Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2012

Open Access 01-12-2012 | Research

TGFBI promoter hypermethylation correlating with paclitaxel chemoresistance in ovarian cancer

Authors: Ning Wang, Hui Zhang, Qin Yao, Yankui Wang, Shuzhen Dai, Xingsheng Yang

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2012

Login to get access

Abstract

The purpose of this study is to determine the methylation status of Transforming growth factor-beta-inducible gene-h3 (TGFBI) and its correlation with paclitaxel chemoresistance in ovarian cancer. The methylation status of TGFBI was examined in ovarian cancer and control groups by methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP). The TGFBI expression and cell viability were compared by Quantitative Real-Time PCR, Western Blotting and MTT assay before and after demethylating agent 5-aza-2'-deoxycytidine (5-aza-dc) treatment in 6 cell lines (SKOV3, SKOV3/TR, SKOV3/DDP, A2780, 2780/TR, OVCAR8). In our results, TGFBI methylation was detected in 29/40 (72.5%) of ovarian cancer and 1/10 (10%) of benign ovarian tumors. No methylation was detected in normal ovarian tissues (P < 0.001). No statistical correlation between RUNX3 methylation and clinicopathological characteristics was observed. A significant correlation between TGFBI methylation and loss of TGFBI mRNA expression was found (P < 0.001). The methylation level of TGFBI was significantly higher in paclitaxel resistant cell lines (SKOV3/TR and 2780/TR) than that in the sensitive pairs (P < 0.001). After 5-aza-dc treatment, the relative expression of TGFBI mRNA and protein increased significantly in SKOV3/TR and A2780/TR cells. However, no statistical differences of relative TGFBI mRNA expression and protein were found in other cells (all P > 0.05), which showed that re-expression of TGFBI could reverse paclitaxel chemoresistance. Our results show that TGFBI is frequently methylated and associated with paclitaxel-resistance in ovarian cancer. TGFBI might be a potential therapeutic target for the enhancement of responses to chemotherapy in ovarian cancer patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel R, Ward E, Brawley O, Jemal A: Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011, 61: 212-236. 10.3322/caac.20121.CrossRefPubMed Siegel R, Ward E, Brawley O, Jemal A: Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011, 61: 212-236. 10.3322/caac.20121.CrossRefPubMed
2.
go back to reference Matei D: Novel agents in ovarian cancer. Expert Opin Investig Drugs. 2007, 16: 1227-1239. 10.1517/13543784.16.8.1227.CrossRefPubMed Matei D: Novel agents in ovarian cancer. Expert Opin Investig Drugs. 2007, 16: 1227-1239. 10.1517/13543784.16.8.1227.CrossRefPubMed
3.
go back to reference McGuire WP, Hoskins WJ, Brady MF, et al: Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med. 1996, 334: 1-6. 10.1056/NEJM199601043340101.CrossRefPubMed McGuire WP, Hoskins WJ, Brady MF, et al: Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med. 1996, 334: 1-6. 10.1056/NEJM199601043340101.CrossRefPubMed
4.
go back to reference Taniguchi T, Tischkowitz M, Ameziane N, et al: Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med. 2003, 9: 568-574. 10.1038/nm852.CrossRefPubMed Taniguchi T, Tischkowitz M, Ameziane N, et al: Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med. 2003, 9: 568-574. 10.1038/nm852.CrossRefPubMed
5.
go back to reference Ferrandina G, Zannoni GF, Martinelli E, et al: Class III beta-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin Cancer Res. 2006, 12: 2774-2779. 10.1158/1078-0432.CCR-05-2715.CrossRefPubMed Ferrandina G, Zannoni GF, Martinelli E, et al: Class III beta-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin Cancer Res. 2006, 12: 2774-2779. 10.1158/1078-0432.CCR-05-2715.CrossRefPubMed
6.
go back to reference Yoshikawa H, Matsubara K, Qian GS, et al: SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet. 2001, 28: 29-35.PubMed Yoshikawa H, Matsubara K, Qian GS, et al: SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet. 2001, 28: 29-35.PubMed
7.
go back to reference Li QL, Ito K, Sakakura C, et al: Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell. 2002, 109: 113-124. 10.1016/S0092-8674(02)00690-6.CrossRefPubMed Li QL, Ito K, Sakakura C, et al: Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell. 2002, 109: 113-124. 10.1016/S0092-8674(02)00690-6.CrossRefPubMed
9.
go back to reference Feinberg AP, Tycko B: The history of cancer epigenetics. Nat Rev Cancer. 2004, 4: 143-153. 10.1038/nrc1279.CrossRefPubMed Feinberg AP, Tycko B: The history of cancer epigenetics. Nat Rev Cancer. 2004, 4: 143-153. 10.1038/nrc1279.CrossRefPubMed
10.
11.
go back to reference Yoon MS, Suh DS, Choi KU, et al: High-throughput DNA hypermethylation profiling in different ovarian epithelial cancer subtypes using universal bead array. Oncol Rep. 2010, 24: 917-925.PubMed Yoon MS, Suh DS, Choi KU, et al: High-throughput DNA hypermethylation profiling in different ovarian epithelial cancer subtypes using universal bead array. Oncol Rep. 2010, 24: 917-925.PubMed
12.
go back to reference Sellar GC, Watt KP, Rabiasz GJ, et al: OPCML at 11q25 is epigenetically inactivated and has umor-suppressor function in epithelial ovarian cancer. Nat Genet. 2003, 34: 337-343. 10.1038/ng1183.CrossRefPubMed Sellar GC, Watt KP, Rabiasz GJ, et al: OPCML at 11q25 is epigenetically inactivated and has umor-suppressor function in epithelial ovarian cancer. Nat Genet. 2003, 34: 337-343. 10.1038/ng1183.CrossRefPubMed
13.
go back to reference Zhang H, Zhang S, Cui J, Zhang A, Shen L, Yu H: Expression and promoter methylation status of mismatch repair gene hMLH1 and hMSH2 in epithelial ovarian cancer. Aust N Z J Obstet Gynaecol. 2008, 48: 505-509. 10.1111/j.1479-828X.2008.00892.x.CrossRefPubMed Zhang H, Zhang S, Cui J, Zhang A, Shen L, Yu H: Expression and promoter methylation status of mismatch repair gene hMLH1 and hMSH2 in epithelial ovarian cancer. Aust N Z J Obstet Gynaecol. 2008, 48: 505-509. 10.1111/j.1479-828X.2008.00892.x.CrossRefPubMed
14.
go back to reference Balch C, Huang TH, Brown R, Nephew KP: The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol. 2004, 191: 1552-1572. 10.1016/j.ajog.2004.05.025.CrossRefPubMed Balch C, Huang TH, Brown R, Nephew KP: The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol. 2004, 191: 1552-1572. 10.1016/j.ajog.2004.05.025.CrossRefPubMed
15.
go back to reference Tamura G: Hypermethylation of tumor suppressor and tumor-related genes in neoplastic and non-neoplastic gastric epithelia. World J Gastrointest Oncol. 2009, 1: 41-46. 10.4251/wjgo.v1.i1.41.PubMedCentralCrossRefPubMed Tamura G: Hypermethylation of tumor suppressor and tumor-related genes in neoplastic and non-neoplastic gastric epithelia. World J Gastrointest Oncol. 2009, 1: 41-46. 10.4251/wjgo.v1.i1.41.PubMedCentralCrossRefPubMed
16.
go back to reference Skonier J, Neubauer M, Madisen L, Bennett K, Plowman GD, Purchio AF: cDNA cloning and sequence analysis of beta ig-h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-beta. DNA Cell Biol. 1992, 11: 511-522. 10.1089/dna.1992.11.511.CrossRefPubMed Skonier J, Neubauer M, Madisen L, Bennett K, Plowman GD, Purchio AF: cDNA cloning and sequence analysis of beta ig-h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-beta. DNA Cell Biol. 1992, 11: 511-522. 10.1089/dna.1992.11.511.CrossRefPubMed
17.
go back to reference Zhao YL, Piao CQ, Hei TK: Downregulation of Betaig-h3 gene is causally linked to tumorigenic phenotype in asbestos treated immortalized human bronchial epithelial cells. Oncogene. 2002, 21: 7471-7477. 10.1038/sj.onc.1205891.CrossRefPubMed Zhao YL, Piao CQ, Hei TK: Downregulation of Betaig-h3 gene is causally linked to tumorigenic phenotype in asbestos treated immortalized human bronchial epithelial cells. Oncogene. 2002, 21: 7471-7477. 10.1038/sj.onc.1205891.CrossRefPubMed
18.
go back to reference Shao G, Berenguer J, Borczuk AC, Powell CA, Hei TK, Zhao Y: Epigenetic inactivation of Betaig-h3 gene in human cancer cells. Cancer Res. 2006, 66: 4566-4573. 10.1158/0008-5472.CAN-05-2130.CrossRefPubMed Shao G, Berenguer J, Borczuk AC, Powell CA, Hei TK, Zhao Y: Epigenetic inactivation of Betaig-h3 gene in human cancer cells. Cancer Res. 2006, 66: 4566-4573. 10.1158/0008-5472.CAN-05-2130.CrossRefPubMed
19.
go back to reference Ahmed AA, Mills AD, Ibrahim AE, et al: The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel. Cancer Cell. 2007, 12: 514-527. 10.1016/j.ccr.2007.11.014.PubMedCentralCrossRefPubMed Ahmed AA, Mills AD, Ibrahim AE, et al: The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel. Cancer Cell. 2007, 12: 514-527. 10.1016/j.ccr.2007.11.014.PubMedCentralCrossRefPubMed
20.
go back to reference Shah JN, Shao G, Hei TK, Zhao Y: Methylation screening of the TGFBI promoter in human lung and prostate cancer by methylation-specific PCR. BMC Cancer. 2008, 8: 284-10.1186/1471-2407-8-284.PubMedCentralCrossRefPubMed Shah JN, Shao G, Hei TK, Zhao Y: Methylation screening of the TGFBI promoter in human lung and prostate cancer by methylation-specific PCR. BMC Cancer. 2008, 8: 284-10.1186/1471-2407-8-284.PubMedCentralCrossRefPubMed
21.
go back to reference Irigoyen M, Pajares MJ, Agorreta J, et al: TGFBI expression is associated with a better response to chemotherapy in NSCLC. Mol Cancer. 2010, 9: 130-10.1186/1476-4598-9-130.PubMedCentralCrossRefPubMed Irigoyen M, Pajares MJ, Agorreta J, et al: TGFBI expression is associated with a better response to chemotherapy in NSCLC. Mol Cancer. 2010, 9: 130-10.1186/1476-4598-9-130.PubMedCentralCrossRefPubMed
22.
go back to reference Ying J, Srivastava G, Hsieh WS, et al: The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res. 2005, 11: 6442-6449. 10.1158/1078-0432.CCR-05-0267.CrossRefPubMed Ying J, Srivastava G, Hsieh WS, et al: The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res. 2005, 11: 6442-6449. 10.1158/1078-0432.CCR-05-0267.CrossRefPubMed
23.
go back to reference Kang S, Dong SM, Park NH: Frequent promoter hypermethylation of TGFBI in epithelial ovarian cancer. Gynecologic oncology. 2010, 118: 58-63. 10.1016/j.ygyno.2010.03.025.CrossRefPubMed Kang S, Dong SM, Park NH: Frequent promoter hypermethylation of TGFBI in epithelial ovarian cancer. Gynecologic oncology. 2010, 118: 58-63. 10.1016/j.ygyno.2010.03.025.CrossRefPubMed
24.
go back to reference Staub J, Chien J, Pan Y, et al: Epigenetic silencing of HSulf-1 in ovarian cancer:implications in chemoresistance. Oncogene. 2007, 26: 4969-4978. 10.1038/sj.onc.1210300.CrossRefPubMed Staub J, Chien J, Pan Y, et al: Epigenetic silencing of HSulf-1 in ovarian cancer:implications in chemoresistance. Oncogene. 2007, 26: 4969-4978. 10.1038/sj.onc.1210300.CrossRefPubMed
25.
go back to reference Zhang X, Yashiro M, Ren J, Hirakawa K: Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncol Rep. 2006, 16: 563-568.PubMed Zhang X, Yashiro M, Ren J, Hirakawa K: Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncol Rep. 2006, 16: 563-568.PubMed
26.
go back to reference Olopade OI, Wei M: FANCF methylation contributes to chemoselectivity in ovarian cancer. Cancer Cell. 2003, 3: 417-420. 10.1016/S1535-6108(03)00111-9.CrossRefPubMed Olopade OI, Wei M: FANCF methylation contributes to chemoselectivity in ovarian cancer. Cancer Cell. 2003, 3: 417-420. 10.1016/S1535-6108(03)00111-9.CrossRefPubMed
27.
go back to reference Li M, Balch C, Montgomery JS, et al: Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genomics. 2009, 2: 34-10.1186/1755-8794-2-34.PubMedCentralCrossRefPubMed Li M, Balch C, Montgomery JS, et al: Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genomics. 2009, 2: 34-10.1186/1755-8794-2-34.PubMedCentralCrossRefPubMed
Metadata
Title
TGFBI promoter hypermethylation correlating with paclitaxel chemoresistance in ovarian cancer
Authors
Ning Wang
Hui Zhang
Qin Yao
Yankui Wang
Shuzhen Dai
Xingsheng Yang
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2012
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-31-6

Other articles of this Issue 1/2012

Journal of Experimental & Clinical Cancer Research 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine