Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2013

Open Access 01-12-2013 | Research

SOX7 is down-regulated in lung cancer

Authors: Takahide Hayano, Manoj Garg, Dong Yin, Makoto Sudo, Norihiko Kawamata, Shuo Shi, Wenwen Chien, Ling-wen Ding, Geraldine Leong, Seiichi Mori, Dong Xie, Patrick Tan, H Phillip Koeffler

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2013

Login to get access

Abstract

Background

SOX7 is a transcription factor belonging to the SOX family. Its role in lung cancer is unknown.

Methods

In this study, whole genomic copy number analysis was performed on a series of non-small cell lung cancer (NSCLC) cell lines and samples from individuals with epidermal growth factor receptor (EGFR) mutations using a SNP-Chip platform. SOX7 was measured in NSCLC samples and cell lines, and forced expressed in one of these lines.

Results

A notable surprise was that the numerous copy number (CN) changes observed in samples of Asian, non-smoking EGFR mutant NSCLC were nearly the same as those CN alterations seen in a large collection of NSCLC from The Cancer Genome Atlas which is presumably composed of predominantly Caucasians who often smoked. However, four regions had CN changes fairly unique to the Asian EGFR mutant group. We also examined CN changes in NSCLC lines. The SOX7 gene was homozygously deleted in one (HCC2935) of 10 NSCLC cell lines and heterozygously deleted in two other NSCLC lines. Expression of SOX7 was significantly downregulated in NSCLC cell lines (8/10, 80%) and a large collection of NSCLC samples compared to matched normal lung (57/62, 92%, p= 0.0006). Forced-expression of SOX7 in NSCLC cell lines markedly reduced their cell growth and enhanced their apoptosis.

Conclusion

These data suggest that SOX7 is a novel tumor suppressor gene silenced in the majority of NSCLC samples.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bowles J, Schepers G, Koopman P: Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol. 2000, 227: 239-255. 10.1006/dbio.2000.9883.CrossRef Bowles J, Schepers G, Koopman P: Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol. 2000, 227: 239-255. 10.1006/dbio.2000.9883.CrossRef
2.
go back to reference Chew LJ, Gallo V: The Yin and Yang of Sox proteins: Activation and repression in development and disease. J Neurosci Res. 2009, 87: 3277-3328. 10.1002/jnr.22128.CrossRef Chew LJ, Gallo V: The Yin and Yang of Sox proteins: Activation and repression in development and disease. J Neurosci Res. 2009, 87: 3277-3328. 10.1002/jnr.22128.CrossRef
3.
go back to reference Gandillet A, Serrano AG, Pearson S, Lie-A-Ling M, Lacaud G, Kouskoff V: Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification. Blood. 2009, 114: 4813-4822. 10.1182/blood-2009-06-226290.CrossRef Gandillet A, Serrano AG, Pearson S, Lie-A-Ling M, Lacaud G, Kouskoff V: Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification. Blood. 2009, 114: 4813-4822. 10.1182/blood-2009-06-226290.CrossRef
4.
go back to reference Nelson TJ, Chiriac A, Faustino RS, Crespo-Diaz RJ, Behfar A, Terzic A: Lineage specification of Flk-1+ progenitors is associated with divergent Sox7 expression in cardiopoiesis. Differentiation. 2009, 77: 248-255. 10.1016/j.diff.2008.10.012.CrossRef Nelson TJ, Chiriac A, Faustino RS, Crespo-Diaz RJ, Behfar A, Terzic A: Lineage specification of Flk-1+ progenitors is associated with divergent Sox7 expression in cardiopoiesis. Differentiation. 2009, 77: 248-255. 10.1016/j.diff.2008.10.012.CrossRef
5.
go back to reference Cermenati S, Moleri S, Cimbro S, Corti P, Del Giacco L, Amodeo R, Dejana E, Koopman P, Cotelli F, Beltrame M: Sox18 and Sox7 play redundant roles in vascular development. Blood. 2008, 111: 2657-2666. 10.1182/blood-2007-07-100412.CrossRef Cermenati S, Moleri S, Cimbro S, Corti P, Del Giacco L, Amodeo R, Dejana E, Koopman P, Cotelli F, Beltrame M: Sox18 and Sox7 play redundant roles in vascular development. Blood. 2008, 111: 2657-2666. 10.1182/blood-2007-07-100412.CrossRef
6.
go back to reference Francois M, Koopman P, Beltrame M: SoxF genes: Key players in the development of the cardio-vascular system. Int J Biochem Cell Biol. 2010, 42: 445-448. 10.1016/j.biocel.2009.08.017.CrossRef Francois M, Koopman P, Beltrame M: SoxF genes: Key players in the development of the cardio-vascular system. Int J Biochem Cell Biol. 2010, 42: 445-448. 10.1016/j.biocel.2009.08.017.CrossRef
7.
go back to reference Séguin CA, Draper JS, Nagy A, Rossant J: Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells. Cell Stem Cell. 2008, 3: 182-195. 10.1016/j.stem.2008.06.018.CrossRef Séguin CA, Draper JS, Nagy A, Rossant J: Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells. Cell Stem Cell. 2008, 3: 182-195. 10.1016/j.stem.2008.06.018.CrossRef
8.
go back to reference Savage J, Conley AJ, Blais A, Skerjanc IS: SOX15 and SOX7 differentially regulate the myogenic program in P19 cells. Stem Cells. 2009, 27: 1231-1243. 10.1002/stem.57.CrossRef Savage J, Conley AJ, Blais A, Skerjanc IS: SOX15 and SOX7 differentially regulate the myogenic program in P19 cells. Stem Cells. 2009, 27: 1231-1243. 10.1002/stem.57.CrossRef
9.
go back to reference Guo L, Zhong D, Lau S, Liu X, Dong XY, Sun X, Yang VW, Wertino PM, Moreno CS, Varma V, Dong JT, Zhou W: Sox7 is an independent checkpoint for beta-catenin function in prostate and colon epithelial cells. Mol Cancer Res. 2008, 6: 1421-1430. 10.1158/1541-7786.MCR-07-2175.CrossRef Guo L, Zhong D, Lau S, Liu X, Dong XY, Sun X, Yang VW, Wertino PM, Moreno CS, Varma V, Dong JT, Zhou W: Sox7 is an independent checkpoint for beta-catenin function in prostate and colon epithelial cells. Mol Cancer Res. 2008, 6: 1421-1430. 10.1158/1541-7786.MCR-07-2175.CrossRef
10.
go back to reference Zhang Y, Huang S, Dong W, Li L, Feng Y, Pan L, Han Z, Wang X, Ren G, Su D, Huang B, Lu J: SOX7, down-regulated in colorectal cancer, induces apoptosis and inhibits proliferation of colorectal cancer cells. Cancer Lett. 2009, 277: 29-37. 10.1016/j.canlet.2008.11.014.CrossRef Zhang Y, Huang S, Dong W, Li L, Feng Y, Pan L, Han Z, Wang X, Ren G, Su D, Huang B, Lu J: SOX7, down-regulated in colorectal cancer, induces apoptosis and inhibits proliferation of colorectal cancer cells. Cancer Lett. 2009, 277: 29-37. 10.1016/j.canlet.2008.11.014.CrossRef
11.
go back to reference Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, Hangaishi A, Kurokawa M, Chiba S, Bailey DK, Kennedy GC, Ogawa S: A robust algorithm for copy number detection using highly-sensitive oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res. 2005, 65: 6071-6079. 10.1158/0008-5472.CAN-05-0465.CrossRef Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, Hangaishi A, Kurokawa M, Chiba S, Bailey DK, Kennedy GC, Ogawa S: A robust algorithm for copy number detection using highly-sensitive oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res. 2005, 65: 6071-6079. 10.1158/0008-5472.CAN-05-0465.CrossRef
12.
go back to reference Yamamoto G, Nannya Y, Kato M, Sanada M, Levine RL, Kawamata N, Hangaishi A, Kurokawa M, Chiba S, Gilliland DG, Koeffler HP, Ogawa S: Highly sensitive method for genome-wide detection of allelic composition in non-paired primary tumor specimens using Affymetrix ® SNP genotyping microarrays. Am J Hum Genet. 2007, 81: 114-126. 10.1086/518809.CrossRef Yamamoto G, Nannya Y, Kato M, Sanada M, Levine RL, Kawamata N, Hangaishi A, Kurokawa M, Chiba S, Gilliland DG, Koeffler HP, Ogawa S: Highly sensitive method for genome-wide detection of allelic composition in non-paired primary tumor specimens using Affymetrix ® SNP genotyping microarrays. Am J Hum Genet. 2007, 81: 114-126. 10.1086/518809.CrossRef
13.
go back to reference Li LC, Dahiya R: MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002, 18: 1427-1431. 10.1093/bioinformatics/18.11.1427.CrossRef Li LC, Dahiya R: MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002, 18: 1427-1431. 10.1093/bioinformatics/18.11.1427.CrossRef
14.
go back to reference Zhou W, Christiani DC: East meets West: ethnic differences in epidemiology and clinical behaviors of lung cancer between East Asians and Caucasians. Chin J Cancer. 2011, 30: 287-292. 10.5732/cjc.011.10106.CrossRef Zhou W, Christiani DC: East meets West: ethnic differences in epidemiology and clinical behaviors of lung cancer between East Asians and Caucasians. Chin J Cancer. 2011, 30: 287-292. 10.5732/cjc.011.10106.CrossRef
15.
go back to reference Broёt P, Dalmasso C, Tan EH, Alifano M, Zhang S, Wu J, Lee MH, Régnard JF, Lim D, Koong HN, Agasthian T, Miller LD, Lim E, Camilleri-Broёt S, Tan P: Genomic profiles specific to patient ethnicity in lung adenocarcinoma. Clin Cancer Res. 2011, 17: 3542-3550. 10.1158/1078-0432.CCR-10-2185.CrossRef Broёt P, Dalmasso C, Tan EH, Alifano M, Zhang S, Wu J, Lee MH, Régnard JF, Lim D, Koong HN, Agasthian T, Miller LD, Lim E, Camilleri-Broёt S, Tan P: Genomic profiles specific to patient ethnicity in lung adenocarcinoma. Clin Cancer Res. 2011, 17: 3542-3550. 10.1158/1078-0432.CCR-10-2185.CrossRef
Metadata
Title
SOX7 is down-regulated in lung cancer
Authors
Takahide Hayano
Manoj Garg
Dong Yin
Makoto Sudo
Norihiko Kawamata
Shuo Shi
Wenwen Chien
Ling-wen Ding
Geraldine Leong
Seiichi Mori
Dong Xie
Patrick Tan
H Phillip Koeffler
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2013
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-32-17

Other articles of this Issue 1/2013

Journal of Experimental & Clinical Cancer Research 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine