Skip to main content
Top
Published in: Molecular Autism 1/2013

Open Access 01-12-2013 | Research

Decitabine alters the expression of Mecp2 isoforms via dynamic DNA methylation at the Mecp2 regulatory elements in neural stem cells

Authors: Vichithra RB Liyanage, Robby M Zachariah, Mojgan Rastegar

Published in: Molecular Autism | Issue 1/2013

Login to get access

Abstract

Background

Aberrant MeCP2 expression in brain is associated with neurodevelopmental disorders including autism. In the brain of stressed mouse and autistic human patients, reduced MeCP2 expression is correlated with Mecp2/MECP2 promoter hypermethylation. Altered expression of MeCP2 isoforms (MeCP2E1 and MeCP2E2) is associated with neurological disorders, highlighting the importance of proper regulation of both isoforms. While known regulatory elements (REs) within the MECP2/Mecp2 promoter and intron 1 are involved in MECP2/Mecp2 regulation, Mecp2 isoform-specific regulatory mechanisms are unknown. We hypothesized that DNA methylation at these REs may impact the expression of Mecp2 isoforms.

Methods

We used a previously characterized in vitro differentiating neural stem cell (NSC) system to investigate the interplay between Mecp2 isoform-specific expression and DNA methylation at the Mecp2 REs. We studied altered expression of Mecp2 isoforms, affected by global DNA demethylation and remethylation, induced by exposure and withdrawal of decitabine (5-Aza-2′-deoxycytidine). Further, we performed correlation analysis between DNA methylation at the Mecp2 REs and the expression of Mecp2 isoforms after decitabine exposure and withdrawal.

Results

At different stages of NSC differentiation, Mecp2 isoforms showed reciprocal expression patterns associated with minor, but significant changes in DNA methylation at the Mecp2 REs. Decitabine treatment induced Mecp2e1/MeCP2E1 (but not Mecp2e2) expression at day (D) 2, associated with DNA demethylation at the Mecp2 REs. In contrast, decitabine withdrawal downregulated both Mecp2 isoforms to different extents at D8, without affecting DNA methylation at the Mecp2 REs. NSC cell fate commitment was minimally affected by decitabine under tested conditions. Expression of both isoforms negatively correlated with methylation at specific regions of the Mecp2 promoter, both at D2 and D8. The correlation between intron 1 methylation and Mecp2e1 (but not Mecp2e2) varied depending on the stage of NSC differentiation (D2: negative; D8: positive).

Conclusions

Our results show the correlation between the expression of Mecp2 isoforms and DNA methylation in differentiating NSC, providing insights on the potential role of DNA methylation at the Mecp2 REs in Mecp2 isoform-specific expression. The ability of decitabine to induce Mecp2e1/MeCP2E1, but not Mecp2e2 suggests differential sensitivity of Mecp2 isoforms to decitabine and is important for future drug therapies for autism.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zachariah RM, Rastegar M: Linking epigenetics to human disease and Rett syndrome: the emerging novel and challenging concepts in MeCP2 research. Neural plast. 2012, 2012: 415825-PubMedCentralPubMed Zachariah RM, Rastegar M: Linking epigenetics to human disease and Rett syndrome: the emerging novel and challenging concepts in MeCP2 research. Neural plast. 2012, 2012: 415825-PubMedCentralPubMed
2.
go back to reference Nagarajan RP, Hogart AR, Gwye Y, Martin MR, LaSalle JM: Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics. 2006, 1: e1-e11. 10.4161/epi.1.1.2642.PubMedCentralCrossRefPubMed Nagarajan RP, Hogart AR, Gwye Y, Martin MR, LaSalle JM: Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics. 2006, 1: e1-e11. 10.4161/epi.1.1.2642.PubMedCentralCrossRefPubMed
3.
go back to reference Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY: Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999, 23: 185-188. 10.1038/13810.CrossRefPubMed Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY: Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999, 23: 185-188. 10.1038/13810.CrossRefPubMed
4.
go back to reference Kriaucionis S, Bird A: The major form of MeCP2 has a novel N-terminus generated by alternative splicing. Nucleic Acids Res. 2004, 32: 1818-1823. 10.1093/nar/gkh349.PubMedCentralCrossRefPubMed Kriaucionis S, Bird A: The major form of MeCP2 has a novel N-terminus generated by alternative splicing. Nucleic Acids Res. 2004, 32: 1818-1823. 10.1093/nar/gkh349.PubMedCentralCrossRefPubMed
5.
go back to reference Mnatzakanian GN, Lohi H, Munteanu I, Alfred SE, Yamada T, MacLeod PJ, Jones JR, Scherer SW, Schanen NC, Friez MJ, Vincent JB, Minassian BA: A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet. 2004, 36: 339-341. 10.1038/ng1327.CrossRefPubMed Mnatzakanian GN, Lohi H, Munteanu I, Alfred SE, Yamada T, MacLeod PJ, Jones JR, Scherer SW, Schanen NC, Friez MJ, Vincent JB, Minassian BA: A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet. 2004, 36: 339-341. 10.1038/ng1327.CrossRefPubMed
6.
go back to reference Dragich JM, Kim YH, Arnold AP, Schanen NC: Differential distribution of the MeCP2 splices variants in the postnatal mouse brain. J Comp Neurol. 2007, 501: 526-542. 10.1002/cne.21264.CrossRefPubMed Dragich JM, Kim YH, Arnold AP, Schanen NC: Differential distribution of the MeCP2 splices variants in the postnatal mouse brain. J Comp Neurol. 2007, 501: 526-542. 10.1002/cne.21264.CrossRefPubMed
7.
go back to reference Zachariah RM, Olson CO, Ezeonwuka C, Rastegar M: Novel MeCP2 isoform-specific antibody reveals the endogenous MeCP2E1 expression in murine brain, primary neurons and astrocytes. PloS one. 2012, 7: e49763-10.1371/journal.pone.0049763.PubMedCentralCrossRefPubMed Zachariah RM, Olson CO, Ezeonwuka C, Rastegar M: Novel MeCP2 isoform-specific antibody reveals the endogenous MeCP2E1 expression in murine brain, primary neurons and astrocytes. PloS one. 2012, 7: e49763-10.1371/journal.pone.0049763.PubMedCentralCrossRefPubMed
8.
go back to reference Saunders CJ, Minassian BE, Chow EW, Zhao W, Vincent JB: Novel exon 1 mutations in MECP2 implicate isoform MeCP2_e1 in classical Rett syndrome. Am J Med Genet Part A. 2009, 149A: 1019-1023. 10.1002/ajmg.a.32776.CrossRefPubMed Saunders CJ, Minassian BE, Chow EW, Zhao W, Vincent JB: Novel exon 1 mutations in MECP2 implicate isoform MeCP2_e1 in classical Rett syndrome. Am J Med Genet Part A. 2009, 149A: 1019-1023. 10.1002/ajmg.a.32776.CrossRefPubMed
9.
go back to reference Fichou Y, Nectoux J, Bahi-Buisson N, Rosas-Vargas H, Girard B, Chelly J, Bienvenu T: The first missense mutation causing Rett syndrome specifically affecting the MeCP2_e1 isoform. Neurogenet. 2009, 10: 127-133. 10.1007/s10048-008-0161-1.CrossRef Fichou Y, Nectoux J, Bahi-Buisson N, Rosas-Vargas H, Girard B, Chelly J, Bienvenu T: The first missense mutation causing Rett syndrome specifically affecting the MeCP2_e1 isoform. Neurogenet. 2009, 10: 127-133. 10.1007/s10048-008-0161-1.CrossRef
10.
go back to reference Dastidar SG, Bardai FH, Ma C, Price V, Rawat V, Verma P, Narayanan V, D’Mello SR: Isoform-specific toxicity of Mecp2 in postmitotic neurons: suppression of neurotoxicity by FoxG1. J Neurosci. 2012, 32: 2846-2855. 10.1523/JNEUROSCI.5841-11.2012.PubMedCentralCrossRefPubMed Dastidar SG, Bardai FH, Ma C, Price V, Rawat V, Verma P, Narayanan V, D’Mello SR: Isoform-specific toxicity of Mecp2 in postmitotic neurons: suppression of neurotoxicity by FoxG1. J Neurosci. 2012, 32: 2846-2855. 10.1523/JNEUROSCI.5841-11.2012.PubMedCentralCrossRefPubMed
11.
go back to reference Williamson SL, Christodoulou J: Rett syndrome: new clinical and molecular insights. Eur J Hum Genet. 2006, 14: 896-903. 10.1038/sj.ejhg.5201580.CrossRefPubMed Williamson SL, Christodoulou J: Rett syndrome: new clinical and molecular insights. Eur J Hum Genet. 2006, 14: 896-903. 10.1038/sj.ejhg.5201580.CrossRefPubMed
12.
go back to reference Liu J, Francke U: Identification of cis-regulatory elements for MECP2 expression. Hum Mol Genet. 2006, 15: 1769-1782. 10.1093/hmg/ddl099.CrossRefPubMed Liu J, Francke U: Identification of cis-regulatory elements for MECP2 expression. Hum Mol Genet. 2006, 15: 1769-1782. 10.1093/hmg/ddl099.CrossRefPubMed
13.
go back to reference Adachi M, Keefer EW, Jones FS: A segment of the Mecp2 promoter is sufficient to drive expression in neurons. Hum Mol Genet. 2005, 14: 3709-3722. 10.1093/hmg/ddi402.CrossRefPubMed Adachi M, Keefer EW, Jones FS: A segment of the Mecp2 promoter is sufficient to drive expression in neurons. Hum Mol Genet. 2005, 14: 3709-3722. 10.1093/hmg/ddi402.CrossRefPubMed
14.
go back to reference Jugloff DG, Vandamme K, Logan R, Visanji NP, Brotchie JM, Eubanks JH: Targeted delivery of an Mecp2 transgene to forebrain neurons improves the behavior of female Mecp2-deficient mice. Hum Mol Genet. 2008, 17: 1386-1396. 10.1093/hmg/ddn026.CrossRefPubMed Jugloff DG, Vandamme K, Logan R, Visanji NP, Brotchie JM, Eubanks JH: Targeted delivery of an Mecp2 transgene to forebrain neurons improves the behavior of female Mecp2-deficient mice. Hum Mol Genet. 2008, 17: 1386-1396. 10.1093/hmg/ddn026.CrossRefPubMed
15.
go back to reference Kerr B, Soto CJ, Saez M, Abrams A, Walz K, Young JI: Transgenic complementation of MeCP2 deficiency: phenotypic rescue of Mecp2-null mice by isoform-specific transgenes. Eur J Hum Genet. 2012, 20: 69-76. 10.1038/ejhg.2011.145.PubMedCentralCrossRefPubMed Kerr B, Soto CJ, Saez M, Abrams A, Walz K, Young JI: Transgenic complementation of MeCP2 deficiency: phenotypic rescue of Mecp2-null mice by isoform-specific transgenes. Eur J Hum Genet. 2012, 20: 69-76. 10.1038/ejhg.2011.145.PubMedCentralCrossRefPubMed
16.
go back to reference Collins AL, Levenson JM, Vilaythong AP, Richman R, Armstrong DL, Noebels JL, David Sweatt J, Zoghbi HY: Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet. 2004, 13: 2679-2689. 10.1093/hmg/ddh282.CrossRefPubMed Collins AL, Levenson JM, Vilaythong AP, Richman R, Armstrong DL, Noebels JL, David Sweatt J, Zoghbi HY: Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet. 2004, 13: 2679-2689. 10.1093/hmg/ddh282.CrossRefPubMed
17.
go back to reference Luikenhuis S, Giacometti E, Beard CF, Jaenisch R: Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc Nat Acad Sci USA. 2004, 101: 6033-6038. 10.1073/pnas.0401626101.PubMedCentralCrossRefPubMed Luikenhuis S, Giacometti E, Beard CF, Jaenisch R: Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc Nat Acad Sci USA. 2004, 101: 6033-6038. 10.1073/pnas.0401626101.PubMedCentralCrossRefPubMed
18.
go back to reference Singh J, Saxena A, Christodoulou J, Ravine D: MECP2 genomic structure and function: insights from ENCODE. Nucleic Acids Res. 2008, 36: 6035-6047. 10.1093/nar/gkn591.PubMedCentralCrossRefPubMed Singh J, Saxena A, Christodoulou J, Ravine D: MECP2 genomic structure and function: insights from ENCODE. Nucleic Acids Res. 2008, 36: 6035-6047. 10.1093/nar/gkn591.PubMedCentralCrossRefPubMed
19.
go back to reference Nagarajan RP, Patzel KA, Martin M, Yasui DH, Swanberg SE, Hertz-Picciotto I, Hansen RL, Van de Water J, Pessah IN, Jiang R, Robinson WP, LaSalle JM: MECP2 promoter methylation and X chromosome inactivation in autism. Autism Res. 2008, 1: 169-178. 10.1002/aur.24.PubMedCentralCrossRefPubMed Nagarajan RP, Patzel KA, Martin M, Yasui DH, Swanberg SE, Hertz-Picciotto I, Hansen RL, Van de Water J, Pessah IN, Jiang R, Robinson WP, LaSalle JM: MECP2 promoter methylation and X chromosome inactivation in autism. Autism Res. 2008, 1: 169-178. 10.1002/aur.24.PubMedCentralCrossRefPubMed
20.
go back to reference Franklin TB, Russig H, Weiss IC, Graff J, Linder N, Michalon A, Vizi S, Mansuy IM: Epigenetic transmission of the impact of early stress across generations. Biol Psych. 2010, 68: 408-415.CrossRef Franklin TB, Russig H, Weiss IC, Graff J, Linder N, Michalon A, Vizi S, Mansuy IM: Epigenetic transmission of the impact of early stress across generations. Biol Psych. 2010, 68: 408-415.CrossRef
21.
go back to reference Delcuve GP, Rastegar M, Davie JR: Epigenetic control. J Cell Phys. 2009, 219: 243-250. 10.1002/jcp.21678.CrossRef Delcuve GP, Rastegar M, Davie JR: Epigenetic control. J Cell Phys. 2009, 219: 243-250. 10.1002/jcp.21678.CrossRef
22.
go back to reference Liyanage VRB, Zachariah RM, Delcuve GP, Davie JR, Rastegar M: New Developments in Chromatin Research: An Epigenetic Perspective. New Developments in Chromatin Research. Edited by: Simpson NM, Stewart VJ. 2012, NY, USA: Nova Science Publishers, 29-58. Liyanage VRB, Zachariah RM, Delcuve GP, Davie JR, Rastegar M: New Developments in Chromatin Research: An Epigenetic Perspective. New Developments in Chromatin Research. Edited by: Simpson NM, Stewart VJ. 2012, NY, USA: Nova Science Publishers, 29-58.
23.
go back to reference Jeltsch A: Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem. 2002, 3: 274-293. 10.1002/1439-7633(20020402)3:4<274::AID-CBIC274>3.0.CO;2-S.CrossRefPubMed Jeltsch A: Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem. 2002, 3: 274-293. 10.1002/1439-7633(20020402)3:4<274::AID-CBIC274>3.0.CO;2-S.CrossRefPubMed
24.
go back to reference Kriaucionis S, Heintz N: The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009, 324: 929-930. 10.1126/science.1169786.PubMedCentralCrossRefPubMed Kriaucionis S, Heintz N: The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009, 324: 929-930. 10.1126/science.1169786.PubMedCentralCrossRefPubMed
25.
go back to reference Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009, 324: 930-935. 10.1126/science.1170116.PubMedCentralCrossRefPubMed Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009, 324: 930-935. 10.1126/science.1170116.PubMedCentralCrossRefPubMed
26.
go back to reference Elango N, Yi SV: DNA methylation and structural and functional bimodality of vertebrate promoters. Mol Biol Evol. 2008, 25: 1602-1608. 10.1093/molbev/msn110.CrossRefPubMed Elango N, Yi SV: DNA methylation and structural and functional bimodality of vertebrate promoters. Mol Biol Evol. 2008, 25: 1602-1608. 10.1093/molbev/msn110.CrossRefPubMed
27.
go back to reference Flores K, Wolschin F, Corneveaux JJ, Allen AN, Huentelman MJ, Amdam GV: Genome-wide association between DNA methylation and alternative splicing in an invertebrate. BMC genomics. 2012, 13: 480-10.1186/1471-2164-13-480.PubMedCentralCrossRefPubMed Flores K, Wolschin F, Corneveaux JJ, Allen AN, Huentelman MJ, Amdam GV: Genome-wide association between DNA methylation and alternative splicing in an invertebrate. BMC genomics. 2012, 13: 480-10.1186/1471-2164-13-480.PubMedCentralCrossRefPubMed
28.
go back to reference Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S: CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011, 479: 74-79. 10.1038/nature10442.CrossRefPubMed Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S: CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011, 479: 74-79. 10.1038/nature10442.CrossRefPubMed
29.
go back to reference Mossman D, Kim KT, Scott RJ: Demethylation by 5-aza-2′-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists. BMC cancer. 2010, 10: 366-10.1186/1471-2407-10-366.PubMedCentralCrossRefPubMed Mossman D, Kim KT, Scott RJ: Demethylation by 5-aza-2′-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists. BMC cancer. 2010, 10: 366-10.1186/1471-2407-10-366.PubMedCentralCrossRefPubMed
30.
go back to reference Ishimaru N, Fukuchi M, Hirai A, Chiba Y, Tamura T, Takahashi N, Tabuchi A, Tsuda M, Shiraishi M: Differential epigenetic regulation of BDNF and NT-3 genes by trichostatin A and 5-aza-2′-deoxycytidine in Neuro-2a cells. Biochem Biophys Res Comm. 2010, 394: 173-177. 10.1016/j.bbrc.2010.02.139.CrossRefPubMed Ishimaru N, Fukuchi M, Hirai A, Chiba Y, Tamura T, Takahashi N, Tabuchi A, Tsuda M, Shiraishi M: Differential epigenetic regulation of BDNF and NT-3 genes by trichostatin A and 5-aza-2′-deoxycytidine in Neuro-2a cells. Biochem Biophys Res Comm. 2010, 394: 173-177. 10.1016/j.bbrc.2010.02.139.CrossRefPubMed
31.
go back to reference Bazan E, Alonso FJ, Redondo C, Lopez-Toledano MA, Alfaro JM, Reimers D, Herranz AS, Paino CL, Serrano AB, Cobacho N, Caso E, Lobo MV: In vitro and in vivo characterization of neural stem cells. Histol Histopathol. 2004, 19: 1261-1275.PubMed Bazan E, Alonso FJ, Redondo C, Lopez-Toledano MA, Alfaro JM, Reimers D, Herranz AS, Paino CL, Serrano AB, Cobacho N, Caso E, Lobo MV: In vitro and in vivo characterization of neural stem cells. Histol Histopathol. 2004, 19: 1261-1275.PubMed
32.
go back to reference Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D: Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol. 1999, 208: 166-188. 10.1006/dbio.1998.9192.CrossRefPubMed Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D: Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol. 1999, 208: 166-188. 10.1006/dbio.1998.9192.CrossRefPubMed
33.
go back to reference Bartl J, Mori T, Riederer P, Ozawa H, Grunblatt E: Methylphenidate enhances neural stem cell differentiation. J Mol Psych. 2013, 1: 5-10.1186/2049-9256-1-5.CrossRef Bartl J, Mori T, Riederer P, Ozawa H, Grunblatt E: Methylphenidate enhances neural stem cell differentiation. J Mol Psych. 2013, 1: 5-10.1186/2049-9256-1-5.CrossRef
34.
go back to reference Kishi N, Macklis JD: MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci. 2004, 27: 306-321. 10.1016/j.mcn.2004.07.006.CrossRefPubMed Kishi N, Macklis JD: MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci. 2004, 27: 306-321. 10.1016/j.mcn.2004.07.006.CrossRefPubMed
35.
go back to reference Rastegar M, Hotta A, Pasceri P, Makarem M, Cheung AY, Elliott S, Park KJ, Adachi M, Jones FS, Clarke ID, Dirks P, Ellis J: MECP2 isoform-specific vectors with regulated expression for Rett syndrome gene therapy. PloS one. 2009, 4: e6810-10.1371/journal.pone.0006810.PubMedCentralCrossRefPubMed Rastegar M, Hotta A, Pasceri P, Makarem M, Cheung AY, Elliott S, Park KJ, Adachi M, Jones FS, Clarke ID, Dirks P, Ellis J: MECP2 isoform-specific vectors with regulated expression for Rett syndrome gene therapy. PloS one. 2009, 4: e6810-10.1371/journal.pone.0006810.PubMedCentralCrossRefPubMed
36.
37.
go back to reference Barber BA, Liyanage VR, Zachariah RM, Olson CO, Bailey MA: Dynamic expression of MEIS1 homeoprotein in E14.5 forebrain and differentiated forebrain-derived neural stem cells. Ann Anat. 2013, 195: 431-440. 10.1016/j.aanat.2013.04.005.CrossRefPubMed Barber BA, Liyanage VR, Zachariah RM, Olson CO, Bailey MA: Dynamic expression of MEIS1 homeoprotein in E14.5 forebrain and differentiated forebrain-derived neural stem cells. Ann Anat. 2013, 195: 431-440. 10.1016/j.aanat.2013.04.005.CrossRefPubMed
38.
go back to reference Lambert JF, Benoit BO, Colvin GA, Carlson J, Delville Y, Quesenberry PJ: Quick sex determination of mouse fetuses. J Neurosci Methods. 2000, 95: 127-132. 10.1016/S0165-0270(99)00157-0.CrossRefPubMed Lambert JF, Benoit BO, Colvin GA, Carlson J, Delville Y, Quesenberry PJ: Quick sex determination of mouse fetuses. J Neurosci Methods. 2000, 95: 127-132. 10.1016/S0165-0270(99)00157-0.CrossRefPubMed
39.
go back to reference Hartshorn C, Rice JE, Wangh LJ: Developmentally-regulated changes of Xist RNA levels in single preimplantation mouse embryos, as revealed by quantitative real-time PCR. Mol Reprod Dev. 2002, 61: 425-436. 10.1002/mrd.10037.CrossRefPubMed Hartshorn C, Rice JE, Wangh LJ: Developmentally-regulated changes of Xist RNA levels in single preimplantation mouse embryos, as revealed by quantitative real-time PCR. Mol Reprod Dev. 2002, 61: 425-436. 10.1002/mrd.10037.CrossRefPubMed
40.
go back to reference Kobrossy L, Rastegar M, Featherstone M: Interplay between chromatin and trans-acting factors regulating the Hoxd4 promoter during neural differentiation. J Biol Chem. 2006, 281: 25926-25939. 10.1074/jbc.M602555200.CrossRefPubMed Kobrossy L, Rastegar M, Featherstone M: Interplay between chromatin and trans-acting factors regulating the Hoxd4 promoter during neural differentiation. J Biol Chem. 2006, 281: 25926-25939. 10.1074/jbc.M602555200.CrossRefPubMed
41.
go back to reference Nolte C, Rastegar M, Amores A, Bouchard M, Grote D, Maas R, Kovacs EN, Postlethwait J, Rambaldi I, Rowan S, Yan YL, Zhang F, Featherstone M: Stereospecificity and PAX6 function direct Hoxd4 neural enhancer activity along the antero-posterior axis. Dev Biol. 2006, 299: 582-593. 10.1016/j.ydbio.2006.08.061.CrossRefPubMed Nolte C, Rastegar M, Amores A, Bouchard M, Grote D, Maas R, Kovacs EN, Postlethwait J, Rambaldi I, Rowan S, Yan YL, Zhang F, Featherstone M: Stereospecificity and PAX6 function direct Hoxd4 neural enhancer activity along the antero-posterior axis. Dev Biol. 2006, 299: 582-593. 10.1016/j.ydbio.2006.08.061.CrossRefPubMed
42.
go back to reference Huang H, Rastegar M, Bodner C, Goh SL, Rambaldi I, Featherstone M: MEIS C termini harbor transcriptional activation domains that respond to cell signaling. J Biol Chem. 2005, 280: 10119-10127. 10.1074/jbc.M413963200.CrossRefPubMed Huang H, Rastegar M, Bodner C, Goh SL, Rambaldi I, Featherstone M: MEIS C termini harbor transcriptional activation domains that respond to cell signaling. J Biol Chem. 2005, 280: 10119-10127. 10.1074/jbc.M413963200.CrossRefPubMed
43.
go back to reference Rastegar M, Kobrossy L, Kovacs EN, Rambaldi I, Featherstone M: Sequential histone modifications at Hoxd4 regulatory regions distinguish anterior from posterior embryonic compartments. Mol Cel Biol. 2004, 24: 8090-8103. 10.1128/MCB.24.18.8090-8103.2004.CrossRef Rastegar M, Kobrossy L, Kovacs EN, Rambaldi I, Featherstone M: Sequential histone modifications at Hoxd4 regulatory regions distinguish anterior from posterior embryonic compartments. Mol Cel Biol. 2004, 24: 8090-8103. 10.1128/MCB.24.18.8090-8103.2004.CrossRef
44.
go back to reference Manczak M, Mao P, Nakamura K, Bebbington C, Park B, Reddy PH: Neutralization of granulocyte macrophage colony-stimulating factor decreases amyloid beta 1–42 and suppresses microglial activity in a transgenic mouse model of Alzheimer’s disease. Hum Mol Genet. 2009, 18: 3876-3893. 10.1093/hmg/ddp331.PubMedCentralCrossRefPubMed Manczak M, Mao P, Nakamura K, Bebbington C, Park B, Reddy PH: Neutralization of granulocyte macrophage colony-stimulating factor decreases amyloid beta 1–42 and suppresses microglial activity in a transgenic mouse model of Alzheimer’s disease. Hum Mol Genet. 2009, 18: 3876-3893. 10.1093/hmg/ddp331.PubMedCentralCrossRefPubMed
45.
go back to reference Tsoporis JN, Marks A, Haddad A, Dawood F, Liu PP, Parker TG: S100B expression modulates left ventricular remodeling after myocardial infarction in mice. Circulation. 2005, 111: 598-606. 10.1161/01.CIR.0000154554.65287.F5.CrossRefPubMed Tsoporis JN, Marks A, Haddad A, Dawood F, Liu PP, Parker TG: S100B expression modulates left ventricular remodeling after myocardial infarction in mice. Circulation. 2005, 111: 598-606. 10.1161/01.CIR.0000154554.65287.F5.CrossRefPubMed
46.
go back to reference Schneider L, d’Adda di Fagagna F: Neural stem cells exposed to BrdU lose their global DNA methylation and undergo astrocytic differentiation. Nucleic Acids Res. 2012, 40: 5332-5342. 10.1093/nar/gks207.PubMedCentralCrossRefPubMed Schneider L, d’Adda di Fagagna F: Neural stem cells exposed to BrdU lose their global DNA methylation and undergo astrocytic differentiation. Nucleic Acids Res. 2012, 40: 5332-5342. 10.1093/nar/gks207.PubMedCentralCrossRefPubMed
47.
go back to reference Mack JT, Beljanski V, Soulika AM, Townsend DM, Brown CB, Davis W, Tew KD: “Skittish” Abca2 knockout mice display tremor, hyperactivity, and abnormal myelin ultrastructure in the central nervous system. Mol Cell Biol. 2007, 27: 44-53. 10.1128/MCB.01824-06.PubMedCentralCrossRefPubMed Mack JT, Beljanski V, Soulika AM, Townsend DM, Brown CB, Davis W, Tew KD: “Skittish” Abca2 knockout mice display tremor, hyperactivity, and abnormal myelin ultrastructure in the central nervous system. Mol Cell Biol. 2007, 27: 44-53. 10.1128/MCB.01824-06.PubMedCentralCrossRefPubMed
48.
go back to reference Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T, Jacob ST: 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol. 2005, 25: 4727-4741. 10.1128/MCB.25.11.4727-4741.2005.PubMedCentralCrossRefPubMed Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T, Jacob ST: 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol. 2005, 25: 4727-4741. 10.1128/MCB.25.11.4727-4741.2005.PubMedCentralCrossRefPubMed
49.
go back to reference Rastegar M, Rousseau GG, Lemaigre FP: CCAAT/enhancer-binding protein-alpha is a component of the growth hormone-regulated network of liver transcription factors. Endocrinol. 2000, 141: 1686-1692. Rastegar M, Rousseau GG, Lemaigre FP: CCAAT/enhancer-binding protein-alpha is a component of the growth hormone-regulated network of liver transcription factors. Endocrinol. 2000, 141: 1686-1692.
50.
go back to reference Wu CH, Rastegar M, Gordon J, Safa AR: Beta(2)-microglobulin induces apoptosis in HL-60 human leukemia cell line and its multidrug resistant variants overexpressing MRP1 but lacking Bax or overexpressing P-glycoprotein. Oncogene. 2001, 20: 7006-7020. 10.1038/sj.onc.1204893.CrossRefPubMed Wu CH, Rastegar M, Gordon J, Safa AR: Beta(2)-microglobulin induces apoptosis in HL-60 human leukemia cell line and its multidrug resistant variants overexpressing MRP1 but lacking Bax or overexpressing P-glycoprotein. Oncogene. 2001, 20: 7006-7020. 10.1038/sj.onc.1204893.CrossRefPubMed
51.
go back to reference Gordon J, Wu CH, Rastegar M, Safa AR: Beta2-microglobulin induces caspase-dependent apoptosis in the CCRF-HSB-2 human leukemia cell line independently of the caspase-3, -8 and -9 pathways but through increased reactive oxygen species. Int J Cancer. 2003, 103: 316-327. 10.1002/ijc.10828.CrossRefPubMed Gordon J, Wu CH, Rastegar M, Safa AR: Beta2-microglobulin induces caspase-dependent apoptosis in the CCRF-HSB-2 human leukemia cell line independently of the caspase-3, -8 and -9 pathways but through increased reactive oxygen species. Int J Cancer. 2003, 103: 316-327. 10.1002/ijc.10828.CrossRefPubMed
52.
go back to reference Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Liu XS, Aravind L, Agarwal S, Maciejewski JP, Rao A: Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010, 468: 839-843. 10.1038/nature09586.PubMedCentralCrossRefPubMed Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Liu XS, Aravind L, Agarwal S, Maciejewski JP, Rao A: Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010, 468: 839-843. 10.1038/nature09586.PubMedCentralCrossRefPubMed
53.
go back to reference Choufani S, Shapiro JS, Susiarjo M, Butcher DT, Grafodatskaya D, Lou Y, Ferreira JC, Pinto D, Scherer SW, Shaffer LG, Coullin P, Caniggia I, Beyene J, Slim R, Bartolomei MS, Weksberg R: A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes. Genome Res. 2011, 21: 465-476. 10.1101/gr.111922.110.PubMedCentralCrossRefPubMed Choufani S, Shapiro JS, Susiarjo M, Butcher DT, Grafodatskaya D, Lou Y, Ferreira JC, Pinto D, Scherer SW, Shaffer LG, Coullin P, Caniggia I, Beyene J, Slim R, Bartolomei MS, Weksberg R: A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes. Genome Res. 2011, 21: 465-476. 10.1101/gr.111922.110.PubMedCentralCrossRefPubMed
54.
go back to reference Nandakumar V, Vaid M, Katiyar SK: (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogen. 2011, 32: 537-544. 10.1093/carcin/bgq285.CrossRef Nandakumar V, Vaid M, Katiyar SK: (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogen. 2011, 32: 537-544. 10.1093/carcin/bgq285.CrossRef
55.
go back to reference Liu Q, Yang L, Gong C, Tao G, Huang H, Liu J, Zhang H, Wu D, Xia B, Hu G, Wang K, Zhuang Z: Effects of long-term low-dose formaldehyde exposure on global genomic hypomethylation in 16HBE cells. Toxicol Lett. 2011, 205: 235-240. 10.1016/j.toxlet.2011.05.1039.CrossRefPubMed Liu Q, Yang L, Gong C, Tao G, Huang H, Liu J, Zhang H, Wu D, Xia B, Hu G, Wang K, Zhuang Z: Effects of long-term low-dose formaldehyde exposure on global genomic hypomethylation in 16HBE cells. Toxicol Lett. 2011, 205: 235-240. 10.1016/j.toxlet.2011.05.1039.CrossRefPubMed
56.
go back to reference Christman JK: 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002, 21: 5483-5495. 10.1038/sj.onc.1205699.CrossRefPubMed Christman JK: 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002, 21: 5483-5495. 10.1038/sj.onc.1205699.CrossRefPubMed
57.
go back to reference Squillaro T, Alessio N, Cipollaro M, Melone MA, Hayek G, Renieri A, Giordano A, Galderisi U: Reduced expression of MECP2 affects cell commitment and maintenance in neurons by triggering senescence: new perspective for Rett syndrome. Mol Biol Cell. 2012, 23: 1435-1445. 10.1091/mbc.E11-09-0784.PubMedCentralCrossRefPubMed Squillaro T, Alessio N, Cipollaro M, Melone MA, Hayek G, Renieri A, Giordano A, Galderisi U: Reduced expression of MECP2 affects cell commitment and maintenance in neurons by triggering senescence: new perspective for Rett syndrome. Mol Biol Cell. 2012, 23: 1435-1445. 10.1091/mbc.E11-09-0784.PubMedCentralCrossRefPubMed
58.
go back to reference Smrt RD, Eaves-Egenes J, Barkho BZ, Santistevan NJ, Zhao C, Aimone JB, Gage FH, Zhao X: Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol Dis. 2007, 27: 77-89. 10.1016/j.nbd.2007.04.005.PubMedCentralCrossRefPubMed Smrt RD, Eaves-Egenes J, Barkho BZ, Santistevan NJ, Zhao C, Aimone JB, Gage FH, Zhao X: Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol Dis. 2007, 27: 77-89. 10.1016/j.nbd.2007.04.005.PubMedCentralCrossRefPubMed
59.
go back to reference Bodda C, Tantra M, Mollajew R, Arunachalam JP, Laccone FA, Can K, Rosenberger A, Mironov SL, Ehrenreich H, Mannan AU: Mild Overexpression of Mecp2 in Mice Causes a Higher Susceptibility toward Seizures. Am J Pathol. 2013, 183: 195-210. 10.1016/j.ajpath.2013.03.019.CrossRefPubMed Bodda C, Tantra M, Mollajew R, Arunachalam JP, Laccone FA, Can K, Rosenberger A, Mironov SL, Ehrenreich H, Mannan AU: Mild Overexpression of Mecp2 in Mice Causes a Higher Susceptibility toward Seizures. Am J Pathol. 2013, 183: 195-210. 10.1016/j.ajpath.2013.03.019.CrossRefPubMed
60.
go back to reference Na ES, Nelson ED, Adachi M, Autry AE, Mahgoub MA, Kavalali ET, Monteggia LM: A mouse model for MeCP2 duplication syndrome: MeCP2 overexpression impairs learning and memory and synaptic transmission. J Neurosci. 2012, 32: 3109-3117. 10.1523/JNEUROSCI.6000-11.2012.CrossRefPubMed Na ES, Nelson ED, Adachi M, Autry AE, Mahgoub MA, Kavalali ET, Monteggia LM: A mouse model for MeCP2 duplication syndrome: MeCP2 overexpression impairs learning and memory and synaptic transmission. J Neurosci. 2012, 32: 3109-3117. 10.1523/JNEUROSCI.6000-11.2012.CrossRefPubMed
61.
go back to reference Chiurazzi P, Pomponi MG, Willemsen R, Oostra BA, Neri G: In vitro reactivation of the FMR1 gene involved in fragile X syndrome. Hum Mol Genet. 1998, 7: 109-113. 10.1093/hmg/7.1.109.CrossRefPubMed Chiurazzi P, Pomponi MG, Willemsen R, Oostra BA, Neri G: In vitro reactivation of the FMR1 gene involved in fragile X syndrome. Hum Mol Genet. 1998, 7: 109-113. 10.1093/hmg/7.1.109.CrossRefPubMed
62.
go back to reference Nguyen A, Rauch TA, Pfeifer GP, Hu VW: Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 2010, 24: 3036-3051. 10.1096/fj.10-154484.PubMedCentralCrossRefPubMed Nguyen A, Rauch TA, Pfeifer GP, Hu VW: Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 2010, 24: 3036-3051. 10.1096/fj.10-154484.PubMedCentralCrossRefPubMed
63.
go back to reference Im HI, Hollander JA, Bali P, Kenny PJ: MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci. 2010, 13: 1120-1127. 10.1038/nn.2615.PubMedCentralCrossRefPubMed Im HI, Hollander JA, Bali P, Kenny PJ: MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci. 2010, 13: 1120-1127. 10.1038/nn.2615.PubMedCentralCrossRefPubMed
64.
go back to reference Feng J, Nestler EJ: MeCP2 and drug addiction. Nat Neurosci. 2010, 13: 1039-1041. 10.1038/nn0910-1039.CrossRefPubMed Feng J, Nestler EJ: MeCP2 and drug addiction. Nat Neurosci. 2010, 13: 1039-1041. 10.1038/nn0910-1039.CrossRefPubMed
65.
go back to reference Yu D, Sakurai F, Corey DR: Clonal Rett Syndrome cell lines to test compounds for activation of wild-type MeCP2 expression. Bioorgan Med Chem Lett. 2011, 21: 5202-5205. 10.1016/j.bmcl.2011.07.053.CrossRef Yu D, Sakurai F, Corey DR: Clonal Rett Syndrome cell lines to test compounds for activation of wild-type MeCP2 expression. Bioorgan Med Chem Lett. 2011, 21: 5202-5205. 10.1016/j.bmcl.2011.07.053.CrossRef
66.
go back to reference Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, Jia P, Assadzadeh A, Flanagan J, Schumacher A, Wang SC, Petronis A: Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008, 82: 696-711. 10.1016/j.ajhg.2008.01.008.PubMedCentralCrossRefPubMed Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, Jia P, Assadzadeh A, Flanagan J, Schumacher A, Wang SC, Petronis A: Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008, 82: 696-711. 10.1016/j.ajhg.2008.01.008.PubMedCentralCrossRefPubMed
67.
go back to reference Movassagh M, Choy MK, Goddard M, Bennett MR, Down TA, Foo RS: Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PloS one. 2010, 5: e8564-10.1371/journal.pone.0008564.PubMedCentralCrossRefPubMed Movassagh M, Choy MK, Goddard M, Bennett MR, Down TA, Foo RS: Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PloS one. 2010, 5: e8564-10.1371/journal.pone.0008564.PubMedCentralCrossRefPubMed
68.
go back to reference Barres R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, Krook A, Zierath JR: Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009, 10: 189-198. 10.1016/j.cmet.2009.07.011.CrossRefPubMed Barres R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, Krook A, Zierath JR: Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009, 10: 189-198. 10.1016/j.cmet.2009.07.011.CrossRefPubMed
69.
go back to reference Warita K, Mitsuhashi T, Ohta K, Suzuki S, Hoshi N, Miki T, Takeuchi Y: Gene expression of epigenetic regulatory factors related to primary silencing mechanism is less susceptible to lower doses of bisphenol A in embryonic hypothalamic cells. J Toxicol Sci. 2013, 38: 285-289. 10.2131/jts.38.285.CrossRefPubMed Warita K, Mitsuhashi T, Ohta K, Suzuki S, Hoshi N, Miki T, Takeuchi Y: Gene expression of epigenetic regulatory factors related to primary silencing mechanism is less susceptible to lower doses of bisphenol A in embryonic hypothalamic cells. J Toxicol Sci. 2013, 38: 285-289. 10.2131/jts.38.285.CrossRefPubMed
70.
go back to reference Jowaed A, Schmitt I, Kaut O, Wullner U: Methylation regulates alpha-synuclein expression and is decreased in Parkinson′’s disease patients’ brains. J Neurosci. 2010, 30: 6355-6359. 10.1523/JNEUROSCI.6119-09.2010.CrossRefPubMed Jowaed A, Schmitt I, Kaut O, Wullner U: Methylation regulates alpha-synuclein expression and is decreased in Parkinson′’s disease patients’ brains. J Neurosci. 2010, 30: 6355-6359. 10.1523/JNEUROSCI.6119-09.2010.CrossRefPubMed
71.
go back to reference Zhang X, Wu M, Xiao H, Lee MT, Levin L, Leung YK, Ho SM: Methylation of a single intronic CpG mediates expression silencing of the PMP24 gene in prostate cancer. Prostate. 2010, 70: 765-776.PubMedCentralPubMed Zhang X, Wu M, Xiao H, Lee MT, Levin L, Leung YK, Ho SM: Methylation of a single intronic CpG mediates expression silencing of the PMP24 gene in prostate cancer. Prostate. 2010, 70: 765-776.PubMedCentralPubMed
72.
go back to reference Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, Xie B, Daley GQ, Church GM: Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol. 2009, 27: 361-368. 10.1038/nbt.1533.PubMedCentralCrossRefPubMed Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, Xie B, Daley GQ, Church GM: Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol. 2009, 27: 361-368. 10.1038/nbt.1533.PubMedCentralCrossRefPubMed
73.
go back to reference Takebayashi S, Nakao M, Fujita N, Sado T, Tanaka M, Taguchi H, Okumura K: 5-Aza-2′-deoxycytidine induces histone hyperacetylation of mouse centromeric heterochromatin by a mechanism independent of DNA demethylation. Biochem Biophys Res Comm. 2001, 288: 921-926. 10.1006/bbrc.2001.5863.CrossRefPubMed Takebayashi S, Nakao M, Fujita N, Sado T, Tanaka M, Taguchi H, Okumura K: 5-Aza-2′-deoxycytidine induces histone hyperacetylation of mouse centromeric heterochromatin by a mechanism independent of DNA demethylation. Biochem Biophys Res Comm. 2001, 288: 921-926. 10.1006/bbrc.2001.5863.CrossRefPubMed
74.
go back to reference Nguyen CT, Weisenberger DJ, Velicescu M, Gonzales FA, Lin JC, Liang G, Jones PA: Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res. 2002, 62: 6456-6461.PubMed Nguyen CT, Weisenberger DJ, Velicescu M, Gonzales FA, Lin JC, Liang G, Jones PA: Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res. 2002, 62: 6456-6461.PubMed
Metadata
Title
Decitabine alters the expression of Mecp2 isoforms via dynamic DNA methylation at the Mecp2 regulatory elements in neural stem cells
Authors
Vichithra RB Liyanage
Robby M Zachariah
Mojgan Rastegar
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2013
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/2040-2392-4-46

Other articles of this Issue 1/2013

Molecular Autism 1/2013 Go to the issue