Skip to main content
Top
Published in: Journal of Foot and Ankle Research 1/2013

Open Access 01-12-2013 | Methodology

Reliability of clinically relevant 3D foot bone angles from quantitative computed tomography

Authors: David J Gutekunst, Lu Liu, Tao Ju, Fred W Prior, David R Sinacore

Published in: Journal of Foot and Ankle Research | Issue 1/2013

Login to get access

Abstract

Background

Surgical treatment and clinical management of foot pathology requires accurate, reliable assessment of foot deformities. Foot and ankle deformities are multi-planar and therefore difficult to quantify by standard radiographs. Three-dimensional (3D) imaging modalities have been used to define bone orientations using inertial axes based on bone shape, but these inertial axes can fail to mimic established bone angles used in orthopaedics and clinical biomechanics. To provide improved clinical relevance of 3D bone angles, we developed techniques to define bone axes using landmarks on quantitative computed tomography (QCT) bone surface meshes. We aimed to assess measurement precision of landmark-based, 3D bone-to-bone orientations of hind foot and lesser tarsal bones for expert raters and a template-based automated method.

Methods

Two raters completed two repetitions each for twenty feet (10 right, 10 left), placing anatomic landmarks on the surfaces of calcaneus, talus, cuboid, and navicular. Landmarks were also recorded using the automated, template-based method. For each method, 3D bone axes were computed from landmark positions, and Cardan sequences produced sagittal, frontal, and transverse plane angles of bone-to-bone orientations. Angular reliability was assessed using intraclass correlation coefficients (ICCs) and the root mean square standard deviation (RMS-SD) for intra-rater and inter-rater precision, and rater versus automated agreement.

Results

Intra- and inter-rater ICCs were generally high (≥ 0.80), and the ICCs for each rater compared to the automated method were similarly high. RMS-SD intra-rater precision ranged from 1.4 to 3.6° and 2.4 to 6.1°, respectively, for the two raters, which compares favorably to uni-planar radiographic precision. Greatest variability was in Navicular: Talus sagittal plane angle and Cuboid: Calcaneus frontal plane angle. Precision of the automated, atlas-based template method versus the raters was comparable to each rater’s internal precision.

Conclusions

Intra- and inter-rater precision suggest that the landmark-based methods have adequate test-retest reliability for 3D assessment of foot deformities. Agreement of the automated, atlas-based method with the expert raters suggests that the automated method is a valid, time-saving technique for foot deformity assessment. These methods have the potential to improve diagnosis of foot and ankle pathologies by allowing multi-planar quantification of deformities.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stebbins J, Harrington M, Thompson N, Zavatsky A, Theologis T: Repeatability of a model for measuring multi-segment foot kinematics in children. Gait Posture. 2006, 23: 401-410. 10.1016/j.gaitpost.2005.03.002.CrossRefPubMed Stebbins J, Harrington M, Thompson N, Zavatsky A, Theologis T: Repeatability of a model for measuring multi-segment foot kinematics in children. Gait Posture. 2006, 23: 401-410. 10.1016/j.gaitpost.2005.03.002.CrossRefPubMed
2.
go back to reference Simon J, Doederlein L, McIntosh AS, Metaxiotis D, Bock HG, Wolf SI: The Heidelberg foot measurement method: development, description and assessment. Gait Posture. 2006, 23: 411-424. 10.1016/j.gaitpost.2005.07.003.CrossRefPubMed Simon J, Doederlein L, McIntosh AS, Metaxiotis D, Bock HG, Wolf SI: The Heidelberg foot measurement method: development, description and assessment. Gait Posture. 2006, 23: 411-424. 10.1016/j.gaitpost.2005.07.003.CrossRefPubMed
3.
go back to reference Woodburn J, Udupa JK, Hirsch BE, Wakefield RJ, Helliwell PS, Reay N, et al: The geometric architecture of the subtalar and midtarsal joints in rheumatoid arthritis based on magnetic resonance imaging. Arthritis Rheum. 2002, 46: 3168-3177. 10.1002/art.10676.CrossRefPubMed Woodburn J, Udupa JK, Hirsch BE, Wakefield RJ, Helliwell PS, Reay N, et al: The geometric architecture of the subtalar and midtarsal joints in rheumatoid arthritis based on magnetic resonance imaging. Arthritis Rheum. 2002, 46: 3168-3177. 10.1002/art.10676.CrossRefPubMed
4.
go back to reference Stindel E, Udupa JK, Hirsch BE, Odhner D: A characterization of the geometric architecture of the peritalar joint complex via MRI: an aid to the classification of foot type. IEEE Trans Med Imaging. 1999, 18: 753-763. 10.1109/42.802753.CrossRefPubMed Stindel E, Udupa JK, Hirsch BE, Odhner D: A characterization of the geometric architecture of the peritalar joint complex via MRI: an aid to the classification of foot type. IEEE Trans Med Imaging. 1999, 18: 753-763. 10.1109/42.802753.CrossRefPubMed
5.
go back to reference Stindel E, Udupa JK, Hirsch BE, Odhner D, Couture C: 3D MR image analysis of the morphology of the rear foot: application to classification of bones. Comput Med Imaging Graph. 1999, 23: 75-83. 10.1016/S0895-6111(98)00070-6.CrossRefPubMed Stindel E, Udupa JK, Hirsch BE, Odhner D, Couture C: 3D MR image analysis of the morphology of the rear foot: application to classification of bones. Comput Med Imaging Graph. 1999, 23: 75-83. 10.1016/S0895-6111(98)00070-6.CrossRefPubMed
6.
go back to reference Ledoux WR, Rohr ES, Ching RP, Sangeorzan BJ: Effect of foot shape on the three-dimensional position of foot bones. J Orthop Res. 2006, 24: 2176-2186. 10.1002/jor.20262.CrossRefPubMed Ledoux WR, Rohr ES, Ching RP, Sangeorzan BJ: Effect of foot shape on the three-dimensional position of foot bones. J Orthop Res. 2006, 24: 2176-2186. 10.1002/jor.20262.CrossRefPubMed
7.
go back to reference Beimers L, Tuijthof GJ, Blankevoort L, Jonges R, Maas M, van Dijk CN: In-vivo range of motion of the subtalar joint using computed tomography. J Biomech. 2008, 41: 1390-1397. 10.1016/j.jbiomech.2008.02.020.CrossRefPubMed Beimers L, Tuijthof GJ, Blankevoort L, Jonges R, Maas M, van Dijk CN: In-vivo range of motion of the subtalar joint using computed tomography. J Biomech. 2008, 41: 1390-1397. 10.1016/j.jbiomech.2008.02.020.CrossRefPubMed
8.
go back to reference Parr WC, Chatterjee HJ, Soligo C: Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions. J Biomech. 2012, 45: 1103-1107. 10.1016/j.jbiomech.2012.01.011.CrossRefPubMed Parr WC, Chatterjee HJ, Soligo C: Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions. J Biomech. 2012, 45: 1103-1107. 10.1016/j.jbiomech.2012.01.011.CrossRefPubMed
9.
go back to reference Stebbins J, Harrington M, Thompson N, Zavatsky A, Theologis T: Gait compensations caused by foot deformity in cerebral palsy. Gait Posture. 2010, 32: 226-230. 10.1016/j.gaitpost.2010.05.006.CrossRefPubMed Stebbins J, Harrington M, Thompson N, Zavatsky A, Theologis T: Gait compensations caused by foot deformity in cerebral palsy. Gait Posture. 2010, 32: 226-230. 10.1016/j.gaitpost.2010.05.006.CrossRefPubMed
10.
go back to reference Hastings MK, Sinacore DR, Mercer-Bolton N, McCormick JJ, Hildebolt CF, Prior FW, et al: Precision of foot alignment measures in charcot arthropathy. Foot Ankle Int. 2011, 32: 867-872. 10.3113/FAI.2011.0867.CrossRefPubMedPubMedCentral Hastings MK, Sinacore DR, Mercer-Bolton N, McCormick JJ, Hildebolt CF, Prior FW, et al: Precision of foot alignment measures in charcot arthropathy. Foot Ankle Int. 2011, 32: 867-872. 10.3113/FAI.2011.0867.CrossRefPubMedPubMedCentral
11.
go back to reference Schwend RM, Drennan JC: Cavus foot deformity in children. J Am Acad Orthop Surg. 2003, 11: 201-211.CrossRefPubMed Schwend RM, Drennan JC: Cavus foot deformity in children. J Am Acad Orthop Surg. 2003, 11: 201-211.CrossRefPubMed
12.
go back to reference Liu L, Raber D, Nopachai D, Commean P, Sinacore D, Prior F, et al: Interactive separation of segmented bones in CT volumes using graph cut. Med Image Comput Comput Assist Interv. 2008, 11: 296-304.PubMed Liu L, Raber D, Nopachai D, Commean P, Sinacore D, Prior F, et al: Interactive separation of segmented bones in CT volumes using graph cut. Med Image Comput Comput Assist Interv. 2008, 11: 296-304.PubMed
13.
go back to reference Commean PK, Kennedy JA, Bahow KA, Hildebolt CF, Liu L, Smith KE, et al: Volumetric quantitative computed tomography measurement precision for volumes and densities of tarsal and metatarsal bones. J Clin Densitom. 2011, 14: 313-320. 10.1016/j.jocd.2011.05.006.CrossRefPubMedPubMedCentral Commean PK, Kennedy JA, Bahow KA, Hildebolt CF, Liu L, Smith KE, et al: Volumetric quantitative computed tomography measurement precision for volumes and densities of tarsal and metatarsal bones. J Clin Densitom. 2011, 14: 313-320. 10.1016/j.jocd.2011.05.006.CrossRefPubMedPubMedCentral
14.
go back to reference Commean PK, Ju T, Liu L, Sinacore DR, Hastings MK, Mueller MJ: Tarsal and metatarsal bone mineral density measurement using volumetric quantitative computed tomography. J Digit Imaging. 2009, 22: 492-502. 10.1007/s10278-008-9118-z.CrossRefPubMed Commean PK, Ju T, Liu L, Sinacore DR, Hastings MK, Mueller MJ: Tarsal and metatarsal bone mineral density measurement using volumetric quantitative computed tomography. J Digit Imaging. 2009, 22: 492-502. 10.1007/s10278-008-9118-z.CrossRefPubMed
15.
go back to reference Liu L, Commean PK, Hildebolt C, Sinacore D, Prior F, Carson JP, et al: Automated, foot-bone registration using subdivision-embedded atlases for spatial mapping of bone mineral density. J Digit Imaging. 2013, 26: 554-562. 10.1007/s10278-012-9524-0.CrossRefPubMed Liu L, Commean PK, Hildebolt C, Sinacore D, Prior F, Carson JP, et al: Automated, foot-bone registration using subdivision-embedded atlases for spatial mapping of bone mineral density. J Digit Imaging. 2013, 26: 554-562. 10.1007/s10278-012-9524-0.CrossRefPubMed
16.
go back to reference Schon LC, Weinfeld SB, Horton GA, Resch S: Radiographic and clinical classification of acquired midtarsus deformities. Foot Ankle Int. 1998, 19: 394-404. 10.1177/107110079801900610.CrossRefPubMed Schon LC, Weinfeld SB, Horton GA, Resch S: Radiographic and clinical classification of acquired midtarsus deformities. Foot Ankle Int. 1998, 19: 394-404. 10.1177/107110079801900610.CrossRefPubMed
17.
go back to reference Steel MW, Johnson KA, DeWitz MA, Ilstrup DM: Radiographic measurements of the normal adult foot. Foot Ankle. 1980, 1: 151-158. 10.1177/107110078000100304.CrossRefPubMed Steel MW, Johnson KA, DeWitz MA, Ilstrup DM: Radiographic measurements of the normal adult foot. Foot Ankle. 1980, 1: 151-158. 10.1177/107110078000100304.CrossRefPubMed
18.
go back to reference Brown KM, Bursey DE, Arneson LJ, Andrews CA, Ludewig PM, Glasoe WM: Consideration of digitization precision when building local coordinate axes for a foot model. J Biomech. 2009, 42: 1263-1269. 10.1016/j.jbiomech.2009.03.013.CrossRefPubMed Brown KM, Bursey DE, Arneson LJ, Andrews CA, Ludewig PM, Glasoe WM: Consideration of digitization precision when building local coordinate axes for a foot model. J Biomech. 2009, 42: 1263-1269. 10.1016/j.jbiomech.2009.03.013.CrossRefPubMed
19.
go back to reference Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine, International Society of Biomechanics. J Biomech. 2002, 35: 543-548. 10.1016/S0021-9290(01)00222-6.CrossRefPubMed Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine, International Society of Biomechanics. J Biomech. 2002, 35: 543-548. 10.1016/S0021-9290(01)00222-6.CrossRefPubMed
20.
go back to reference Weir JP: Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005, 19: 231-240.PubMed Weir JP: Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005, 19: 231-240.PubMed
21.
go back to reference Baim S, Wilson CR, Lewiecki EM, Luckey MM, Downs RW, Lentle BC: Precision assessment and radiation safety for dual-energy X-ray absorptiometry: position paper of the international society for clinical densitometry. J Clin Densitom. 2005, 8: 371-378. 10.1385/JCD:8:4:371.CrossRefPubMed Baim S, Wilson CR, Lewiecki EM, Luckey MM, Downs RW, Lentle BC: Precision assessment and radiation safety for dual-energy X-ray absorptiometry: position paper of the international society for clinical densitometry. J Clin Densitom. 2005, 8: 371-378. 10.1385/JCD:8:4:371.CrossRefPubMed
22.
go back to reference Arndt A, Wolf P, Liu A, Nester C, Stacoff A, Jones R, et al: Intrinsic foot kinematics measured in vivo during the stance phase of slow running. J Biomech. 2007, 40: 2672-2678. 10.1016/j.jbiomech.2006.12.009.CrossRefPubMed Arndt A, Wolf P, Liu A, Nester C, Stacoff A, Jones R, et al: Intrinsic foot kinematics measured in vivo during the stance phase of slow running. J Biomech. 2007, 40: 2672-2678. 10.1016/j.jbiomech.2006.12.009.CrossRefPubMed
23.
go back to reference Nester C, Jones RK, Liu A, Howard D, Lundberg A, Arndt A, et al: Foot kinematics during walking measured using bone and surface mounted markers. J Biomech. 2007, 40: 3412-3423. 10.1016/j.jbiomech.2007.05.019.CrossRefPubMed Nester C, Jones RK, Liu A, Howard D, Lundberg A, Arndt A, et al: Foot kinematics during walking measured using bone and surface mounted markers. J Biomech. 2007, 40: 3412-3423. 10.1016/j.jbiomech.2007.05.019.CrossRefPubMed
24.
go back to reference Nester CJ: Lessons from dynamic cadaver and invasive bone pin studies: do we know how the foot really moves during gait?. J Foot Ankle Res. 2009, 2: 18-10.1186/1757-1146-2-18.CrossRefPubMedPubMedCentral Nester CJ: Lessons from dynamic cadaver and invasive bone pin studies: do we know how the foot really moves during gait?. J Foot Ankle Res. 2009, 2: 18-10.1186/1757-1146-2-18.CrossRefPubMedPubMedCentral
25.
go back to reference Iaquinto JM, Tsai R, Fassbind M, Haynor DR, Sangeorzan BJ, Ledoux WR: Preliminary marker-based validation of a novel biplane fluoroscopy system. J Foot Ankle Res. 2012, 5: O36-10.1186/1757-1146-5-S1-O36.CrossRefPubMedCentral Iaquinto JM, Tsai R, Fassbind M, Haynor DR, Sangeorzan BJ, Ledoux WR: Preliminary marker-based validation of a novel biplane fluoroscopy system. J Foot Ankle Res. 2012, 5: O36-10.1186/1757-1146-5-S1-O36.CrossRefPubMedCentral
Metadata
Title
Reliability of clinically relevant 3D foot bone angles from quantitative computed tomography
Authors
David J Gutekunst
Lu Liu
Tao Ju
Fred W Prior
David R Sinacore
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Foot and Ankle Research / Issue 1/2013
Electronic ISSN: 1757-1146
DOI
https://doi.org/10.1186/1757-1146-6-38

Other articles of this Issue 1/2013

Journal of Foot and Ankle Research 1/2013 Go to the issue