Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2008

Open Access 01-06-2008 | Research

Implication of heme oxygenase-1 in the sensitivity of nasopharyngeal carcinomas to radiotherapy

Authors: Lei Shi, Jun Fang

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2008

Login to get access

Abstract

High expression of the inducible isoform of heme oxygenase (HO-1) is well known in various solid tumors in human and experimental animal models. To investigate the relationship between HO-1 and nasopharyngeal carcinomas, especially its involvement in the response of nasopharyngeal carcinomas to radiotherapy, thirty-two nasopharyngeal carcinomas were semi-quantitatively analyzed by RT-PCR, and the expression of HO-1 was correlated with the consequence after novel radiotherapy, which was evaluated by the reduction of tumor size. Among 32 nasopharyngeal carcinomas, HO-1 expression was found in19 samples (59.4%), in which 9 patients (47.4%) showed no response to radiotherapy. Interestingly, in 13 nasopharyngeal carcinoma patients with negative expression of HO-1, radiotherapy exhibited to be effective (9 patients, 69.2%) or responsive (3 patients, 23.1%). In this study, we first demonstrated the expression of HO-1 in nasopharyngeal carcinomas, and more important, these findings strongly suggest the potential of HO-1as a useful index in identifying patients with well response to radiotherapy, further these data indicate a new therapeutic for nasopharyngeal carcinoma by inhibiting HO-1 activity, which warrants further investigation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Maines MD: Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1988, 2: 2557-2568. Maines MD: Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1988, 2: 2557-2568.
2.
go back to reference Shibahara S: Regulation of heme oxygenase gene expression. Semin Hematol. 1988, 25: 370-376. Shibahara S: Regulation of heme oxygenase gene expression. Semin Hematol. 1988, 25: 370-376.
3.
go back to reference Motterlini R, Foresti R, Bassi R, Calabrese V, Clark JE, Green CJ: Endothelial heme oxygenase-1 induction by hypoxia. Modulation by inducible nitric oxide synthase and S-nitrosothiols. J Biol Chem. 2000, 275: 13613-13620. 10.1074/jbc.275.18.13613.CrossRef Motterlini R, Foresti R, Bassi R, Calabrese V, Clark JE, Green CJ: Endothelial heme oxygenase-1 induction by hypoxia. Modulation by inducible nitric oxide synthase and S-nitrosothiols. J Biol Chem. 2000, 275: 13613-13620. 10.1074/jbc.275.18.13613.CrossRef
4.
go back to reference Mitani K, Fujita H, Fukuda Y, Kappas A, Sassa S: The role of inorganic metals and metalloporphyrins in the induction of haem oxygenase and heat-shock protein 70 in human hepatoma cells. Biochem J. 1993, 290: 819-825.CrossRef Mitani K, Fujita H, Fukuda Y, Kappas A, Sassa S: The role of inorganic metals and metalloporphyrins in the induction of haem oxygenase and heat-shock protein 70 in human hepatoma cells. Biochem J. 1993, 290: 819-825.CrossRef
5.
go back to reference Keyse SM, Tyrrell RM: Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenate. Proc Natl Acad Sci USA. 1989, 86: 99-103. 10.1073/pnas.86.1.99.CrossRef Keyse SM, Tyrrell RM: Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenate. Proc Natl Acad Sci USA. 1989, 86: 99-103. 10.1073/pnas.86.1.99.CrossRef
6.
go back to reference Hara E, Takahashi K, Takeda K, et al: Induction of heme oxygenase-1 as a response in sensing the signals evoked by distinct nitric oxide donors. Biochem Pharmacol. 1999, 58: 227-236. 10.1016/S0006-2952(99)00097-0.CrossRef Hara E, Takahashi K, Takeda K, et al: Induction of heme oxygenase-1 as a response in sensing the signals evoked by distinct nitric oxide donors. Biochem Pharmacol. 1999, 58: 227-236. 10.1016/S0006-2952(99)00097-0.CrossRef
7.
go back to reference Hartsfield SL, Alam J, Cook JL, Choi AMK: Regulation of heme oxygenase-1 gene expression in vascular smooth muscle cells by nitric oxide. Am J Physiol. 1997, 273: L980-988. Hartsfield SL, Alam J, Cook JL, Choi AMK: Regulation of heme oxygenase-1 gene expression in vascular smooth muscle cells by nitric oxide. Am J Physiol. 1997, 273: L980-988.
8.
go back to reference Jeney V, Balla J, Yachie A, et al: Pro-oxidant and cytotoxic effects of circulating heme. Blood. 2002, 100: 879-887. 10.1182/blood.V100.3.879.CrossRef Jeney V, Balla J, Yachie A, et al: Pro-oxidant and cytotoxic effects of circulating heme. Blood. 2002, 100: 879-887. 10.1182/blood.V100.3.879.CrossRef
9.
go back to reference Baranano DE, Rao M, Ferris CD, Snyder SH: Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci USA. 2002, 99: 16093-16098. 10.1073/pnas.252626999.CrossRef Baranano DE, Rao M, Ferris CD, Snyder SH: Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci USA. 2002, 99: 16093-16098. 10.1073/pnas.252626999.CrossRef
10.
go back to reference Brouard S, Otterbein LE, Anrather J, et al: Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med. 2000, 192: 1015-1025. 10.1084/jem.192.7.1015.CrossRef Brouard S, Otterbein LE, Anrather J, et al: Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med. 2000, 192: 1015-1025. 10.1084/jem.192.7.1015.CrossRef
11.
go back to reference Balla G, Jacob HS, Balla J, et al: Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem. 1992, 267: 18148-18153. Balla G, Jacob HS, Balla J, et al: Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem. 1992, 267: 18148-18153.
12.
go back to reference Lee TS, Chau LY: Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med. 2002, 8: 240-246. 10.1038/nm0302-240.CrossRef Lee TS, Chau LY: Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med. 2002, 8: 240-246. 10.1038/nm0302-240.CrossRef
13.
go back to reference Sato K, Balla J, Otterbein L, et al: Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol. 2001, 166: 4185-4196.CrossRef Sato K, Balla J, Otterbein L, et al: Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol. 2001, 166: 4185-4196.CrossRef
14.
go back to reference Wagner M, Cadetg P, Ruf R, Mazzucchelli L, Ferrari P, Redaelli CA: Heme oxygenase-1 attenuates ischemia/reperfusion-induced apoptosis and improves survival in rat renal allografts. Kidney Int. 2003, 63: 1564-1573. 10.1046/j.1523-1755.2003.00897.x.CrossRef Wagner M, Cadetg P, Ruf R, Mazzucchelli L, Ferrari P, Redaelli CA: Heme oxygenase-1 attenuates ischemia/reperfusion-induced apoptosis and improves survival in rat renal allografts. Kidney Int. 2003, 63: 1564-1573. 10.1046/j.1523-1755.2003.00897.x.CrossRef
15.
go back to reference Agarwal A, Balla J, Alam J, Croatt AJ, Nath KA: Induction of heme oxygenase in toxic renal injury: a protective role in cisplatin nephrotoxicity in the rat. Kidney Int. 1995, 48: 1298-1307. 10.1038/ki.1995.414.CrossRef Agarwal A, Balla J, Alam J, Croatt AJ, Nath KA: Induction of heme oxygenase in toxic renal injury: a protective role in cisplatin nephrotoxicity in the rat. Kidney Int. 1995, 48: 1298-1307. 10.1038/ki.1995.414.CrossRef
16.
go back to reference Tullius SG, Nieminen-Kelha M, Buelow R, et al: Inhibition of ischemia/reperfusion injury and chronic graft deterioration by a single-donor treatment with cobalt-protoporphyrin for the induction of heme oxygenase-1. Transplantation. 2002, 74: 591-598. 10.1097/00007890-200209150-00001.CrossRef Tullius SG, Nieminen-Kelha M, Buelow R, et al: Inhibition of ischemia/reperfusion injury and chronic graft deterioration by a single-donor treatment with cobalt-protoporphyrin for the induction of heme oxygenase-1. Transplantation. 2002, 74: 591-598. 10.1097/00007890-200209150-00001.CrossRef
17.
go back to reference Fang J, Akaike T, Maeda H: Antiapoptotic role of heme oxygenase (HO) and the potential of HO as a target in anticancer treatment. Apoptosis. 2004, 9: 27-35. 10.1023/B:APPT.0000012119.83734.4e.CrossRef Fang J, Akaike T, Maeda H: Antiapoptotic role of heme oxygenase (HO) and the potential of HO as a target in anticancer treatment. Apoptosis. 2004, 9: 27-35. 10.1023/B:APPT.0000012119.83734.4e.CrossRef
18.
go back to reference Goodman AI, Choudhury M, da Silva JL, Schwartzman ML, Abraham NG: Overexpression of the heme oxygenase gene in renal cell carcinoma. Proc Soc Exp Biol Med. 1997, 214: 54-61.CrossRef Goodman AI, Choudhury M, da Silva JL, Schwartzman ML, Abraham NG: Overexpression of the heme oxygenase gene in renal cell carcinoma. Proc Soc Exp Biol Med. 1997, 214: 54-61.CrossRef
19.
go back to reference Maines MD, Abrahamsson PA: Expression of heme oxygenase-1 (HSP32) in human prostate: normal, hyperplastic, and tumor tissue distribution. Urology. 1996, 47: 727-733. 10.1016/S0090-4295(96)00010-6.CrossRef Maines MD, Abrahamsson PA: Expression of heme oxygenase-1 (HSP32) in human prostate: normal, hyperplastic, and tumor tissue distribution. Urology. 1996, 47: 727-733. 10.1016/S0090-4295(96)00010-6.CrossRef
20.
go back to reference Hermanek P, Sobin LH: International Union Against Cancer. TUM Classification of Malignant Tumor 4th fully revised edition. 1987, Berlin, Heidelberg, Springer VerlagCrossRef Hermanek P, Sobin LH: International Union Against Cancer. TUM Classification of Malignant Tumor 4th fully revised edition. 1987, Berlin, Heidelberg, Springer VerlagCrossRef
21.
go back to reference Abraham NG: Quantitation of heme oxygenase (HO-1) copies in human tissues by competitive RT/PCR. Methods of Molecular Biology. Edited by: Armstrong D. 1998, Totowa, NJ: Human Press, 199-209. Abraham NG: Quantitation of heme oxygenase (HO-1) copies in human tissues by competitive RT/PCR. Methods of Molecular Biology. Edited by: Armstrong D. 1998, Totowa, NJ: Human Press, 199-209.
22.
go back to reference Doi K, Akaike T, Fujii S, et al: Induction of haem oxygenase-1 by nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Br J Cancer. 1999, 80: 1945-1954. 10.1038/sj.bjc.6690624.CrossRef Doi K, Akaike T, Fujii S, et al: Induction of haem oxygenase-1 by nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Br J Cancer. 1999, 80: 1945-1954. 10.1038/sj.bjc.6690624.CrossRef
23.
go back to reference Tanaka S, Akaike T, Fang J, et al: Antiapoptotic effect of haem oxygenase-1 induced by nitric oxide in experimental solid tumour. Br J Cancer. 2003, 88: 902-909. 10.1038/sj.bjc.6600830.CrossRef Tanaka S, Akaike T, Fang J, et al: Antiapoptotic effect of haem oxygenase-1 induced by nitric oxide in experimental solid tumour. Br J Cancer. 2003, 88: 902-909. 10.1038/sj.bjc.6600830.CrossRef
24.
go back to reference Fang J, Sawa T, Akaike T, et al: In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor. Cancer Res. 2003, 63: 3567-3574. Fang J, Sawa T, Akaike T, et al: In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor. Cancer Res. 2003, 63: 3567-3574.
25.
go back to reference Tsuji MH, Yanagawa T, Iwasa S, et al: Heme oxygenase-1 expression in oral squamous cell carcinoma as involved in lymph node metastasis. Cancer Lett. 1999, 138: 53-59. 10.1016/S0304-3835(98)00372-3.CrossRef Tsuji MH, Yanagawa T, Iwasa S, et al: Heme oxygenase-1 expression in oral squamous cell carcinoma as involved in lymph node metastasis. Cancer Lett. 1999, 138: 53-59. 10.1016/S0304-3835(98)00372-3.CrossRef
26.
go back to reference Sahoo SK, Sawa T, Fang J, et al: Pegylated zinc protoporphyrin: a water-soluble heme oxygenase inhibitor with tumor-targeting capacity. Bioconjug Chem. 2002, 13: 1031-1038. 10.1021/bc020010k.CrossRef Sahoo SK, Sawa T, Fang J, et al: Pegylated zinc protoporphyrin: a water-soluble heme oxygenase inhibitor with tumor-targeting capacity. Bioconjug Chem. 2002, 13: 1031-1038. 10.1021/bc020010k.CrossRef
27.
go back to reference Fang J, Sawa T, Akaike T, Griesh K, Maeda H: Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int J Cancer. 2004, 109: 1-8. 10.1002/ijc.11644.CrossRef Fang J, Sawa T, Akaike T, Griesh K, Maeda H: Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int J Cancer. 2004, 109: 1-8. 10.1002/ijc.11644.CrossRef
Metadata
Title
Implication of heme oxygenase-1 in the sensitivity of nasopharyngeal carcinomas to radiotherapy
Authors
Lei Shi
Jun Fang
Publication date
01-06-2008
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2008
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-27-13

Other articles of this Issue 1/2008

Journal of Experimental & Clinical Cancer Research 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine