biology 2009, 10: R64. Doi 10.1186/gb-2009–10–6-r64 10.1186/gb-2009-10-6-r64PubMedCentralCrossRefPubMed
32.
go back to reference Ellison DW, Dalton J, Kocak M, et al.: Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol 2011, 121: 381–396. Doi 10.1007/s00401–011–0800–8 10.1007/s00401-011-0800-8PubMedCentralCrossRefPubMed Ellison DW, Dalton J, Kocak M, et al.: Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol 2011, 121: 381–396. Doi 10.1007/s00401–011–0800–8 10.1007/s00401-011-0800-8PubMedCentralCrossRefPubMed
33.
go back to reference Jung B, Ahmad N: Melatonin in cancer management: progress and promise. Cancer Res 2006, 66: 9789–9793. Doi 10.1158/0008–5472.can-06–1776 10.1158/0008-5472.CAN-06-1776CrossRefPubMed Jung B, Ahmad N: Melatonin in cancer management: progress and promise. Cancer Res 2006, 66: 9789–9793. Doi 10.1158/0008–5472.can-06–1776 10.1158/0008-5472.CAN-06-1776CrossRefPubMed
34.
go back to reference Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS: Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 2005,310(5753):1504–1510. 10.1126/science.1116221CrossRefPubMed Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS: Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 2005,310(5753):1504–1510. 10.1126/science.1116221CrossRefPubMed
35.
go back to reference Choy H, Milas L: Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance? J Natl Cancer Inst 2003, 95: 1440–1452. 10.1093/jnci/djg058CrossRefPubMed Choy H, Milas L: Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance? J Natl Cancer Inst 2003, 95: 1440–1452. 10.1093/jnci/djg058CrossRefPubMed
36.
go back to reference Remke M, Hering E, Gerber NU, et al.: Somatostatin receptor subtype 2 (sst) is a potential prognostic marker and a therapeutic target in medulloblastoma. Childs Nerv Syst 2013. Doi 10.1007/s00381–013–2142–4 Remke M, Hering E, Gerber NU, et al.: Somatostatin receptor subtype 2 (sst) is a potential prognostic marker and a therapeutic target in medulloblastoma. Childs Nerv Syst 2013. Doi 10.1007/s00381–013–2142–4
37.
go back to reference Fruhwald MC, O’Dorisio MS, Pietsch T, Reubi JC: High expression of somatostatin receptor subtype 2 (sst2) in medulloblastoma: implications for diagnosis and therapy. Pediatr Res 1999, 45: 697–708.CrossRefPubMed Fruhwald MC, O’Dorisio MS, Pietsch T, Reubi JC: High expression of somatostatin receptor subtype 2 (sst2) in medulloblastoma: implications for diagnosis and therapy. Pediatr Res 1999, 45: 697–708.CrossRefPubMed
38.
go back to reference Fruhwald MC, Rickert CH, O’Dorisio MS: Somatostatin receptor subtype 2 is expressed by supratentorial primitive neuroectodermal tumors of childhood and can be targeted for somatostatin receptor imaging. Clin Cancer Res 2004, 10: 2997–3006. 10.1158/1078-0432.CCR-03-0083CrossRefPubMed Fruhwald MC, Rickert CH, O’Dorisio MS: Somatostatin receptor subtype 2 is expressed by supratentorial primitive neuroectodermal tumors of childhood and can be targeted for somatostatin receptor imaging. Clin Cancer Res 2004, 10: 2997–3006. 10.1158/1078-0432.CCR-03-0083CrossRefPubMed
39.
go back to reference Innamorati G, Valenti M, Giovinazzo F, Carbonare L, Parenti M, Bassi C: Molecular approaches to target GPCRs in cancer therapy. Pharmaceuticals 2011, 4: 567–589. Doi 10.3390/ph4040567 10.3390/ph4040567PubMedCentralCrossRef Innamorati G, Valenti M, Giovinazzo F, Carbonare L, Parenti M, Bassi C: Molecular approaches to target GPCRs in cancer therapy. Pharmaceuticals 2011, 4: 567–589. Doi 10.3390/ph4040567 10.3390/ph4040567PubMedCentralCrossRef
40.
go back to reference Bajetta E, Catena L, Valente M, Bianco N, Bellomo F, Bombardieri E: New perspectives in the treatment of neuroendocrine tumours. Anticancer Res 2012, 32: 4193–4200.PubMed Bajetta E, Catena L, Valente M, Bianco N, Bellomo F, Bombardieri E: New perspectives in the treatment of neuroendocrine tumours. Anticancer Res 2012, 32: 4193–4200.PubMed
41.
go back to reference Ogawa K, Yoshioka Y, Isohashi F, Seo Y, Yoshida K, Yamazaki H: Radiotherapy targeting cancer stem cells: current views and future perspectives. Anticancer Res 2013, 33: 747–754.PubMed Ogawa K, Yoshioka Y, Isohashi F, Seo Y, Yoshida K, Yamazaki H: Radiotherapy targeting cancer stem cells: current views and future perspectives. Anticancer Res 2013, 33: 747–754.PubMed
42.
go back to reference Carmon KS, Lin Q, Gong X, Thomas A, Liu Q: LGR5 interacts and cointernalizes with Wnt receptors to modulate Wnt/beta-catenin signaling. Mol Cell Biol 2012, 32: 2054–2064. Doi 10.1128/mcb.00272–12 10.1128/MCB.00272-12PubMedCentralCrossRefPubMed Carmon KS, Lin Q, Gong X, Thomas A, Liu Q: LGR5 interacts and cointernalizes with Wnt receptors to modulate Wnt/beta-catenin signaling. Mol Cell Biol 2012, 32: 2054–2064. Doi 10.1128/mcb.00272–12 10.1128/MCB.00272-12PubMedCentralCrossRefPubMed
43.
go back to reference Al-Kharusi MR, Smartt HJ, Greenhough A, et al.: LGR5 promotes survival in human colorectal adenoma cells and is upregulated by PGE2: implications for targeting adenoma stem cells with NSAIDs. Carcinogenesis 2013, 34: 1150–1157. Doi 10.1093/carcin/bgt020 10.1093/carcin/bgt020PubMedCentralCrossRefPubMed Al-Kharusi MR, Smartt HJ, Greenhough A, et al.: LGR5 promotes survival in human colorectal adenoma cells and is upregulated by PGE2: implications for targeting adenoma stem cells with NSAIDs. Carcinogenesis 2013, 34: 1150–1157. Doi 10.1093/carcin/bgt020 10.1093/carcin/bgt020PubMedCentralCrossRefPubMed
44.
go back to reference Kemper K, Prasetyanti PR, De Lau W, Rodermond H, Clevers H, Medema JP: Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells 2012, 30: 2378–2386. Doi 10.1002/stem.1233 10.1002/stem.1233CrossRefPubMed Kemper K, Prasetyanti PR, De Lau W, Rodermond H, Clevers H, Medema JP: Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells 2012, 30: 2378–2386. Doi 10.1002/stem.1233 10.1002/stem.1233CrossRefPubMed
45.
go back to reference Carmon KS, Gong X, Lin Q, Thomas A, Liu Q: R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci USA 2011, 108: 11452–11457. Doi 10.1073/pnas.1106083108 10.1073/pnas.1106083108PubMedCentralCrossRefPubMed Carmon KS, Gong X, Lin Q, Thomas A, Liu Q: R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci USA 2011, 108: 11452–11457. Doi 10.1073/pnas.1106083108 10.1073/pnas.1106083108PubMedCentralCrossRefPubMed
46.
47.
go back to reference Banks WA: Characteristics of compounds that cross the blood–brain barrier. BMC Neurol 2009,9(Suppl 1):S3. Doi 10.1186/1471–2377–9-s1-s3 10.1186/1471-2377-9-S1-S3PubMedCentralCrossRefPubMed Banks WA: Characteristics of compounds that cross the blood–brain barrier. BMC Neurol 2009,9(Suppl 1):S3. Doi 10.1186/1471–2377–9-s1-s3 10.1186/1471-2377-9-S1-S3PubMedCentralCrossRefPubMed
48.
go back to reference Seelig A: The role of size and charge for blood–brain barrier permeation of drugs and fatty acids. J Mol Neurosci 2007, 33: 32–41. 10.1007/s12031-007-0055-yCrossRefPubMed Seelig A: The role of size and charge for blood–brain barrier permeation of drugs and fatty acids. J Mol Neurosci 2007, 33: 32–41. 10.1007/s12031-007-0055-yCrossRefPubMed
49.
go back to reference Richter GH, Fasan A, Hauer K, et al.: G-Protein coupled receptor 64 promotes invasiveness and metastasis in Ewing sarcomas through PGF and MMP1. J Pathol 2013, 230: 70–81. Doi 10.1002/path.4170 10.1002/path.4170CrossRefPubMed Richter GH, Fasan A, Hauer K, et al.: G-Protein coupled receptor 64 promotes invasiveness and metastasis in Ewing sarcomas through PGF and MMP1. J Pathol 2013, 230: 70–81. Doi 10.1002/path.4170 10.1002/path.4170CrossRefPubMed
50.
go back to reference Fulton AM, Ma X, Kundu N: Targeting prostaglandin E EP receptors to inhibit metastasis. Cancer Res 2006, 66: 9794–9797. Doi 10.1158/0008–5472.can-06–2067 10.1158/0008-5472.CAN-06-2067CrossRefPubMed Fulton AM, Ma X, Kundu N: Targeting prostaglandin E EP receptors to inhibit metastasis. Cancer Res 2006, 66: 9794–9797. Doi 10.1158/0008–5472.can-06–2067 10.1158/0008-5472.CAN-06-2067CrossRefPubMed
51.
go back to reference Loh JK, Hwang SL, Lieu AS, Huang TY, Howng SL: The alteration of prostaglandin E2 levels in patients with brain tumors before and after tumor removal. J Neurooncol 2002, 57: 147–150. 10.1023/A:1015782809966CrossRefPubMed Loh JK, Hwang SL, Lieu AS, Huang TY, Howng SL: The alteration of prostaglandin E2 levels in patients with brain tumors before and after tumor removal. J Neurooncol 2002, 57: 147–150. 10.1023/A:1015782809966CrossRefPubMed
53.
go back to reference Baryawno N, Sveinbjornsson B, Eksborg S, et al.: Tumor-growth-promoting cyclooxygenase-2 prostaglandin E2 pathway provides medulloblastoma therapeutic targets. Neuro-oncology 2008, 10: 661–674. Doi 10.1215/15228517–2008–035 10.1215/15228517-2008-035PubMedCentralCrossRefPubMed Baryawno N, Sveinbjornsson B, Eksborg S, et al.: Tumor-growth-promoting cyclooxygenase-2 prostaglandin E2 pathway provides medulloblastoma therapeutic targets. Neuro-oncology 2008, 10: 661–674. Doi 10.1215/15228517–2008–035 10.1215/15228517-2008-035PubMedCentralCrossRefPubMed
54.
go back to reference Boyd MJ, Berthelette C, Chiasson JF: A novel series of potent and selective EP(4) receptor ligands: facile modulation of agonism and antagonism. Bioorg Med Chem Lett 2011, 21: 484–487. Doi 10.1016/j.bmcl.2010.10.106 10.1016/j.bmcl.2010.10.106CrossRefPubMed Boyd MJ, Berthelette C, Chiasson JF: A novel series of potent and selective EP(4) receptor ligands: facile modulation of agonism and antagonism. Bioorg Med Chem Lett 2011, 21: 484–487. Doi 10.1016/j.bmcl.2010.10.106 10.1016/j.bmcl.2010.10.106CrossRefPubMed
55.
go back to reference Goessling W, North TE, Loewer S, et al.: Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 2009, 136: 1136–1147. Doi 10.1016/j.cell.2009.01.015 10.1016/j.cell.2009.01.015PubMedCentralCrossRefPubMed Goessling W, North TE, Loewer S, et al.: Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 2009, 136: 1136–1147. Doi 10.1016/j.cell.2009.01.015 10.1016/j.cell.2009.01.015PubMedCentralCrossRefPubMed
56.
go back to reference Katoh Y, Katoh M: Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med 2009, 9: 873–886. 10.2174/156652409789105570CrossRefPubMed Katoh Y, Katoh M: Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med 2009, 9: 873–886. 10.2174/156652409789105570CrossRefPubMed
57.
go back to reference Martin V, Herrera F, Carrera-Gonzalez P, et al.: Intracellular signaling pathways involved in the cell growth inhibition of glioma cells by melatonin. Cancer Res 2006, 66: 1081–1088. Doi 10.1158/0008–5472.can-05–2354 10.1158/0008-5472.CAN-05-2354CrossRefPubMed Martin V, Herrera F, Carrera-Gonzalez P, et al.: Intracellular signaling pathways involved in the cell growth inhibition of glioma cells by melatonin. Cancer Res 2006, 66: 1081–1088. Doi 10.1158/0008–5472.can-05–2354 10.1158/0008-5472.CAN-05-2354CrossRefPubMed
58.
go back to reference Vijaya L, Thomas CR Jr, Reiter RJ, Herman TS, et al.: Melatonin: from basic research to cancer treatment clinics. J Clin Oncol 2002, 20: 2575–2601. 10.1200/JCO.2002.11.004CrossRef Vijaya L, Thomas CR Jr, Reiter RJ, Herman TS, et al.: Melatonin: from basic research to cancer treatment clinics. J Clin Oncol 2002, 20: 2575–2601. 10.1200/JCO.2002.11.004CrossRef
59.
go back to reference Nakamura E, Kozaki K, Tsuda H, et al.: Frequent silencing of a putative tumor suppressor gene melatonin receptor 1 A (MTNR1A) in oral squamous-cell carcinoma. Cancer Sci 2008, 99: 1390–1400. Doi 10.1111/j.1349–7006.2008.00838.x 10.1111/j.1349-7006.2008.00838.xCrossRefPubMed Nakamura E, Kozaki K, Tsuda H, et al.: Frequent silencing of a putative tumor suppressor gene melatonin receptor 1 A (MTNR1A) in oral squamous-cell carcinoma. Cancer Sci 2008, 99: 1390–1400. Doi 10.1111/j.1349–7006.2008.00838.x 10.1111/j.1349-7006.2008.00838.xCrossRefPubMed
60.
go back to reference Yuan L, Collins AR, Dai J, Dubocovich ML, Hill SM: MT(1) melatonin receptor overexpression enhances the growth suppressive effect of melatonin in human breast cancer cells. Mol Cell Endocrinol 2002, 192: 147–156. 10.1016/S0303-7207(02)00029-1CrossRefPubMed Yuan L, Collins AR, Dai J, Dubocovich ML, Hill SM: MT(1) melatonin receptor overexpression enhances the growth suppressive effect of melatonin in human breast cancer cells. Mol Cell Endocrinol 2002, 192: 147–156. 10.1016/S0303-7207(02)00029-1CrossRefPubMed
61.
go back to reference Tam CW, Chan KW, Liu VW, Pang B, Yao KM, Shiu SY: Melatonin as a negative mitogenic hormonal regulator of human prostate epithelial cell growth: potential mechanisms and clinical significance. J Pineal Res 2008, 45: 403–412. Doi 10.1111/j.1600–079X.2008.00608.x 10.1111/j.1600-079X.2008.00608.xCrossRefPubMed Tam CW, Chan KW, Liu VW, Pang B, Yao KM, Shiu SY: Melatonin as a negative mitogenic hormonal regulator of human prostate epithelial cell growth: potential mechanisms and clinical significance. J Pineal Res 2008, 45: 403–412. Doi 10.1111/j.1600–079X.2008.00608.x 10.1111/j.1600-079X.2008.00608.xCrossRefPubMed
62.
go back to reference Merighi S, Simioni C, Gessi S, et al.: A(2B) and A(3) adenosine receptors modulate vascular endothelial growth factor and interleukin-8 expression in human melanoma cells treated with etoposide and doxorubicin. Neoplasia 2009, 11: 1064–1073.PubMedCentralCrossRefPubMed Merighi S, Simioni C, Gessi S, et al.: A(2B) and A(3) adenosine receptors modulate vascular endothelial growth factor and interleukin-8 expression in human melanoma cells treated with etoposide and doxorubicin. Neoplasia 2009, 11: 1064–1073.PubMedCentralCrossRefPubMed
63.
go back to reference Saito M, Yaguchi T, Yasuda Y, Nakano T, Nishizaki T: Adenosine suppresses CW2 human colonic cancer growth by inducing apoptosis via A(1) adenosine receptors. Cancer Lett 2010, 290: 211–215. Doi 10.1016/j.canlet.2009.09.011 10.1016/j.canlet.2009.09.011CrossRefPubMed Saito M, Yaguchi T, Yasuda Y, Nakano T, Nishizaki T: Adenosine suppresses CW2 human colonic cancer growth by inducing apoptosis via A(1) adenosine receptors. Cancer Lett 2010, 290: 211–215. Doi 10.1016/j.canlet.2009.09.011 10.1016/j.canlet.2009.09.011CrossRefPubMed
64.
go back to reference Fishman P, Bar-Yehuda S, Synowitz M, et al.: Adenosine receptors and cancer. Handbook Exp Pharmacol 2009, 399–441. Doi 10.1007/978–3-540–89615–9_14 Fishman P, Bar-Yehuda S, Synowitz M, et al.: Adenosine receptors and cancer. Handbook Exp Pharmacol 2009, 399–441. Doi 10.1007/978–3-540–89615–9_14
Metadata
Title
G-protein coupled receptor expression patterns delineate medulloblastoma subgroups
Authors
Kelsey L Whittier
Erin A Boese
Katherine N Gibson-Corley
Patricia A Kirby
Benjamin W Darbro
Qining Qian
Wendy J Ingram
Thomas Robertson
Marc Remke
Michael D Taylor
M Sue O’Dorisio
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2013
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/2051-5960-1-66

Other articles of this Issue 1/2013

Acta Neuropathologica Communications 1/2013 Go to the issue