Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2013

Open Access 01-12-2013 | Study protocol

Organotypic brain slices: a model to study the neurovascular unit micro-environment in epilepsies

Authors: Mélanie Morin-Brureau, Frédéric De Bock, Mireille Lerner-Natoli

Published in: Fluids and Barriers of the CNS | Issue 1/2013

Login to get access

Abstract

Background

It is now recognized that the neuro-vascular unit (NVU) plays a key role in several neurological diseases including epilepsy, stroke, Alzheimer’s disease, multiple sclerosis and the development of gliomas. Most of these disorders are associated with NVU dysfunction, due to overexpression of inflammatory factors such as vascular endothelial growth factor (VEGF). Various in vitro models have been developed previously to study the micro-environment of the blood–brain barrier (BBB). However none of these in vitro models contained a complete complement of NVU cells, nor maintained their interactions, thus minimizing the influence of the surrounding tissue on the BBB development and function. The organotypic hippocampal culture (OHC) is an integrative in vitro model that allows repeated manipulations over time to further understand the development of cell circuits or the mechanisms of brain diseases.

Methods/design

OHCs were cultured from hippocampi of 6–7 day-old Sprague Dawley rats. After 2 weeks in culture, seizures were induced by application of kainate or bicuculline into culture medium. The regulation of BBB integrity under physiological and pathological conditions was evaluated by immunostaining of the main tight junction (TJ) proteins and of the basal membrane of microvessels. To mimic or prevent BBB disassembly, we used diverse pro- or anti-angiogenic treatments.

Discussion

This study demonstrates that NVU regulation can be investigated using OHCs. We observed in this model system an increase in vascularization and a down-regulation of TJ proteins, similar to the vascular changes described in a chronic focus of epileptic patients, and in rodent models of epilepsy or inflammation. We observed that Zonula occludens-1 (ZO-1) protein disappeared after seizures associated with neuronal damage. In these conditions, the angiopoeitin-1 system was down-regulated, and the application of r-angiopoeitin-1 allowed TJ re-assembly. This article demonstrates that organotypic culture is a useful model to decipher the links between epileptic activity and vascular damage, and also to investigate NVU regulation in diverse neurological disorders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Abbott NJ, Ronnback L, Hansson E: Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006, 7: 41-53. 10.1038/nrn1824.PubMedCrossRef Abbott NJ, Ronnback L, Hansson E: Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006, 7: 41-53. 10.1038/nrn1824.PubMedCrossRef
2.
go back to reference Bennett J, Basivireddy J, Kollar A, Biron KE, Reickmann P, Jefferies WA, McQuaid S: Blood–brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J Neuroimmunol. 2010, 229: 180-191. 10.1016/j.jneuroim.2010.08.011.PubMedCrossRef Bennett J, Basivireddy J, Kollar A, Biron KE, Reickmann P, Jefferies WA, McQuaid S: Blood–brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J Neuroimmunol. 2010, 229: 180-191. 10.1016/j.jneuroim.2010.08.011.PubMedCrossRef
3.
go back to reference Friedman A: Blood–brain barrier dysfunction, status epilepticus, seizures, and epilepsy: a puzzle of a chicken and egg?. Epilepsia. 2011, 52 (Suppl 8): 19-20.PubMedCentralPubMedCrossRef Friedman A: Blood–brain barrier dysfunction, status epilepticus, seizures, and epilepsy: a puzzle of a chicken and egg?. Epilepsia. 2011, 52 (Suppl 8): 19-20.PubMedCentralPubMedCrossRef
4.
go back to reference Tomkins O, Feintuch A, Benifla M, Cohen A, Friedman A, Shelef I: Blood–brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychatry Neurol. 2011, 2011: 765923- Tomkins O, Feintuch A, Benifla M, Cohen A, Friedman A, Shelef I: Blood–brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychatry Neurol. 2011, 2011: 765923-
5.
go back to reference Ujiie M, Dickstein DL, Carlow DA, Jefferies WA: Blood–brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation. 2003, 10: 463-470.PubMed Ujiie M, Dickstein DL, Carlow DA, Jefferies WA: Blood–brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation. 2003, 10: 463-470.PubMed
6.
7.
go back to reference Wilhelm I, Fazakas C, Krizbai IA: In vitro models of the blood–brain barrier. Acta neurobiolExp (Wars). 2011, 71: 113-128. Wilhelm I, Fazakas C, Krizbai IA: In vitro models of the blood–brain barrier. Acta neurobiolExp (Wars). 2011, 71: 113-128.
8.
go back to reference Silbergeld DL, Ali-Osman F: Isolation and characterization of microvessels from normal brain and brain tumors. J Neurooncol. 1991, 11: 49-55. 10.1007/BF00166997.PubMedCrossRef Silbergeld DL, Ali-Osman F: Isolation and characterization of microvessels from normal brain and brain tumors. J Neurooncol. 1991, 11: 49-55. 10.1007/BF00166997.PubMedCrossRef
9.
go back to reference Hamm S, Dehouck B, Kraus J, Wolburg-Buchholz K, Wolburg H, Risau W, Cecchelli R, Engelhardt B, Dehouck MP: Astrocyte mediated modulation of blood–brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res. 2004, 315: 157-166. 10.1007/s00441-003-0825-y.PubMedCrossRef Hamm S, Dehouck B, Kraus J, Wolburg-Buchholz K, Wolburg H, Risau W, Cecchelli R, Engelhardt B, Dehouck MP: Astrocyte mediated modulation of blood–brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res. 2004, 315: 157-166. 10.1007/s00441-003-0825-y.PubMedCrossRef
10.
go back to reference Hori S, Ohtsuki S, Tachikawa M, Kimura N, Kondo T, Watanabe M, Nakashima E, Terasaki T: Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). J Neurochem. 2004, 90: 526-536. 10.1111/j.1471-4159.2004.02537.x.PubMedCrossRef Hori S, Ohtsuki S, Tachikawa M, Kimura N, Kondo T, Watanabe M, Nakashima E, Terasaki T: Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). J Neurochem. 2004, 90: 526-536. 10.1111/j.1471-4159.2004.02537.x.PubMedCrossRef
11.
go back to reference Dore-Duffy P, Cleary K: Morphology and properties of pericytes. Methods Mol Biol. 2011, 686: 49-68. 10.1007/978-1-60761-938-3_2.PubMedCrossRef Dore-Duffy P, Cleary K: Morphology and properties of pericytes. Methods Mol Biol. 2011, 686: 49-68. 10.1007/978-1-60761-938-3_2.PubMedCrossRef
12.
go back to reference Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO: Astrocytes and pericytes differentially modulate blood–brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow. 2011, 31: 693-705. 10.1038/jcbfm.2010.148.CrossRef Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO: Astrocytes and pericytes differentially modulate blood–brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow. 2011, 31: 693-705. 10.1038/jcbfm.2010.148.CrossRef
13.
go back to reference Cucullo L, Marchi N, Hossain M, Janigro D: A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system. J Cereb Blood Flow. 2011, 31: 767-777. 10.1038/jcbfm.2010.162.CrossRef Cucullo L, Marchi N, Hossain M, Janigro D: A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system. J Cereb Blood Flow. 2011, 31: 767-777. 10.1038/jcbfm.2010.162.CrossRef
14.
go back to reference Hallier-Vanuxeem D, Prieto P, Culot M, Diallo H, Landry C, Tahti H, Cecchelli R: New strategy for alerting central nervous system toxicity: Integration of blood–brain barrier toxicity and permeability in neurotoxicity assessment. Toxicol in vitro. 2009, 23: 447-453. 10.1016/j.tiv.2008.12.011.PubMedCrossRef Hallier-Vanuxeem D, Prieto P, Culot M, Diallo H, Landry C, Tahti H, Cecchelli R: New strategy for alerting central nervous system toxicity: Integration of blood–brain barrier toxicity and permeability in neurotoxicity assessment. Toxicol in vitro. 2009, 23: 447-453. 10.1016/j.tiv.2008.12.011.PubMedCrossRef
15.
go back to reference Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ: Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Methods. 2011, 199: 223-229. 10.1016/j.jneumeth.2011.05.012.PubMedCrossRef Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ: Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Methods. 2011, 199: 223-229. 10.1016/j.jneumeth.2011.05.012.PubMedCrossRef
16.
go back to reference Gahwiler BH: Organotypic monolayer cultures of nervous tissue. J Neurosci Methods. 1981, 4: 329-342. 10.1016/0165-0270(81)90003-0.PubMedCrossRef Gahwiler BH: Organotypic monolayer cultures of nervous tissue. J Neurosci Methods. 1981, 4: 329-342. 10.1016/0165-0270(81)90003-0.PubMedCrossRef
17.
go back to reference Stoppini L, Buchs PA, Muller D: A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 1991, 37: 173-182. 10.1016/0165-0270(91)90128-M.PubMedCrossRef Stoppini L, Buchs PA, Muller D: A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 1991, 37: 173-182. 10.1016/0165-0270(91)90128-M.PubMedCrossRef
18.
go back to reference Del Turco D, Deller T: Organotypic entorhino-hippocampal slice cultures–a tool to study the molecular and cellular regulation of axonal regeneration and collateral sprouting in vitro. Methods Mol Biol. 2007, 399: 55-66. 10.1007/978-1-59745-504-6_5.PubMedCrossRef Del Turco D, Deller T: Organotypic entorhino-hippocampal slice cultures–a tool to study the molecular and cellular regulation of axonal regeneration and collateral sprouting in vitro. Methods Mol Biol. 2007, 399: 55-66. 10.1007/978-1-59745-504-6_5.PubMedCrossRef
19.
go back to reference Gahwiler BH, Capogna M, Debanne D, McKinney RA, Thompson SM: Organotypic slice cultures: a technique has come of age. Trends Neurosci. 1997, 20: 471-477. 10.1016/S0166-2236(97)01122-3.PubMedCrossRef Gahwiler BH, Capogna M, Debanne D, McKinney RA, Thompson SM: Organotypic slice cultures: a technique has come of age. Trends Neurosci. 1997, 20: 471-477. 10.1016/S0166-2236(97)01122-3.PubMedCrossRef
20.
go back to reference Moser KV, Humpel C: Vascular endothelial growth factor counteracts NMDA-induced cell death of adult cholinergic neurons in rat basal nucleus of Meynert. Brain Res Bull. 2005, 65: 125-131. 10.1016/j.brainresbull.2004.12.005.PubMedCrossRef Moser KV, Humpel C: Vascular endothelial growth factor counteracts NMDA-induced cell death of adult cholinergic neurons in rat basal nucleus of Meynert. Brain Res Bull. 2005, 65: 125-131. 10.1016/j.brainresbull.2004.12.005.PubMedCrossRef
21.
go back to reference Morin-Brureau M, Lebrun A, Rousset MC, Fagni L, Bockaert J, de Bock F, Lerner-Natoli M: Epileptiform activity induces vascular remodeling and ZO-1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci. 2011, 31: 10677-10688. 10.1523/JNEUROSCI.5692-10.2011.PubMedCrossRef Morin-Brureau M, Lebrun A, Rousset MC, Fagni L, Bockaert J, de Bock F, Lerner-Natoli M: Epileptiform activity induces vascular remodeling and ZO-1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci. 2011, 31: 10677-10688. 10.1523/JNEUROSCI.5692-10.2011.PubMedCrossRef
22.
go back to reference Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, Picot MC, Baldy-Moulinier M, Bockaert J, Crespel A, Lerner-Natoli M: Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain. 2007, 130: 1942-1956. 10.1093/brain/awm118.PubMedCrossRef Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, Picot MC, Baldy-Moulinier M, Bockaert J, Crespel A, Lerner-Natoli M: Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain. 2007, 130: 1942-1956. 10.1093/brain/awm118.PubMedCrossRef
23.
go back to reference de Paz P, Barrio JP: Stereological parameters from the analysis of the cell micrographs either by manual point-counting methods or by using a semi-automatic system: a BASIC program for ZX-Spectrum personal computer. Comput Biol Med. 1985, 15: 153-158. 10.1016/0010-4825(85)90028-9.PubMedCrossRef de Paz P, Barrio JP: Stereological parameters from the analysis of the cell micrographs either by manual point-counting methods or by using a semi-automatic system: a BASIC program for ZX-Spectrum personal computer. Comput Biol Med. 1985, 15: 153-158. 10.1016/0010-4825(85)90028-9.PubMedCrossRef
24.
go back to reference Horowitz A, Simons M: Branching morphogenesis. Cir Res. 2008, 103: 784-795. 10.1161/CIRCRESAHA.108.181818.CrossRef Horowitz A, Simons M: Branching morphogenesis. Cir Res. 2008, 103: 784-795. 10.1161/CIRCRESAHA.108.181818.CrossRef
25.
go back to reference Poulsen FR, Jahnsen H, Blaabjerg M, Zimmer J: Pilocarpine-induced seizure-like activity with increased BNDF and neuropeptide Y expression in organotypic hippocampal slice cultures. Brain Res. 2002, 950: 103-118. 10.1016/S0006-8993(02)03009-3.PubMedCrossRef Poulsen FR, Jahnsen H, Blaabjerg M, Zimmer J: Pilocarpine-induced seizure-like activity with increased BNDF and neuropeptide Y expression in organotypic hippocampal slice cultures. Brain Res. 2002, 950: 103-118. 10.1016/S0006-8993(02)03009-3.PubMedCrossRef
26.
go back to reference Ziobro JM, Deshpande LS, Delorenzo RJ: An organotypic hippocampal slice culture model of excitotoxic injury induced spontaneous recurrent epileptiform discharges. Brain Res. 2011, 1371: 110-120.PubMedCentralPubMedCrossRef Ziobro JM, Deshpande LS, Delorenzo RJ: An organotypic hippocampal slice culture model of excitotoxic injury induced spontaneous recurrent epileptiform discharges. Brain Res. 2011, 1371: 110-120.PubMedCentralPubMedCrossRef
27.
go back to reference de Bock F, Derijard B, Dornand J, Bockaert J, Rondouin G: The neuronal death induced by endotoxic shock but not that induced by excitatory amino acids requires TNF-alpha. Eur J Neurosci. 1998, 10: 3107-3114. 10.1046/j.1460-9568.1998.00317.x.PubMedCrossRef de Bock F, Derijard B, Dornand J, Bockaert J, Rondouin G: The neuronal death induced by endotoxic shock but not that induced by excitatory amino acids requires TNF-alpha. Eur J Neurosci. 1998, 10: 3107-3114. 10.1046/j.1460-9568.1998.00317.x.PubMedCrossRef
28.
29.
go back to reference Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ: Structure and function of the blood–brain barrier. Neurobiol Dis. 2010, 37: 13-25. 10.1016/j.nbd.2009.07.030.PubMedCrossRef Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ: Structure and function of the blood–brain barrier. Neurobiol Dis. 2010, 37: 13-25. 10.1016/j.nbd.2009.07.030.PubMedCrossRef
30.
go back to reference Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P: Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 2009, 335: 75-96. 10.1007/s00441-008-0658-9.PubMedCrossRef Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P: Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 2009, 335: 75-96. 10.1007/s00441-008-0658-9.PubMedCrossRef
31.
go back to reference Correale J, Villa A: Cellular elements of the blood–brain barrier. Neurochem Res. 2009, 34: 2067-2077. 10.1007/s11064-009-0081-y.PubMedCrossRef Correale J, Villa A: Cellular elements of the blood–brain barrier. Neurochem Res. 2009, 34: 2067-2077. 10.1007/s11064-009-0081-y.PubMedCrossRef
32.
go back to reference Bendfeldt K, Radojevic V, Kapfhammer J, Nitsch C: Basic fibroblast growth factor modulates density of blood vessels and preserves tight junctions in organotypic cortical cultures of mice: a new in vitro model of the blood–brain barrier. J Neurosci. 2007, 27: 3260-3267. 10.1523/JNEUROSCI.4033-06.2007.PubMedCrossRef Bendfeldt K, Radojevic V, Kapfhammer J, Nitsch C: Basic fibroblast growth factor modulates density of blood vessels and preserves tight junctions in organotypic cortical cultures of mice: a new in vitro model of the blood–brain barrier. J Neurosci. 2007, 27: 3260-3267. 10.1523/JNEUROSCI.4033-06.2007.PubMedCrossRef
33.
go back to reference Jarvela JT, Ruohonen S, Kukko-Lukjanov TK, Plysjuk A, Lopez-Picon FR, Holopainen IE: Kainic acid-induced neurodegeneration and activation of inflammatory processes in organotypic hippocampal slice cultures: treatment with cyclooxygenase-2 inhibitor does not prevent neuronal death. Neuropharmacology. 2011, 60: 1116-1125. 10.1016/j.neuropharm.2010.09.024.PubMedCrossRef Jarvela JT, Ruohonen S, Kukko-Lukjanov TK, Plysjuk A, Lopez-Picon FR, Holopainen IE: Kainic acid-induced neurodegeneration and activation of inflammatory processes in organotypic hippocampal slice cultures: treatment with cyclooxygenase-2 inhibitor does not prevent neuronal death. Neuropharmacology. 2011, 60: 1116-1125. 10.1016/j.neuropharm.2010.09.024.PubMedCrossRef
34.
go back to reference Barichello T, Generoso JS, Silvestre C, Costa CS, Carrodore MM, Cipriano AL, Michelon CM, Petronilho F, Dal-Pizzol F, Vilela MC, Teixeira AL: Circulating concentrations, cerebral output of the CINC-1 and blood-brain barrier disruption in Wistar rats after pneumococcal meningitis induction. Eur J Clin Microbiol Infect Dis. 2012, 31: 2005-2009. 10.1007/s10096-011-1533-2.PubMedCrossRef Barichello T, Generoso JS, Silvestre C, Costa CS, Carrodore MM, Cipriano AL, Michelon CM, Petronilho F, Dal-Pizzol F, Vilela MC, Teixeira AL: Circulating concentrations, cerebral output of the CINC-1 and blood-brain barrier disruption in Wistar rats after pneumococcal meningitis induction. Eur J Clin Microbiol Infect Dis. 2012, 31: 2005-2009. 10.1007/s10096-011-1533-2.PubMedCrossRef
35.
go back to reference Keeley EC, Mehrad B, Strieter RM: Chemokines as mediators of tumor angiogenesis and neovascularization. Exp Cell Res. 2011, 317: 685-690. 10.1016/j.yexcr.2010.10.020.PubMedCentralPubMedCrossRef Keeley EC, Mehrad B, Strieter RM: Chemokines as mediators of tumor angiogenesis and neovascularization. Exp Cell Res. 2011, 317: 685-690. 10.1016/j.yexcr.2010.10.020.PubMedCentralPubMedCrossRef
36.
go back to reference Ahuja SK, Murphy PM: The CXC chemokines growth-regulated oncogene (GRO) alpha, GRObeta, GROgamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J Biol Chem. 1996, 271: 20545-20550. 10.1074/jbc.271.34.20545.PubMedCrossRef Ahuja SK, Murphy PM: The CXC chemokines growth-regulated oncogene (GRO) alpha, GRObeta, GROgamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J Biol Chem. 1996, 271: 20545-20550. 10.1074/jbc.271.34.20545.PubMedCrossRef
37.
go back to reference Wolpe SD, Sherry B, Juers D, Davatelis G, Yurt RW, Cerami A: Identification and characterization of macrophage inflammatory protein 2. Proc Natl Acad Sci U S A. 1989, 86: 612-616. 10.1073/pnas.86.2.612.PubMedCentralPubMedCrossRef Wolpe SD, Sherry B, Juers D, Davatelis G, Yurt RW, Cerami A: Identification and characterization of macrophage inflammatory protein 2. Proc Natl Acad Sci U S A. 1989, 86: 612-616. 10.1073/pnas.86.2.612.PubMedCentralPubMedCrossRef
38.
go back to reference Linker R, Gold R, Luhder F: Function of neurotrophic factors beyond the nervous system: inflammation and autoimmune demyelination. Crit Rev Immunol. 2009, 29: 43-68. 10.1615/CritRevImmunol.v29.i1.20.PubMedCrossRef Linker R, Gold R, Luhder F: Function of neurotrophic factors beyond the nervous system: inflammation and autoimmune demyelination. Crit Rev Immunol. 2009, 29: 43-68. 10.1615/CritRevImmunol.v29.i1.20.PubMedCrossRef
39.
go back to reference Bernardini G, Ribatti D, Spinetti G, Morbidelli L, Ziche M, Santoni A, Capogrossi MC, Napolitano M: Analysis of the role of chemokines in angiogenesis. J Immunol Methods. 2003, 273: 83-101. 10.1016/S0022-1759(02)00420-9.PubMedCrossRef Bernardini G, Ribatti D, Spinetti G, Morbidelli L, Ziche M, Santoni A, Capogrossi MC, Napolitano M: Analysis of the role of chemokines in angiogenesis. J Immunol Methods. 2003, 273: 83-101. 10.1016/S0022-1759(02)00420-9.PubMedCrossRef
40.
go back to reference Pan Y, Lloyd C, Zhou H, Dolich S, Deeds J, Gonzalo JA, Vath J, Gosselin M, Ma J, Dussault B: Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature. 1997, 387: 611-617. 10.1038/42491.PubMedCrossRef Pan Y, Lloyd C, Zhou H, Dolich S, Deeds J, Gonzalo JA, Vath J, Gosselin M, Ma J, Dussault B: Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature. 1997, 387: 611-617. 10.1038/42491.PubMedCrossRef
41.
go back to reference Niu X, Wang H, Fu ZF: Role of chemokines in rabies pathogenesis and protection. Adv Virus Res. 2011, 79: 73-89.PubMedCrossRef Niu X, Wang H, Fu ZF: Role of chemokines in rabies pathogenesis and protection. Adv Virus Res. 2011, 79: 73-89.PubMedCrossRef
42.
go back to reference Iwami K, Natsume A, Wakabayashi T: Cytokine networks in glioma. Neurosurg Rev. 2011, 34: 253-263. 10.1007/s10143-011-0320-y. discussion 263-254PubMedCrossRef Iwami K, Natsume A, Wakabayashi T: Cytokine networks in glioma. Neurosurg Rev. 2011, 34: 253-263. 10.1007/s10143-011-0320-y. discussion 263-254PubMedCrossRef
43.
go back to reference Naldini A, Carraro F: Role of inflammatory mediators in angiogenesis. Curr Drug Targets Inflamm Allergy. 2005, 4: 3-8. 10.2174/1568010053622830.PubMedCrossRef Naldini A, Carraro F: Role of inflammatory mediators in angiogenesis. Curr Drug Targets Inflamm Allergy. 2005, 4: 3-8. 10.2174/1568010053622830.PubMedCrossRef
44.
go back to reference Schoenborn JR, Wilson CB: Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol. 2007, 96: 41-101.PubMedCrossRef Schoenborn JR, Wilson CB: Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol. 2007, 96: 41-101.PubMedCrossRef
45.
go back to reference Benveniste EN: Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am J Physiol. 1992, 263: C1-16.PubMed Benveniste EN: Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am J Physiol. 1992, 263: C1-16.PubMed
46.
go back to reference Gloor SM, Weber A, Adachi N, Frei K: Interleukin-1 modulates protein tyrosine phosphatase activity and permeability of brain endothelial cells. Biochem Biophys Res Commun. 1997, 239: 804-809. 10.1006/bbrc.1997.7557.PubMedCrossRef Gloor SM, Weber A, Adachi N, Frei K: Interleukin-1 modulates protein tyrosine phosphatase activity and permeability of brain endothelial cells. Biochem Biophys Res Commun. 1997, 239: 804-809. 10.1006/bbrc.1997.7557.PubMedCrossRef
47.
go back to reference Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y, Dinarello CA, Apte RN: IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci U S A. 2003, 100: 2645-2650. 10.1073/pnas.0437939100.PubMedCentralPubMedCrossRef Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y, Dinarello CA, Apte RN: IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci U S A. 2003, 100: 2645-2650. 10.1073/pnas.0437939100.PubMedCentralPubMedCrossRef
48.
go back to reference de Vries HE, Blom-Roosemalen MC, van Oosten M, de Boer AG, van Berkel TJ, Breimer DD, Kuiper J: The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol. 1996, 64: 37-43. 10.1016/0165-5728(95)00148-4.PubMedCrossRef de Vries HE, Blom-Roosemalen MC, van Oosten M, de Boer AG, van Berkel TJ, Breimer DD, Kuiper J: The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol. 1996, 64: 37-43. 10.1016/0165-5728(95)00148-4.PubMedCrossRef
49.
go back to reference Bar D, Apte RN, Voronov E, Dinarello CA, Cohen S: A continuous delivery system of IL-1 receptor antagonist reduces angiogenesis and inhibits tumor development. FASEB J. 2004, 18: 161-163.PubMed Bar D, Apte RN, Voronov E, Dinarello CA, Cohen S: A continuous delivery system of IL-1 receptor antagonist reduces angiogenesis and inhibits tumor development. FASEB J. 2004, 18: 161-163.PubMed
50.
go back to reference Banks WA, Erickson MA: The blood-brain barrier and immune function and dysfunction. Neurobiol Dis. 2010, 37: 26-32. 10.1016/j.nbd.2009.07.031.PubMedCrossRef Banks WA, Erickson MA: The blood-brain barrier and immune function and dysfunction. Neurobiol Dis. 2010, 37: 26-32. 10.1016/j.nbd.2009.07.031.PubMedCrossRef
51.
go back to reference Bae J, Park D, Lee YS, Jeoung D: Interleukin-2 promotes angiogenesis by activation of Akt and increase of ROS. J Microbiol Biotechnol. 2008, 18: 377-382.PubMed Bae J, Park D, Lee YS, Jeoung D: Interleukin-2 promotes angiogenesis by activation of Akt and increase of ROS. J Microbiol Biotechnol. 2008, 18: 377-382.PubMed
52.
go back to reference Dentelli P, Del Sorbo L, Rosso A, Molinar A, Garbarino G, Camussi G, Pegoraro L, Brizzi MF: Human IL-3 stimulates endothelial cell motility and promotes in vivo new vessel formation. J Immunol. 1999, 163: 2151-2159.PubMed Dentelli P, Del Sorbo L, Rosso A, Molinar A, Garbarino G, Camussi G, Pegoraro L, Brizzi MF: Human IL-3 stimulates endothelial cell motility and promotes in vivo new vessel formation. J Immunol. 1999, 163: 2151-2159.PubMed
53.
go back to reference Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S: The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011, 1813: 878-888. 10.1016/j.bbamcr.2011.01.034.PubMedCrossRef Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S: The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011, 1813: 878-888. 10.1016/j.bbamcr.2011.01.034.PubMedCrossRef
54.
go back to reference Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB: Interleukin-10 and related cytokines and receptors. Annu Rev Immunol. 2004, 22: 929-979. 10.1146/annurev.immunol.22.012703.104622.PubMedCrossRef Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB: Interleukin-10 and related cytokines and receptors. Annu Rev Immunol. 2004, 22: 929-979. 10.1146/annurev.immunol.22.012703.104622.PubMedCrossRef
55.
go back to reference Rossi DL, Vicari AP, Franz-Bacon K, McClanahan TK, Zlotnik A: Identification through bioinformatics of two new macrophage proinflammatory human chemokines: MIP-3alpha and MIP-3beta. J Immunol. 1997, 158: 1033-1036.PubMed Rossi DL, Vicari AP, Franz-Bacon K, McClanahan TK, Zlotnik A: Identification through bioinformatics of two new macrophage proinflammatory human chemokines: MIP-3alpha and MIP-3beta. J Immunol. 1997, 158: 1033-1036.PubMed
56.
go back to reference Terao S, Yilmaz G, Stokes KY, Russell J, Ishikawa M, Kawase T, Granger DN: Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation, and tissue injury after focal ischemia-reperfusion. Stroke. 2008, 39: 2560-2570. 10.1161/STROKEAHA.107.513150.PubMedCentralPubMedCrossRef Terao S, Yilmaz G, Stokes KY, Russell J, Ishikawa M, Kawase T, Granger DN: Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation, and tissue injury after focal ischemia-reperfusion. Stroke. 2008, 39: 2560-2570. 10.1161/STROKEAHA.107.513150.PubMedCentralPubMedCrossRef
57.
go back to reference Ikenaka Y, Yoshiji H, Kuriyama S, Yoshii J, Noguchi R, Tsujinoue H, Yanase K, Namisaki T, Imazu H, Masaki T, Fukui H: Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibits tumor growth and angiogenesis in the TIMP-1 transgenic mouse model. Int J Cancer. 2003, 105: 340-346. 10.1002/ijc.11094.PubMedCrossRef Ikenaka Y, Yoshiji H, Kuriyama S, Yoshii J, Noguchi R, Tsujinoue H, Yanase K, Namisaki T, Imazu H, Masaki T, Fukui H: Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibits tumor growth and angiogenesis in the TIMP-1 transgenic mouse model. Int J Cancer. 2003, 105: 340-346. 10.1002/ijc.11094.PubMedCrossRef
59.
go back to reference Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG: Astrocyte-derived VEGF-A drives blood–brain barrier disruption in CNS inflammatory disease. J Clin Invest. 2012, 122: 2454-2468. 10.1172/JCI60842.PubMedCentralPubMedCrossRef Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG: Astrocyte-derived VEGF-A drives blood–brain barrier disruption in CNS inflammatory disease. J Clin Invest. 2012, 122: 2454-2468. 10.1172/JCI60842.PubMedCentralPubMedCrossRef
60.
go back to reference Marcon J, Gagliardi B, Balosso S, Maroso M, Noe F, Morin M, Lerner-Natoli M, Vezzani A, Ravizza T: Age-dependent vascular changes induced by status epilepticus in rat forebrain: implications for epileptogenesis. Neurobiol Dis. 2009, 34: 121-132. 10.1016/j.nbd.2008.12.018.PubMedCrossRef Marcon J, Gagliardi B, Balosso S, Maroso M, Noe F, Morin M, Lerner-Natoli M, Vezzani A, Ravizza T: Age-dependent vascular changes induced by status epilepticus in rat forebrain: implications for epileptogenesis. Neurobiol Dis. 2009, 34: 121-132. 10.1016/j.nbd.2008.12.018.PubMedCrossRef
61.
go back to reference Nikitidou L, Kanter-Schlifke I, Dhondt J, Carmeliet P, Lambrechts D, Kokaia M: VEGF receptor-2 (flk-1) overexpression in mice counteracts focal epileptic seizures. PLoS One. 2012, 7: e40535-10.1371/journal.pone.0040535.PubMedCentralPubMedCrossRef Nikitidou L, Kanter-Schlifke I, Dhondt J, Carmeliet P, Lambrechts D, Kokaia M: VEGF receptor-2 (flk-1) overexpression in mice counteracts focal epileptic seizures. PLoS One. 2012, 7: e40535-10.1371/journal.pone.0040535.PubMedCentralPubMedCrossRef
62.
go back to reference Nag S, Papneja T, Venugopalan R, Stewart DJ: Increased angiopoietin2 expression is associated with endothelial apoptosis and blood–brain barrier breakdown. Lab Invest. 2005, 85: 1189-1198. 10.1038/labinvest.3700325.PubMedCrossRef Nag S, Papneja T, Venugopalan R, Stewart DJ: Increased angiopoietin2 expression is associated with endothelial apoptosis and blood–brain barrier breakdown. Lab Invest. 2005, 85: 1189-1198. 10.1038/labinvest.3700325.PubMedCrossRef
63.
go back to reference Shen F, Walker EJ, Jiang L, Degos V, Li J, Sun B, Heriyanto F, Young WL, Su H: Coexpression of angiopoietin-1 with VEGF increases the structural integrity of the blood–brain barrier and reduces atrophy volume. J Cereb Blood Flow. 2011, 31: 2343-2351. 10.1038/jcbfm.2011.97.CrossRef Shen F, Walker EJ, Jiang L, Degos V, Li J, Sun B, Heriyanto F, Young WL, Su H: Coexpression of angiopoietin-1 with VEGF increases the structural integrity of the blood–brain barrier and reduces atrophy volume. J Cereb Blood Flow. 2011, 31: 2343-2351. 10.1038/jcbfm.2011.97.CrossRef
64.
go back to reference Yu H, Wang P, An P, Xue Y: Recombinant human angiopoietin-1 ameliorates the expressions of ZO-1, occludin, VE-cadherin, and PKCalpha signaling after focal cerebral ischemia/reperfusion in rats. J Mol Neurosci. 2012, 46: 236-247. 10.1007/s12031-011-9584-5.PubMedCrossRef Yu H, Wang P, An P, Xue Y: Recombinant human angiopoietin-1 ameliorates the expressions of ZO-1, occludin, VE-cadherin, and PKCalpha signaling after focal cerebral ischemia/reperfusion in rats. J Mol Neurosci. 2012, 46: 236-247. 10.1007/s12031-011-9584-5.PubMedCrossRef
65.
go back to reference Zhu Y, Lee C, Shen F, Du R, Young WL, Yang GY: Angiopoietin-2 facilitates vascular endothelial growth factor-induced angiogenesis in the mature mouse brain. Stroke. 2005, 36: 1533-1537. 10.1161/01.STR.0000170712.46106.2e.PubMedCrossRef Zhu Y, Lee C, Shen F, Du R, Young WL, Yang GY: Angiopoietin-2 facilitates vascular endothelial growth factor-induced angiogenesis in the mature mouse brain. Stroke. 2005, 36: 1533-1537. 10.1161/01.STR.0000170712.46106.2e.PubMedCrossRef
66.
go back to reference Pena F: Organotypic cultures as tool to test long-term effects of chemicals on the nervous system. Curr Med Chem. 2010, 17: 987-1001. 10.2174/092986710790820679.PubMedCrossRef Pena F: Organotypic cultures as tool to test long-term effects of chemicals on the nervous system. Curr Med Chem. 2010, 17: 987-1001. 10.2174/092986710790820679.PubMedCrossRef
67.
go back to reference Sundstrom L, Morrison B, Bradley M, Pringle A: Organotypic cultures as tools for functional screening in the CNS. Drug Discov Today. 2005, 10: 993-1000. 10.1016/S1359-6446(05)03502-6.PubMedCrossRef Sundstrom L, Morrison B, Bradley M, Pringle A: Organotypic cultures as tools for functional screening in the CNS. Drug Discov Today. 2005, 10: 993-1000. 10.1016/S1359-6446(05)03502-6.PubMedCrossRef
68.
go back to reference Kovacs R, Papageorgiou I, Heinemann U: Slice cultures as a model to study neurovascular coupling and blood brain barrier in vitro. Cardiovasc Psychiatry Neurol. 2011, 2011: 646958-PubMedCentralPubMedCrossRef Kovacs R, Papageorgiou I, Heinemann U: Slice cultures as a model to study neurovascular coupling and blood brain barrier in vitro. Cardiovasc Psychiatry Neurol. 2011, 2011: 646958-PubMedCentralPubMedCrossRef
69.
go back to reference Mertsch K, Hanisch UK, Kettenmann H, Schnitzer J: Characterization of microglial cells and their response to stimulation in an organotypic retinal culture system. J Comp Neurol. 2001, 431: 217-227. 10.1002/1096-9861(20010305)431:2<217::AID-CNE1066>3.0.CO;2-T.PubMedCrossRef Mertsch K, Hanisch UK, Kettenmann H, Schnitzer J: Characterization of microglial cells and their response to stimulation in an organotypic retinal culture system. J Comp Neurol. 2001, 431: 217-227. 10.1002/1096-9861(20010305)431:2<217::AID-CNE1066>3.0.CO;2-T.PubMedCrossRef
70.
go back to reference Biron KE, Dickstein DL, Gopaul R, Jefferies WA: Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One. 2011, 6: e23789-10.1371/journal.pone.0023789.PubMedCentralPubMedCrossRef Biron KE, Dickstein DL, Gopaul R, Jefferies WA: Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One. 2011, 6: e23789-10.1371/journal.pone.0023789.PubMedCentralPubMedCrossRef
71.
go back to reference Jiao H, Wang Z, Liu Y, Wang P, Xue Y: Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood–brain barrier in a focal cerebral ischemic insult. J Mol Neurosci: MN. 2011, 44: 130-139. 10.1007/s12031-011-9496-4.PubMedCrossRef Jiao H, Wang Z, Liu Y, Wang P, Xue Y: Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood–brain barrier in a focal cerebral ischemic insult. J Mol Neurosci: MN. 2011, 44: 130-139. 10.1007/s12031-011-9496-4.PubMedCrossRef
72.
go back to reference Marchi N, Guiso G, Caccia S, Rizzi M, Gagliardi B, Noe F, Ravizza T, Bassanini S, Chimenti S, Battaglia G, Vezzani A: Determinants of drug brain uptake in a rat model of seizure-associated malformations of cortical development. Neurobiol Dis. 2006, 24: 429-442. 10.1016/j.nbd.2006.07.019.PubMedCrossRef Marchi N, Guiso G, Caccia S, Rizzi M, Gagliardi B, Noe F, Ravizza T, Bassanini S, Chimenti S, Battaglia G, Vezzani A: Determinants of drug brain uptake in a rat model of seizure-associated malformations of cortical development. Neurobiol Dis. 2006, 24: 429-442. 10.1016/j.nbd.2006.07.019.PubMedCrossRef
73.
go back to reference van Vliet EA, da Costa AS, Redeker S, van Schaik R, Aronica E, Gorter JA: Blood–brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 2007, 130: 521-534. 10.1093/brain/awl318.PubMedCrossRef van Vliet EA, da Costa AS, Redeker S, van Schaik R, Aronica E, Gorter JA: Blood–brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 2007, 130: 521-534. 10.1093/brain/awl318.PubMedCrossRef
74.
go back to reference Zlokovic BV: Neurodegeneration and the neurovascular unit. Nat Med. 2010, 16: 1370-1371. 10.1038/nm1210-1370.PubMedCrossRef Zlokovic BV: Neurodegeneration and the neurovascular unit. Nat Med. 2010, 16: 1370-1371. 10.1038/nm1210-1370.PubMedCrossRef
75.
go back to reference Boveri M, Berezowski V, Price A, Slupek S, Lenfant AM, Benaud C, Hartung T, Cecchelli R, Prieto P, Dehouck MP: Induction of blood–brain barrier properties in cultured brain capillary endothelial cells: comparison between primary glial cells and C6 cell line. Glia. 2005, 51: 187-198. 10.1002/glia.20189.PubMedCrossRef Boveri M, Berezowski V, Price A, Slupek S, Lenfant AM, Benaud C, Hartung T, Cecchelli R, Prieto P, Dehouck MP: Induction of blood–brain barrier properties in cultured brain capillary endothelial cells: comparison between primary glial cells and C6 cell line. Glia. 2005, 51: 187-198. 10.1002/glia.20189.PubMedCrossRef
76.
go back to reference Duport S, Stoppini L, Correges P: Electrophysiological approach of the antiepileptic effect of dexamethasone on hippocampal slice culture using a multirecording system: the Physiocard. Life Sci. 1997, 60: PL 251-256.CrossRef Duport S, Stoppini L, Correges P: Electrophysiological approach of the antiepileptic effect of dexamethasone on hippocampal slice culture using a multirecording system: the Physiocard. Life Sci. 1997, 60: PL 251-256.CrossRef
77.
go back to reference Zlokovic BV: Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011, 12: 723-738.PubMedCentralPubMed Zlokovic BV: Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011, 12: 723-738.PubMedCentralPubMed
Metadata
Title
Organotypic brain slices: a model to study the neurovascular unit micro-environment in epilepsies
Authors
Mélanie Morin-Brureau
Frédéric De Bock
Mireille Lerner-Natoli
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2013
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/2045-8118-10-11

Other articles of this Issue 1/2013

Fluids and Barriers of the CNS 1/2013 Go to the issue