Skip to main content
Top
Published in: Cancer & Metabolism 1/2014

Open Access 01-12-2014 | Research

Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia

Authors: Surendra K Shukla, Teklab Gebregiworgis, Vinee Purohit, Nina V Chaika, Venugopal Gunda, Prakash Radhakrishnan, Kamiya Mehla, Iraklis I Pipinos, Robert Powers, Fang Yu, Pankaj K Singh

Published in: Cancer & Metabolism | Issue 1/2014

Login to get access

Abstract

Background

Aberrant energy metabolism is a hallmark of cancer. To fulfill the increased energy requirements, tumor cells secrete cytokines/factors inducing muscle and fat degradation in cancer patients, a condition known as cancer cachexia. It accounts for nearly 20% of all cancer-related deaths. However, the mechanistic basis of cancer cachexia and therapies targeting cancer cachexia thus far remain elusive. A ketogenic diet, a high-fat and low-carbohydrate diet that elevates circulating levels of ketone bodies (i.e., acetoacetate, β-hydroxybutyrate, and acetone), serves as an alternative energy source. It has also been proposed that a ketogenic diet leads to systemic metabolic changes. Keeping in view the significant role of metabolic alterations in cancer, we hypothesized that a ketogenic diet may diminish glycolytic flux in tumor cells to alleviate cachexia syndrome and, hence, may provide an efficient therapeutic strategy.

Results

We observed reduced glycolytic flux in tumor cells upon treatment with ketone bodies. Ketone bodies also diminished glutamine uptake, overall ATP content, and survival in multiple pancreatic cancer cell lines, while inducing apoptosis. A decrease in levels of c-Myc, a metabolic master regulator, and its recruitment on glycolytic gene promoters, was in part responsible for the metabolic phenotype in tumor cells. Ketone body-induced intracellular metabolomic reprogramming in pancreatic cancer cells also leads to a significantly diminished cachexia in cell line models. Our mouse orthotopic xenograft models further confirmed the effect of a ketogenic diet in diminishing tumor growth and cachexia.

Conclusions

Thus, our studies demonstrate that the cachectic phenotype is in part due to metabolic alterations in tumor cells, which can be reverted by a ketogenic diet, causing reduced tumor growth and inhibition of muscle and body weight loss.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel R, Naishadham D, Jemal A: Cancer statistics, 2013. CA Cancer J Clin. 2013, 63: 11-30. 10.3322/caac.21166.CrossRefPubMed Siegel R, Naishadham D, Jemal A: Cancer statistics, 2013. CA Cancer J Clin. 2013, 63: 11-30. 10.3322/caac.21166.CrossRefPubMed
3.
go back to reference Muliawati Y, Haroen H, Rotty LW: Cancer anorexia—cachexia syndrome. Acta Med Indones. 2012, 44: 154-162.PubMed Muliawati Y, Haroen H, Rotty LW: Cancer anorexia—cachexia syndrome. Acta Med Indones. 2012, 44: 154-162.PubMed
4.
5.
go back to reference Inui A: Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer J Clin. 2002, 52: 72-91. 10.3322/canjclin.52.2.72.CrossRefPubMed Inui A: Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer J Clin. 2002, 52: 72-91. 10.3322/canjclin.52.2.72.CrossRefPubMed
6.
go back to reference Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2012, 144: 646-674.CrossRef Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2012, 144: 646-674.CrossRef
7.
go back to reference Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, Kang Y, Fleming JB, Bardeesy N, Asara JM, Haigis MC, DePinho RA, Cantley LC, Kimmelman AC: Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013, 496: 101-105. 10.1038/nature12040.CrossRefPubMedPubMedCentral Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, Kang Y, Fleming JB, Bardeesy N, Asara JM, Haigis MC, DePinho RA, Cantley LC, Kimmelman AC: Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013, 496: 101-105. 10.1038/nature12040.CrossRefPubMedPubMedCentral
8.
go back to reference Hsu PP, Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 2008, 134: 703-707. 10.1016/j.cell.2008.08.021.CrossRefPubMed Hsu PP, Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 2008, 134: 703-707. 10.1016/j.cell.2008.08.021.CrossRefPubMed
9.
go back to reference Lunt SY, Vander Heiden MG: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011, 27: 441-464. 10.1146/annurev-cellbio-092910-154237.CrossRefPubMed Lunt SY, Vander Heiden MG: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011, 27: 441-464. 10.1146/annurev-cellbio-092910-154237.CrossRefPubMed
10.
go back to reference Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, Mueller-Klieser W: High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 2000, 60: 916-921.PubMed Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, Mueller-Klieser W: High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 2000, 60: 916-921.PubMed
11.
go back to reference Shaw RJ: Glucose metabolism and cancer. Curr Opin Cell Biol. 2006, 18: 598-608. 10.1016/j.ceb.2006.10.005.CrossRefPubMed Shaw RJ: Glucose metabolism and cancer. Curr Opin Cell Biol. 2006, 18: 598-608. 10.1016/j.ceb.2006.10.005.CrossRefPubMed
12.
go back to reference Tayek JA: A review of cancer cachexia and abnormal glucose metabolism in humans with cancer. J Am Coll Nutr. 1992, 11: 445-456. 10.1080/07315724.1992.10718249.CrossRefPubMed Tayek JA: A review of cancer cachexia and abnormal glucose metabolism in humans with cancer. J Am Coll Nutr. 1992, 11: 445-456. 10.1080/07315724.1992.10718249.CrossRefPubMed
13.
go back to reference DeBerardinis RJ, Cheng T: Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010, 29: 313-324. 10.1038/onc.2009.358.CrossRefPubMedPubMedCentral DeBerardinis RJ, Cheng T: Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010, 29: 313-324. 10.1038/onc.2009.358.CrossRefPubMedPubMedCentral
14.
go back to reference Freeman JM, Vining EP, Pillas DJ, Pyzik PL, Casey JC, Kelly LM: The efficacy of the ketogenic diet-1998: a prospective evaluation of intervention in 150 children. Pediatrics. 1998, 102: 1358-1363. 10.1542/peds.102.6.1358.CrossRefPubMed Freeman JM, Vining EP, Pillas DJ, Pyzik PL, Casey JC, Kelly LM: The efficacy of the ketogenic diet-1998: a prospective evaluation of intervention in 150 children. Pediatrics. 1998, 102: 1358-1363. 10.1542/peds.102.6.1358.CrossRefPubMed
15.
go back to reference Masino SA, Geiger JD: Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets?. Trends Neurosci. 2008, 31: 273-278. 10.1016/j.tins.2008.02.009.CrossRefPubMedPubMedCentral Masino SA, Geiger JD: Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets?. Trends Neurosci. 2008, 31: 273-278. 10.1016/j.tins.2008.02.009.CrossRefPubMedPubMedCentral
16.
go back to reference Ruskin DN, Kawamura M, Masino SA: Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet. PLoS One. 2009, 4: e8349-10.1371/journal.pone.0008349.CrossRefPubMedPubMedCentral Ruskin DN, Kawamura M, Masino SA: Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet. PLoS One. 2009, 4: e8349-10.1371/journal.pone.0008349.CrossRefPubMedPubMedCentral
17.
go back to reference Kennedy AR, Pissios P, Otu H, Roberson R, Xue B, Asakura K, Furukawa N, Marino FE, Liu FF, Kahn BB, Libermann TA, Maratos-Flier E: A high-fat, ketogenic diet induces a unique metabolic state in mice. Am J Physiol Endocrinol Metab. 2007, 292: E1724-E1739. 10.1152/ajpendo.00717.2006.CrossRefPubMed Kennedy AR, Pissios P, Otu H, Roberson R, Xue B, Asakura K, Furukawa N, Marino FE, Liu FF, Kahn BB, Libermann TA, Maratos-Flier E: A high-fat, ketogenic diet induces a unique metabolic state in mice. Am J Physiol Endocrinol Metab. 2007, 292: E1724-E1739. 10.1152/ajpendo.00717.2006.CrossRefPubMed
18.
go back to reference Klement RJ, Kammerer U: Is there a role for carbohydrate restriction in the treatment and prevention of cancer?. Nutr Metab (Lond). 2011, 8: 75-10.1186/1743-7075-8-75.CrossRef Klement RJ, Kammerer U: Is there a role for carbohydrate restriction in the treatment and prevention of cancer?. Nutr Metab (Lond). 2011, 8: 75-10.1186/1743-7075-8-75.CrossRef
19.
go back to reference Freeman JM, Kossoff EH, Hartman AL: The ketogenic diet: one decade later. Pediatrics. 2007, 119: 535-543. 10.1542/peds.2006-2447.CrossRefPubMed Freeman JM, Kossoff EH, Hartman AL: The ketogenic diet: one decade later. Pediatrics. 2007, 119: 535-543. 10.1542/peds.2006-2447.CrossRefPubMed
20.
go back to reference Hashim SA, Vanitallie TB: Ketone body therapy: from ketogenic diet to oral administration of ketone ester. J Lipid Res. 2014, in press Hashim SA, Vanitallie TB: Ketone body therapy: from ketogenic diet to oral administration of ketone ester. J Lipid Res. 2014, in press
21.
go back to reference Iwamura T, Taniguchi S, Kitamura N, Yamanari H, Kojima A, Hidaka K, Setoguchi T, Katsuki T: Correlation between CA19-9 production in vitro and histological grades of differentiation in vivo in clones isolated from a human pancreatic cancer cell line (SUIT-2). J Gastroenterol Hepatol. 1992, 7: 512-519. 10.1111/j.1440-1746.1992.tb01030.x.CrossRefPubMed Iwamura T, Taniguchi S, Kitamura N, Yamanari H, Kojima A, Hidaka K, Setoguchi T, Katsuki T: Correlation between CA19-9 production in vitro and histological grades of differentiation in vivo in clones isolated from a human pancreatic cancer cell line (SUIT-2). J Gastroenterol Hepatol. 1992, 7: 512-519. 10.1111/j.1440-1746.1992.tb01030.x.CrossRefPubMed
22.
go back to reference Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008, 3: 1101-1108. 10.1038/nprot.2008.73.CrossRefPubMed Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008, 3: 1101-1108. 10.1038/nprot.2008.73.CrossRefPubMed
23.
go back to reference Singh PK, Behrens ME, Eggers JP, Cerny RL, Bailey JM, Shanmugam K, Gendler SJ, Bennett EP, Hollingsworth MA: Phosphorylation of MUC1 by Met modulates interaction with p53 and MMP1 expression. J Biol Chem. 2008, 283: 26985-26995. 10.1074/jbc.M805036200.CrossRefPubMedPubMedCentral Singh PK, Behrens ME, Eggers JP, Cerny RL, Bailey JM, Shanmugam K, Gendler SJ, Bennett EP, Hollingsworth MA: Phosphorylation of MUC1 by Met modulates interaction with p53 and MMP1 expression. J Biol Chem. 2008, 283: 26985-26995. 10.1074/jbc.M805036200.CrossRefPubMedPubMedCentral
24.
go back to reference He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW: Identification of c-MYC as a target of the APC pathway. Science. 1998, 281: 1509-1512.CrossRefPubMed He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW: Identification of c-MYC as a target of the APC pathway. Science. 1998, 281: 1509-1512.CrossRefPubMed
25.
go back to reference Behrens ME, Grandgenett PM, Bailey JM, Singh PK, Yi CH, Yu F, Hollingsworth MA: The reactive tumor microenvironment: MUC1 signaling directly reprograms transcription of CTGF. Oncogene. 2010, 29: 5667-5677. 10.1038/onc.2010.327.CrossRefPubMedPubMedCentral Behrens ME, Grandgenett PM, Bailey JM, Singh PK, Yi CH, Yu F, Hollingsworth MA: The reactive tumor microenvironment: MUC1 signaling directly reprograms transcription of CTGF. Oncogene. 2010, 29: 5667-5677. 10.1038/onc.2010.327.CrossRefPubMedPubMedCentral
26.
go back to reference Chaika NV, Gebregiworgis T, Lewallen ME, Purohit V, Radhakrishnan P, Liu X, Zhang B, Mehla K, Brown RB, Caffrey T, Yu F, Johnson KR, Powers R, Hollingsworth MA, Singh PK: MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proc Natl Acad Sci U S A. 2011, 109: 13787-13792.CrossRef Chaika NV, Gebregiworgis T, Lewallen ME, Purohit V, Radhakrishnan P, Liu X, Zhang B, Mehla K, Brown RB, Caffrey T, Yu F, Johnson KR, Powers R, Hollingsworth MA, Singh PK: MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proc Natl Acad Sci U S A. 2011, 109: 13787-13792.CrossRef
27.
go back to reference Nguyen BD, Meng X, Donovan KJ, Shaka AJ: SOGGY: solvent-optimized double gradient spectroscopy for water suppression. A comparison with some existing techniques. J Magn Reson. 2007, 184: 263-274. 10.1016/j.jmr.2006.10.014.CrossRefPubMed Nguyen BD, Meng X, Donovan KJ, Shaka AJ: SOGGY: solvent-optimized double gradient spectroscopy for water suppression. A comparison with some existing techniques. J Magn Reson. 2007, 184: 263-274. 10.1016/j.jmr.2006.10.014.CrossRefPubMed
29.
go back to reference De Meyer T, Sinnaeve D, Van Gasse B, Tsiporkova E, Rietzschel ER, De Buyzere ML, Gillebert TC, Bekaert S, Martins JC, Van Criekinge W: NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. Anal Chem. 2008, 80: 3783-3790. 10.1021/ac7025964.CrossRefPubMed De Meyer T, Sinnaeve D, Van Gasse B, Tsiporkova E, Rietzschel ER, De Buyzere ML, Gillebert TC, Bekaert S, Martins JC, Van Criekinge W: NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. Anal Chem. 2008, 80: 3783-3790. 10.1021/ac7025964.CrossRefPubMed
30.
go back to reference Halouska S, Zhang B, Gaupp R, Lei S, Snell E, Fenton RJ, Barletta RG, Somerville GA, Powers R: Revisiting protocols for the NMR analysis of bacterial metabolomes. J Integrated OMICS. 2013, 3: 120-137. Halouska S, Zhang B, Gaupp R, Lei S, Snell E, Fenton RJ, Barletta RG, Somerville GA, Powers R: Revisiting protocols for the NMR analysis of bacterial metabolomes. J Integrated OMICS. 2013, 3: 120-137.
31.
go back to reference Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A: NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995, 6: 277-293.CrossRefPubMed Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A: NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995, 6: 277-293.CrossRefPubMed
32.
go back to reference Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A: HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res. 2013, 41: D801-D807. 10.1093/nar/gks1065.CrossRefPubMedPubMedCentral Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A: HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res. 2013, 41: D801-D807. 10.1093/nar/gks1065.CrossRefPubMedPubMedCentral
33.
go back to reference Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF, Westler WM, Eghbalnia HR, Sussman MR, Markley JL: Metabolite identification via the Madison Metabolomics Consortium Database. Nat Biotechnol. 2008, 26: 162-164. 10.1038/nbt0208-162.CrossRefPubMed Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF, Westler WM, Eghbalnia HR, Sussman MR, Markley JL: Metabolite identification via the Madison Metabolomics Consortium Database. Nat Biotechnol. 2008, 26: 162-164. 10.1038/nbt0208-162.CrossRefPubMed
34.
go back to reference Akiyama K, Chikayama E, Yuasa H, Shimada Y, Tohge T, Shinozaki K, Hirai MY, Sakurai T, Kikuchi J, Saito K: PRIMe: a web site that assembles tools for metabolomics and transcriptomics. In Silico Biol. 2008, 8: 339-345.PubMed Akiyama K, Chikayama E, Yuasa H, Shimada Y, Tohge T, Shinozaki K, Hirai MY, Sakurai T, Kikuchi J, Saito K: PRIMe: a web site that assembles tools for metabolomics and transcriptomics. In Silico Biol. 2008, 8: 339-345.PubMed
35.
go back to reference Xi Y, de Ropp JS, Viant MR, Woodruff DL, Yu P: Improved identification of metabolites in complex mixtures using HSQC NMR spectroscopy. Anal Chim Acta. 2008, 614: 127-133. 10.1016/j.aca.2008.03.024.CrossRefPubMedPubMedCentral Xi Y, de Ropp JS, Viant MR, Woodruff DL, Yu P: Improved identification of metabolites in complex mixtures using HSQC NMR spectroscopy. Anal Chim Acta. 2008, 614: 127-133. 10.1016/j.aca.2008.03.024.CrossRefPubMedPubMedCentral
36.
go back to reference Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S: Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Statistics for Biology and Health, vol XIX. Edited by: Wong W, Gail M, Krickeberg K, Tsiatis A, Samet J. 2005, Springer, 3-12. Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S: Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Statistics for Biology and Health, vol XIX. Edited by: Wong W, Gail M, Krickeberg K, Tsiatis A, Samet J. 2005, Springer, 3-12.
37.
go back to reference Marino ML, Pellegrini P, Di Lernia G, Djavaheri-Mergny M, Brnjic S, Zhang X, Hagg M, Linder S, Fais S, Codogno P, De Milito A: Autophagy is a protective mechanism for human melanoma cells under acidic stress. J Biol Chem. 2012, 287: 30664-30676. 10.1074/jbc.M112.339127.CrossRefPubMedPubMedCentral Marino ML, Pellegrini P, Di Lernia G, Djavaheri-Mergny M, Brnjic S, Zhang X, Hagg M, Linder S, Fais S, Codogno P, De Milito A: Autophagy is a protective mechanism for human melanoma cells under acidic stress. J Biol Chem. 2012, 287: 30664-30676. 10.1074/jbc.M112.339127.CrossRefPubMedPubMedCentral
38.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009, 324: 1029-1033. 10.1126/science.1160809.CrossRefPubMedPubMedCentral Vander Heiden MG, Cantley LC, Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009, 324: 1029-1033. 10.1126/science.1160809.CrossRefPubMedPubMedCentral
40.
go back to reference Eley HL, Russell ST, Baxter JH, Mukerji P, Tisdale MJ: Signaling pathways initiated by beta-hydroxy-beta-methylbutyrate to attenuate the depression of protein synthesis in skeletal muscle in response to cachectic stimuli. Am J Physiol Endocrinol Metab. 2007, 293: E923-E931. 10.1152/ajpendo.00314.2007.CrossRefPubMed Eley HL, Russell ST, Baxter JH, Mukerji P, Tisdale MJ: Signaling pathways initiated by beta-hydroxy-beta-methylbutyrate to attenuate the depression of protein synthesis in skeletal muscle in response to cachectic stimuli. Am J Physiol Endocrinol Metab. 2007, 293: E923-E931. 10.1152/ajpendo.00314.2007.CrossRefPubMed
41.
go back to reference Fearon KC, Glass DJ, Guttridge DC: Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 2012, 16: 153-166. 10.1016/j.cmet.2012.06.011.CrossRefPubMed Fearon KC, Glass DJ, Guttridge DC: Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 2012, 16: 153-166. 10.1016/j.cmet.2012.06.011.CrossRefPubMed
42.
43.
go back to reference Raykov Z, Grekova SP, Bour G, Lehn JM, Giese NA, Nicolau C, Aprahamian M: Myo-inositol trispyrophosphate-mediated hypoxia reversion controls pancreatic cancer in rodents and enhances gemcitabine efficacy. Int J Cancer. 2014, 134: 2572-2582. 10.1002/ijc.28597.CrossRefPubMed Raykov Z, Grekova SP, Bour G, Lehn JM, Giese NA, Nicolau C, Aprahamian M: Myo-inositol trispyrophosphate-mediated hypoxia reversion controls pancreatic cancer in rodents and enhances gemcitabine efficacy. Int J Cancer. 2014, 134: 2572-2582. 10.1002/ijc.28597.CrossRefPubMed
44.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13: 2498-2504. 10.1101/gr.1239303.CrossRefPubMedPubMedCentral Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13: 2498-2504. 10.1101/gr.1239303.CrossRefPubMedPubMedCentral
45.
go back to reference Gao J, Tarcea VG, Karnovsky A, Mirel BR, Weymouth TE, Beecher CW, Cavalcoli JD, Athey BD, Omenn GS, Burant CF, Jagadish HV: Metscape: a Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinformatics. 2010, 26: 971-973. 10.1093/bioinformatics/btq048.CrossRefPubMedPubMedCentral Gao J, Tarcea VG, Karnovsky A, Mirel BR, Weymouth TE, Beecher CW, Cavalcoli JD, Athey BD, Omenn GS, Burant CF, Jagadish HV: Metscape: a Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinformatics. 2010, 26: 971-973. 10.1093/bioinformatics/btq048.CrossRefPubMedPubMedCentral
46.
go back to reference Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB: Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008, 18: 54-61. 10.1016/j.gde.2008.02.003.CrossRefPubMedPubMedCentral Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB: Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008, 18: 54-61. 10.1016/j.gde.2008.02.003.CrossRefPubMedPubMedCentral
47.
go back to reference Schulze A, Harris AL: How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012, 491: 364-373. 10.1038/nature11706.CrossRefPubMed Schulze A, Harris AL: How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012, 491: 364-373. 10.1038/nature11706.CrossRefPubMed
48.
go back to reference Acharya A, Das I, Chandhok D, Saha T: Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid Med Cell Longev. 2010, 3: 23-34. 10.4161/oxim.3.1.10095.CrossRefPubMedPubMedCentral Acharya A, Das I, Chandhok D, Saha T: Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid Med Cell Longev. 2010, 3: 23-34. 10.4161/oxim.3.1.10095.CrossRefPubMedPubMedCentral
49.
go back to reference Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB, Farese RV, de Cabo R, Ulrich S, Akassoglou K, Verdin E: Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013, 339: 211-214. 10.1126/science.1227166.CrossRefPubMedPubMedCentral Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB, Farese RV, de Cabo R, Ulrich S, Akassoglou K, Verdin E: Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013, 339: 211-214. 10.1126/science.1227166.CrossRefPubMedPubMedCentral
50.
go back to reference Shabason JE, Tofilon PJ, Camphausen K: HDAC inhibitors in cancer care. Oncology (Williston Park). 2010, 24: 180-185. Shabason JE, Tofilon PJ, Camphausen K: HDAC inhibitors in cancer care. Oncology (Williston Park). 2010, 24: 180-185.
51.
go back to reference Tennant DA, Duran RV, Gottlieb E: Targeting metabolic transformation for cancer therapy. Nat Rev Cancer. 2010, 10: 267-277. 10.1038/nrc2817.CrossRefPubMed Tennant DA, Duran RV, Gottlieb E: Targeting metabolic transformation for cancer therapy. Nat Rev Cancer. 2010, 10: 267-277. 10.1038/nrc2817.CrossRefPubMed
52.
go back to reference Amann T, Hellerbrand C: GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opin Ther Targets. 2009, 13: 1411-1427. 10.1517/14728220903307509.CrossRefPubMed Amann T, Hellerbrand C: GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opin Ther Targets. 2009, 13: 1411-1427. 10.1517/14728220903307509.CrossRefPubMed
53.
go back to reference Gordan JD, Thompson CB, Simon MC: HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell. 2007, 12: 108-113. 10.1016/j.ccr.2007.07.006.CrossRefPubMedPubMedCentral Gordan JD, Thompson CB, Simon MC: HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell. 2007, 12: 108-113. 10.1016/j.ccr.2007.07.006.CrossRefPubMedPubMedCentral
54.
go back to reference Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV: c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A. 1997, 94: 6658-6663. 10.1073/pnas.94.13.6658.CrossRefPubMedPubMedCentral Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV: c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A. 1997, 94: 6658-6663. 10.1073/pnas.94.13.6658.CrossRefPubMedPubMedCentral
55.
go back to reference Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN, Swigart LB, Nasi S, Evan GI: Modelling Myc inhibition as a cancer therapy. Nature. 2008, 455: 679-683. 10.1038/nature07260.CrossRefPubMedPubMedCentral Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN, Swigart LB, Nasi S, Evan GI: Modelling Myc inhibition as a cancer therapy. Nature. 2008, 455: 679-683. 10.1038/nature07260.CrossRefPubMedPubMedCentral
56.
go back to reference Jeong KC, Kim KT, Seo HH, Shin SP, Ahn KO, Ji MJ, Park WS, Kim IH, Lee SJ, Seo HK: Intravesical instillation of c-MYC inhibitor KSI-3716 suppresses orthotopic bladder tumor growth. J Urol. 2013, 191: 510-518.CrossRefPubMed Jeong KC, Kim KT, Seo HH, Shin SP, Ahn KO, Ji MJ, Park WS, Kim IH, Lee SJ, Seo HK: Intravesical instillation of c-MYC inhibitor KSI-3716 suppresses orthotopic bladder tumor growth. J Urol. 2013, 191: 510-518.CrossRefPubMed
57.
go back to reference Lu Y, Zhang X, Zhang H, Lan J, Huang G, Varin E, Lincet H, Poulain L, Icard P: Citrate induces apoptotic cell death: a promising way to treat gastric carcinoma?. Anticancer Res. 2013, 31: 797-805. Lu Y, Zhang X, Zhang H, Lan J, Huang G, Varin E, Lincet H, Poulain L, Icard P: Citrate induces apoptotic cell death: a promising way to treat gastric carcinoma?. Anticancer Res. 2013, 31: 797-805.
58.
go back to reference Roomi MW, Ivanov V, Kalinovsky T, Niedzwiecki A, Rath M: Antitumor effect of ascorbic acid, lysine, proline, arginine, and green tea extract on bladder cancer cell line T-24. Int J Urol. 2006, 13: 415-419. 10.1111/j.1442-2042.2006.01309.x.CrossRefPubMed Roomi MW, Ivanov V, Kalinovsky T, Niedzwiecki A, Rath M: Antitumor effect of ascorbic acid, lysine, proline, arginine, and green tea extract on bladder cancer cell line T-24. Int J Urol. 2006, 13: 415-419. 10.1111/j.1442-2042.2006.01309.x.CrossRefPubMed
59.
go back to reference Key TJ, Schatzkin A, Willett WC, Allen NE, Spencer EA, Travis RC: Diet, nutrition and the prevention of cancer. Public Health Nutr. 2004, 7: 187-200.CrossRefPubMed Key TJ, Schatzkin A, Willett WC, Allen NE, Spencer EA, Travis RC: Diet, nutrition and the prevention of cancer. Public Health Nutr. 2004, 7: 187-200.CrossRefPubMed
60.
go back to reference Willcox DC, Willcox BJ, Todoriki H, Suzuki M: The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009, 28 (Suppl): 500S-516S.CrossRefPubMed Willcox DC, Willcox BJ, Todoriki H, Suzuki M: The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009, 28 (Suppl): 500S-516S.CrossRefPubMed
Metadata
Title
Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia
Authors
Surendra K Shukla
Teklab Gebregiworgis
Vinee Purohit
Nina V Chaika
Venugopal Gunda
Prakash Radhakrishnan
Kamiya Mehla
Iraklis I Pipinos
Robert Powers
Fang Yu
Pankaj K Singh
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Cancer & Metabolism / Issue 1/2014
Electronic ISSN: 2049-3002
DOI
https://doi.org/10.1186/2049-3002-2-18

Other articles of this Issue 1/2014

Cancer & Metabolism 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine