Skip to main content
Top
Published in: Molecular Brain 1/2014

Open Access 01-12-2014 | Review

The impact of human hyperekplexia mutations on glycine receptor structure and function

Authors: Anna Bode, Joseph W Lynch

Published in: Molecular Brain | Issue 1/2014

Login to get access

Abstract

Hyperekplexia is a rare neurological disorder characterized by neonatal hypertonia, exaggerated startle responses to unexpected stimuli and a variable incidence of apnoea, intellectual disability and delays in speech acquisition. The majority of motor defects are successfully treated by clonazepam. Hyperekplexia is caused by hereditary mutations that disrupt the functioning of inhibitory glycinergic synapses in neuromotor pathways of the spinal cord and brainstem. The human glycine receptor α1 and β subunits, which predominate at these synapses, are the major targets of mutations. International genetic screening programs, that together have analysed several hundred probands, have recently generated a clear picture of genotype-phenotype correlations and the prevalence of different categories of hyperekplexia mutations. Focusing largely on this new information, this review seeks to summarise the effects of mutations on glycine receptor structure and function and how these functional alterations lead to hyperekplexia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kirstein L, Silfverskiold BP: A family with emotionally precipitated drop seizures. Acta Psychiatr Neurol Scand. 1958, 33: 471-476. 10.1111/j.1600-0447.1958.tb03533.x.PubMed Kirstein L, Silfverskiold BP: A family with emotionally precipitated drop seizures. Acta Psychiatr Neurol Scand. 1958, 33: 471-476. 10.1111/j.1600-0447.1958.tb03533.x.PubMed
2.
go back to reference Suhren O, Bruyn GW, Tuynman JA: Hyperexplexia - a hereditary startle syndrome. J Neurol Sci. 1966, 3: 577-605. 10.1016/0022-510X(66)90047-5. Suhren O, Bruyn GW, Tuynman JA: Hyperexplexia - a hereditary startle syndrome. J Neurol Sci. 1966, 3: 577-605. 10.1016/0022-510X(66)90047-5.
3.
go back to reference Bakker MJ, van Dijk JG, van den Maagdenberg AM, Tijssen MA: Startle syndromes. Lancet Neurol. 2006, 5: 513-524. 10.1016/S1474-4422(06)70470-7.PubMed Bakker MJ, van Dijk JG, van den Maagdenberg AM, Tijssen MA: Startle syndromes. Lancet Neurol. 2006, 5: 513-524. 10.1016/S1474-4422(06)70470-7.PubMed
4.
go back to reference Thomas RH, Chung SK, Wood SE, Cushion TD, Drew CJ, Hammond CL, Vanbellinghen JF, Mullins JG, Rees MI: Genotype-phenotype correlations in hyperekplexia: apnoeas, learning difficulties and speech delay. Brain. 2013, 136: 3085-3095. 10.1093/brain/awt207.PubMed Thomas RH, Chung SK, Wood SE, Cushion TD, Drew CJ, Hammond CL, Vanbellinghen JF, Mullins JG, Rees MI: Genotype-phenotype correlations in hyperekplexia: apnoeas, learning difficulties and speech delay. Brain. 2013, 136: 3085-3095. 10.1093/brain/awt207.PubMed
5.
go back to reference Thomas RH, Harvey RJ, Rees MI: Hyperekplexia: stiffness, startle and syncope. J Pediatr Neurol. 2010, 8: 11-14. Thomas RH, Harvey RJ, Rees MI: Hyperekplexia: stiffness, startle and syncope. J Pediatr Neurol. 2010, 8: 11-14.
6.
go back to reference Zhou L, Chillag KL, Nigro MA: Hyperekplexia: a treatable neurogenetic disease. Brain Dev. 2002, 24: 669-674. 10.1016/S0387-7604(02)00095-5.PubMed Zhou L, Chillag KL, Nigro MA: Hyperekplexia: a treatable neurogenetic disease. Brain Dev. 2002, 24: 669-674. 10.1016/S0387-7604(02)00095-5.PubMed
7.
go back to reference Shiang R, Ryan SG, Zhu YZ, Hahn AF, O’Connell P, Wasmuth JJ: Mutations in the alpha 1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat Genet. 1993, 5: 351-358. 10.1038/ng1293-351.PubMed Shiang R, Ryan SG, Zhu YZ, Hahn AF, O’Connell P, Wasmuth JJ: Mutations in the alpha 1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat Genet. 1993, 5: 351-358. 10.1038/ng1293-351.PubMed
8.
go back to reference Bode A, Wood SE, Mullins JG, Keramidas A, Cushion TD, Thomas RH, Pickrell WO, Drew CJ, Masri A, Jones EA, Vassallo G, Born AP, Alehan F, Aharoni S, Bannasch G, Bartsch M, Kara B, Krause A, Karam EG, Matta S, Jain V, Mandel H, Freilinger M, Graham GE, Hobson E, Chatfield S, Vincent-Delorme C, Rahme JE, Afawi Z, Berkovic SF, Howell OW, Vanbellinghen JF, Rees MI, Chung SK, Lynch JW: New hyperekplexia mutations provide insight into glycine receptor assembly, trafficking, and activation mechanisms. J Biol Chem. 2013, 288: 33745-33759. 10.1074/jbc.M113.509240.PubMedPubMedCentral Bode A, Wood SE, Mullins JG, Keramidas A, Cushion TD, Thomas RH, Pickrell WO, Drew CJ, Masri A, Jones EA, Vassallo G, Born AP, Alehan F, Aharoni S, Bannasch G, Bartsch M, Kara B, Krause A, Karam EG, Matta S, Jain V, Mandel H, Freilinger M, Graham GE, Hobson E, Chatfield S, Vincent-Delorme C, Rahme JE, Afawi Z, Berkovic SF, Howell OW, Vanbellinghen JF, Rees MI, Chung SK, Lynch JW: New hyperekplexia mutations provide insight into glycine receptor assembly, trafficking, and activation mechanisms. J Biol Chem. 2013, 288: 33745-33759. 10.1074/jbc.M113.509240.PubMedPubMedCentral
9.
go back to reference Chung SK, Vanbellinghen JF, Mullins JG, Robinson A, Hantke J, Hammond CL, Gilbert DF, Freilinger M, Ryan M, Kruer MC, Masri A, Gurses C, Ferrie C, Harvey K, Shiang R, Christodoulou J, Andermann F, Andermann E, Thomas RH, Harvey RJ, Lynch JW, Rees MI: Pathophysiological mechanisms of dominant and recessive GLRA1 mutations in hyperekplexia. J Neurosci. 2010, 30: 9612-9620. 10.1523/JNEUROSCI.1763-10.2010.PubMed Chung SK, Vanbellinghen JF, Mullins JG, Robinson A, Hantke J, Hammond CL, Gilbert DF, Freilinger M, Ryan M, Kruer MC, Masri A, Gurses C, Ferrie C, Harvey K, Shiang R, Christodoulou J, Andermann F, Andermann E, Thomas RH, Harvey RJ, Lynch JW, Rees MI: Pathophysiological mechanisms of dominant and recessive GLRA1 mutations in hyperekplexia. J Neurosci. 2010, 30: 9612-9620. 10.1523/JNEUROSCI.1763-10.2010.PubMed
10.
go back to reference Al-Owain M, Colak D, Al-Bakheet A, Al-Hashmi N, Shuaib T, Al-Hemidan A, Aldhalaan H, Rahbeeni Z, Al-Sayed M, Al-Younes B, Ozand PT, Kaya N: Novel mutation in GLRB in a large family with hereditary hyperekplexia. Clin Genet. 2012, 81: 479-484. 10.1111/j.1399-0004.2011.01661.x.PubMed Al-Owain M, Colak D, Al-Bakheet A, Al-Hashmi N, Shuaib T, Al-Hemidan A, Aldhalaan H, Rahbeeni Z, Al-Sayed M, Al-Younes B, Ozand PT, Kaya N: Novel mutation in GLRB in a large family with hereditary hyperekplexia. Clin Genet. 2012, 81: 479-484. 10.1111/j.1399-0004.2011.01661.x.PubMed
11.
go back to reference Chung SK, Bode A, Cushion TD, Thomas RH, Hunt C, Wood SE, Pickrell WO, Drew CJ, Yamashita S, Shiang R, Leiz S, Longardt AC, Raile V, Weschke B, Puri RD, Verma IC, Harvey RJ, Ratnasinghe DD, Parker M, Rittey C, Masri A, Lingappa L, Howell OW, Vanbellinghen JF, Mullins JG, Lynch JW, Rees MI: GLRB is the third major gene of effect in hyperekplexia. Hum Mol Genet. 2013, 22: 927-940. 10.1093/hmg/dds498.PubMed Chung SK, Bode A, Cushion TD, Thomas RH, Hunt C, Wood SE, Pickrell WO, Drew CJ, Yamashita S, Shiang R, Leiz S, Longardt AC, Raile V, Weschke B, Puri RD, Verma IC, Harvey RJ, Ratnasinghe DD, Parker M, Rittey C, Masri A, Lingappa L, Howell OW, Vanbellinghen JF, Mullins JG, Lynch JW, Rees MI: GLRB is the third major gene of effect in hyperekplexia. Hum Mol Genet. 2013, 22: 927-940. 10.1093/hmg/dds498.PubMed
12.
go back to reference James VM, Bode A, Chung SK, Gill JL, Nielsen M, Cowan FM, Vujic M, Thomas RH, Rees MI, Harvey K, Keramidas A, Topf M, Ginjaar I, Lynch JW, Harvey RJ: Novel missense mutations in the glycine receptor beta subunit gene (GLRB) in startle disease. Neurobiol Dis. 2013, 52: 137-149.PubMedPubMedCentral James VM, Bode A, Chung SK, Gill JL, Nielsen M, Cowan FM, Vujic M, Thomas RH, Rees MI, Harvey K, Keramidas A, Topf M, Ginjaar I, Lynch JW, Harvey RJ: Novel missense mutations in the glycine receptor beta subunit gene (GLRB) in startle disease. Neurobiol Dis. 2013, 52: 137-149.PubMedPubMedCentral
13.
go back to reference Lee CG, Kwon MJ, Yu HJ, Nam SH, Lee J, Ki CS, Lee M: Clinical features and genetic analysis of children with hyperekplexia in Korea. J Child Neurol. 2013, 28: 90-94. 10.1177/0883073812441058.PubMed Lee CG, Kwon MJ, Yu HJ, Nam SH, Lee J, Ki CS, Lee M: Clinical features and genetic analysis of children with hyperekplexia in Korea. J Child Neurol. 2013, 28: 90-94. 10.1177/0883073812441058.PubMed
14.
go back to reference Mine J, Taketani T, Otsubo S, Kishi K, Yamaguchi S: A 14-year-old girl with hyperekplexia having GLRB mutations. Brain Dev. 2013, 35: 660-663. 10.1016/j.braindev.2012.10.013.PubMed Mine J, Taketani T, Otsubo S, Kishi K, Yamaguchi S: A 14-year-old girl with hyperekplexia having GLRB mutations. Brain Dev. 2013, 35: 660-663. 10.1016/j.braindev.2012.10.013.PubMed
15.
go back to reference Rees MI, Lewis TM, Kwok JB, Mortier GR, Govaert P, Snell RG, Schofield PR, Owen MJ: Hyperekplexia associated with compound heterozygote mutations in the beta-subunit of the human inhibitory glycine receptor (GLRB). Hum Mol Genet. 2002, 11: 853-860. 10.1093/hmg/11.7.853.PubMed Rees MI, Lewis TM, Kwok JB, Mortier GR, Govaert P, Snell RG, Schofield PR, Owen MJ: Hyperekplexia associated with compound heterozygote mutations in the beta-subunit of the human inhibitory glycine receptor (GLRB). Hum Mol Genet. 2002, 11: 853-860. 10.1093/hmg/11.7.853.PubMed
16.
go back to reference Carta E, Chung SK, James VM, Robinson A, Gill JL, Remy N, Vanbellinghen JF, Drew CJ, Cagdas S, Cameron D, Cowan FM, Del Toro M, Graham GE, Manzur AY, Masri A, Rivera S, Scalais E, Shiang R, Sinclair K, Stuart CA, Tijssen MA, Wise G, Zuberi SM, Harvey K, Pearce BR, Topf M, Thomas RH, Supplisson S, Rees MI, Harvey RJ: Mutations in the GlyT2 gene (SLC6A5) are a second major cause of startle disease. J Biol Chem. 2012, 287: 28975-28985. 10.1074/jbc.M112.372094.PubMedPubMedCentral Carta E, Chung SK, James VM, Robinson A, Gill JL, Remy N, Vanbellinghen JF, Drew CJ, Cagdas S, Cameron D, Cowan FM, Del Toro M, Graham GE, Manzur AY, Masri A, Rivera S, Scalais E, Shiang R, Sinclair K, Stuart CA, Tijssen MA, Wise G, Zuberi SM, Harvey K, Pearce BR, Topf M, Thomas RH, Supplisson S, Rees MI, Harvey RJ: Mutations in the GlyT2 gene (SLC6A5) are a second major cause of startle disease. J Biol Chem. 2012, 287: 28975-28985. 10.1074/jbc.M112.372094.PubMedPubMedCentral
17.
go back to reference Eulenburg V, Becker K, Gomeza J, Schmitt B, Becker CM, Betz H: Mutations within the human GLYT2 (SLC6A5) gene associated with hyperekplexia. Biochem Biophys Res Commun. 2006, 348: 400-405. 10.1016/j.bbrc.2006.07.080.PubMed Eulenburg V, Becker K, Gomeza J, Schmitt B, Becker CM, Betz H: Mutations within the human GLYT2 (SLC6A5) gene associated with hyperekplexia. Biochem Biophys Res Commun. 2006, 348: 400-405. 10.1016/j.bbrc.2006.07.080.PubMed
18.
go back to reference Gimenez C, Perez-Siles G, Martinez-Villarreal J, Arribas-Gonzalez E, Jimenez E, Nunez E, de Juan-Sanz J, Fernandez-Sanchez E, Garcia-Tardon N, Ibanez I, Romanelli V, Nevado J, James VM, Topf M, Chung SK, Thomas RH, Desviat LR, Aragon C, Zafra F, Rees MI, Lapunzina P, Harvey RJ, Lopez-Corcuera B: A novel dominant hyperekplexia mutation Y705C alters trafficking and biochemical properties of the presynaptic glycine transporter GlyT2. J Biol Chem. 2012, 287: 28986-29002. 10.1074/jbc.M111.319244.PubMedPubMedCentral Gimenez C, Perez-Siles G, Martinez-Villarreal J, Arribas-Gonzalez E, Jimenez E, Nunez E, de Juan-Sanz J, Fernandez-Sanchez E, Garcia-Tardon N, Ibanez I, Romanelli V, Nevado J, James VM, Topf M, Chung SK, Thomas RH, Desviat LR, Aragon C, Zafra F, Rees MI, Lapunzina P, Harvey RJ, Lopez-Corcuera B: A novel dominant hyperekplexia mutation Y705C alters trafficking and biochemical properties of the presynaptic glycine transporter GlyT2. J Biol Chem. 2012, 287: 28986-29002. 10.1074/jbc.M111.319244.PubMedPubMedCentral
19.
go back to reference Rees MI, Harvey K, Pearce BR, Chung SK, Duguid IC, Thomas P, Beatty S, Graham GE, Armstrong L, Shiang R, Abbott KJ, Zuberi SM, Stephenson JB, Owen MJ, Tijssen MA, van den Maagdenberg AM, Smart TG, Supplisson S, Harvey RJ: Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nat Genet. 2006, 38: 801-806. 10.1038/ng1814.PubMedPubMedCentral Rees MI, Harvey K, Pearce BR, Chung SK, Duguid IC, Thomas P, Beatty S, Graham GE, Armstrong L, Shiang R, Abbott KJ, Zuberi SM, Stephenson JB, Owen MJ, Tijssen MA, van den Maagdenberg AM, Smart TG, Supplisson S, Harvey RJ: Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nat Genet. 2006, 38: 801-806. 10.1038/ng1814.PubMedPubMedCentral
20.
go back to reference Rees MI, Harvey K, Ward H, White JH, Evans L, Duguid IC, Hsu CC, Coleman SL, Miller J, Baer K, Waldvogel HJ, Gibbon F, Smart TG, Owen MJ, Harvey RJ, Snell RG: Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia. J Biol Chem. 2003, 278: 24688-24696. 10.1074/jbc.M301070200.PubMed Rees MI, Harvey K, Ward H, White JH, Evans L, Duguid IC, Hsu CC, Coleman SL, Miller J, Baer K, Waldvogel HJ, Gibbon F, Smart TG, Owen MJ, Harvey RJ, Snell RG: Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia. J Biol Chem. 2003, 278: 24688-24696. 10.1074/jbc.M301070200.PubMed
21.
go back to reference Harvey K, Duguid IC, Alldred MJ, Beatty SE, Ward H, Keep NH, Lingenfelter SE, Pearce BR, Lundgren J, Owen MJ, Smart TG, Luscher B, Rees MI, Harvey RJ: The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J Neurosci. 2004, 24: 5816-5826. 10.1523/JNEUROSCI.1184-04.2004.PubMed Harvey K, Duguid IC, Alldred MJ, Beatty SE, Ward H, Keep NH, Lingenfelter SE, Pearce BR, Lundgren J, Owen MJ, Smart TG, Luscher B, Rees MI, Harvey RJ: The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J Neurosci. 2004, 24: 5816-5826. 10.1523/JNEUROSCI.1184-04.2004.PubMed
22.
go back to reference Chalphin AV, Saha MS: The specification of glycinergic neurons and the role of glycinergic transmission in development. Front Mol Neurosci. 2010, 3: 11-PubMedPubMedCentral Chalphin AV, Saha MS: The specification of glycinergic neurons and the role of glycinergic transmission in development. Front Mol Neurosci. 2010, 3: 11-PubMedPubMedCentral
23.
go back to reference Legendre P: The glycinergic inhibitory synapse. Cell Mol Life Sci. 2001, 58: 760-793. 10.1007/PL00000899.PubMed Legendre P: The glycinergic inhibitory synapse. Cell Mol Life Sci. 2001, 58: 760-793. 10.1007/PL00000899.PubMed
24.
go back to reference Lynch JW: Native glycine receptor subtypes and their physiological roles. Neuropharmacology. 2009, 56: 303-309. 10.1016/j.neuropharm.2008.07.034.PubMed Lynch JW: Native glycine receptor subtypes and their physiological roles. Neuropharmacology. 2009, 56: 303-309. 10.1016/j.neuropharm.2008.07.034.PubMed
25.
go back to reference Bode A, Lynch JW: Analysis of hyperekplexia mutations identifies transmembrane domain rearrangements that mediate glycine receptor activation. J Biol Chem. 2013, 288: 33760-33771. 10.1074/jbc.M113.513804.PubMedPubMedCentral Bode A, Lynch JW: Analysis of hyperekplexia mutations identifies transmembrane domain rearrangements that mediate glycine receptor activation. J Biol Chem. 2013, 288: 33760-33771. 10.1074/jbc.M113.513804.PubMedPubMedCentral
26.
go back to reference Davies JS, Chung SK, Thomas RH, Robinson A, Hammond CL, Mullins JG, Carta E, Pearce BR, Harvey K, Harvey RJ, Rees MI: The glycinergic system in human startle disease: a genetic screening approach. Front Mol Neurosci. 2010, 3: 8-PubMedPubMedCentral Davies JS, Chung SK, Thomas RH, Robinson A, Hammond CL, Mullins JG, Carta E, Pearce BR, Harvey K, Harvey RJ, Rees MI: The glycinergic system in human startle disease: a genetic screening approach. Front Mol Neurosci. 2010, 3: 8-PubMedPubMedCentral
27.
go back to reference Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP, Delarue M, Corringer PJ: X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature. 2009, 457: 111-114. 10.1038/nature07462.PubMed Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP, Delarue M, Corringer PJ: X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature. 2009, 457: 111-114. 10.1038/nature07462.PubMed
28.
go back to reference Hilf RJ, Dutzler R: X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature. 2008, 452: 375-379. 10.1038/nature06717.PubMed Hilf RJ, Dutzler R: X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature. 2008, 452: 375-379. 10.1038/nature06717.PubMed
29.
go back to reference Hilf RJ, Dutzler R: Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature. 2009, 457: 115-118. 10.1038/nature07461.PubMed Hilf RJ, Dutzler R: Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature. 2009, 457: 115-118. 10.1038/nature07461.PubMed
30.
go back to reference Unwin N: Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol. 2005, 346: 967-989. 10.1016/j.jmb.2004.12.031.PubMed Unwin N: Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol. 2005, 346: 967-989. 10.1016/j.jmb.2004.12.031.PubMed
31.
go back to reference Hibbs RE, Gouaux E: Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature. 2011, 474: 54-60. 10.1038/nature10139.PubMedPubMedCentral Hibbs RE, Gouaux E: Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature. 2011, 474: 54-60. 10.1038/nature10139.PubMedPubMedCentral
32.
go back to reference Beato M, Groot-Kormelink PJ, Colquhoun D, Sivilotti LG: Openings of the rat recombinant alpha 1 homomeric glycine receptor as a function of the number of agonist molecules bound. J Gen Physiol. 2002, 119: 443-466. 10.1085/jgp.20028530.PubMedPubMedCentral Beato M, Groot-Kormelink PJ, Colquhoun D, Sivilotti LG: Openings of the rat recombinant alpha 1 homomeric glycine receptor as a function of the number of agonist molecules bound. J Gen Physiol. 2002, 119: 443-466. 10.1085/jgp.20028530.PubMedPubMedCentral
33.
go back to reference Calimet N, Simoes M, Changeux JP, Karplus M, Taly A, Cecchini M: A gating mechanism of pentameric ligand-gated ion channels. Proc Natl Acad Sci USA. 2013, 110: E3987-E3996. 10.1073/pnas.1313785110.PubMedPubMedCentral Calimet N, Simoes M, Changeux JP, Karplus M, Taly A, Cecchini M: A gating mechanism of pentameric ligand-gated ion channels. Proc Natl Acad Sci USA. 2013, 110: E3987-E3996. 10.1073/pnas.1313785110.PubMedPubMedCentral
34.
go back to reference Corringer PJ, Baaden M, Bocquet N, Delarue M, Dufresne V, Nury H, Prevost M, Van Renterghem C: Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. J Physiol. 2010, 588: 565-572. 10.1113/jphysiol.2009.183160.PubMedPubMedCentral Corringer PJ, Baaden M, Bocquet N, Delarue M, Dufresne V, Nury H, Prevost M, Van Renterghem C: Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. J Physiol. 2010, 588: 565-572. 10.1113/jphysiol.2009.183160.PubMedPubMedCentral
35.
go back to reference Miller PS, Smart TG: Binding, activation and modulation of Cys-loop receptors. Trends Pharmacol Sci. 2010, 31: 161-174. 10.1016/j.tips.2009.12.005.PubMed Miller PS, Smart TG: Binding, activation and modulation of Cys-loop receptors. Trends Pharmacol Sci. 2010, 31: 161-174. 10.1016/j.tips.2009.12.005.PubMed
36.
go back to reference Simon J, Wakimoto H, Fujita N, Lalande M, Barnard EA: Analysis of the set of GABA (A) receptor genes in the human genome. J Biol Chem. 2004, 279: 41422-41435. 10.1074/jbc.M401354200.PubMed Simon J, Wakimoto H, Fujita N, Lalande M, Barnard EA: Analysis of the set of GABA (A) receptor genes in the human genome. J Biol Chem. 2004, 279: 41422-41435. 10.1074/jbc.M401354200.PubMed
37.
go back to reference Grudzinska J, Schemm R, Haeger S, Nicke A, Schmalzing G, Betz H, Laube B: The beta subunit determines the ligand binding properties of synaptic glycine receptors. Neuron. 2005, 45: 727-739. 10.1016/j.neuron.2005.01.028.PubMed Grudzinska J, Schemm R, Haeger S, Nicke A, Schmalzing G, Betz H, Laube B: The beta subunit determines the ligand binding properties of synaptic glycine receptors. Neuron. 2005, 45: 727-739. 10.1016/j.neuron.2005.01.028.PubMed
38.
go back to reference Yang Z, Taran E, Webb TI, Lynch JW: Stoichiometry and subunit arrangement of alpha1beta glycine receptors as determined by atomic force microscopy. Biochemistry. 2012, 51: 5229-5231. 10.1021/bi300063m.PubMed Yang Z, Taran E, Webb TI, Lynch JW: Stoichiometry and subunit arrangement of alpha1beta glycine receptors as determined by atomic force microscopy. Biochemistry. 2012, 51: 5229-5231. 10.1021/bi300063m.PubMed
39.
go back to reference Durisic N, Godin AG, Wever CM, Heyes CD, Lakadamyali M, Dent JA: Stoichiometry of the human glycine receptor revealed by direct subunit counting. J Neurosci. 2012, 32: 12915-12920. 10.1523/JNEUROSCI.2050-12.2012.PubMedPubMedCentral Durisic N, Godin AG, Wever CM, Heyes CD, Lakadamyali M, Dent JA: Stoichiometry of the human glycine receptor revealed by direct subunit counting. J Neurosci. 2012, 32: 12915-12920. 10.1523/JNEUROSCI.2050-12.2012.PubMedPubMedCentral
40.
go back to reference Meyer G, Kirsch J, Betz H, Langosch D: Identification of a gephyrin binding motif on the glycine receptor beta subunit. Neuron. 1995, 15: 563-572. 10.1016/0896-6273(95)90145-0.PubMed Meyer G, Kirsch J, Betz H, Langosch D: Identification of a gephyrin binding motif on the glycine receptor beta subunit. Neuron. 1995, 15: 563-572. 10.1016/0896-6273(95)90145-0.PubMed
41.
go back to reference Watanabe E, Akagi H: Distribution patterns of mRNAs encoding glycine receptor channels in the developing rat spinal cord. Neurosci Res. 1995, 23: 377-382. 10.1016/0168-0102(95)00972-V.PubMed Watanabe E, Akagi H: Distribution patterns of mRNAs encoding glycine receptor channels in the developing rat spinal cord. Neurosci Res. 1995, 23: 377-382. 10.1016/0168-0102(95)00972-V.PubMed
42.
go back to reference Harvey RJ, Depner UB, Wassle H, Ahmadi S, Heindl C, Reinold H, Smart TG, Harvey K, Schutz B, Abo-Salem OM, Zimmer A, Poisbeau P, Welzl H, Wolfer DP, Betz H, Zeilhofer HU, Muller U: GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science. 2004, 304: 884-887. 10.1126/science.1094925.PubMed Harvey RJ, Depner UB, Wassle H, Ahmadi S, Heindl C, Reinold H, Smart TG, Harvey K, Schutz B, Abo-Salem OM, Zimmer A, Poisbeau P, Welzl H, Wolfer DP, Betz H, Zeilhofer HU, Muller U: GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science. 2004, 304: 884-887. 10.1126/science.1094925.PubMed
43.
go back to reference Avila A, Vidal PM, Dear TN, Harvey RJ, Rigo JM, Nguyen L: Glycine receptor alpha2 subunit activation promotes cortical interneuron migration. Cell Rep. 2013, 4: 738-750. 10.1016/j.celrep.2013.07.016.PubMedPubMedCentral Avila A, Vidal PM, Dear TN, Harvey RJ, Rigo JM, Nguyen L: Glycine receptor alpha2 subunit activation promotes cortical interneuron migration. Cell Rep. 2013, 4: 738-750. 10.1016/j.celrep.2013.07.016.PubMedPubMedCentral
44.
go back to reference Jonsson S, Morud J, Pickering C, Adermark L, Ericson M, Soderpalm B: Changes in glycine receptor subunit expression in forebrain regions of the Wistar rat over development. Brain Res. 2012, 1446: 12-21.PubMed Jonsson S, Morud J, Pickering C, Adermark L, Ericson M, Soderpalm B: Changes in glycine receptor subunit expression in forebrain regions of the Wistar rat over development. Brain Res. 2012, 1446: 12-21.PubMed
45.
go back to reference Thio LL, Shanmugam A, Isenberg K, Yamada K: Benzodiazepines block alpha2-containing inhibitory glycine receptors in embryonic mouse hippocampal neurons. J Neurophysiol. 2003, 90: 89-99. 10.1152/jn.00612.2002.PubMed Thio LL, Shanmugam A, Isenberg K, Yamada K: Benzodiazepines block alpha2-containing inhibitory glycine receptors in embryonic mouse hippocampal neurons. J Neurophysiol. 2003, 90: 89-99. 10.1152/jn.00612.2002.PubMed
46.
go back to reference Young-Pearse TL, Ivic L, Kriegstein AR, Cepko CL: Characterization of mice with targeted deletion of glycine receptor alpha 2. Mol Cell Biol. 2006, 26: 5728-5734. 10.1128/MCB.00237-06.PubMedPubMedCentral Young-Pearse TL, Ivic L, Kriegstein AR, Cepko CL: Characterization of mice with targeted deletion of glycine receptor alpha 2. Mol Cell Biol. 2006, 26: 5728-5734. 10.1128/MCB.00237-06.PubMedPubMedCentral
47.
go back to reference Rees MI, Andrew M, Jawad S, Owen MJ: Evidence for recessive as well as dominant forms of startle disease (hyperekplexia) caused by mutations in the alpha 1 subunit of the inhibitory glycine receptor. Hum Mol Genet. 1994, 3: 2175-2179. 10.1093/hmg/3.12.2175.PubMed Rees MI, Andrew M, Jawad S, Owen MJ: Evidence for recessive as well as dominant forms of startle disease (hyperekplexia) caused by mutations in the alpha 1 subunit of the inhibitory glycine receptor. Hum Mol Genet. 1994, 3: 2175-2179. 10.1093/hmg/3.12.2175.PubMed
48.
go back to reference Vergouwe MN, Tijssen MA, Peters AC, Wielaard R, Frants RR: Hyperekplexia phenotype due to compound heterozygosity for GLRA1 gene mutations. Ann Neurol. 1999, 46: 634-638. 10.1002/1531-8249(199910)46:4<634::AID-ANA12>3.0.CO;2-9.PubMed Vergouwe MN, Tijssen MA, Peters AC, Wielaard R, Frants RR: Hyperekplexia phenotype due to compound heterozygosity for GLRA1 gene mutations. Ann Neurol. 1999, 46: 634-638. 10.1002/1531-8249(199910)46:4<634::AID-ANA12>3.0.CO;2-9.PubMed
49.
go back to reference del Giudice EM, Coppola G, Bellini G, Cirillo G, Scuccimarra G, Pascotto A: A mutation (V260M) in the middle of the M2 pore-lining domain of the glycine receptor causes hereditary hyperekplexia. Eur J Hum Genet. 2001, 9: 873-876. 10.1038/sj.ejhg.5200729.PubMed del Giudice EM, Coppola G, Bellini G, Cirillo G, Scuccimarra G, Pascotto A: A mutation (V260M) in the middle of the M2 pore-lining domain of the glycine receptor causes hereditary hyperekplexia. Eur J Hum Genet. 2001, 9: 873-876. 10.1038/sj.ejhg.5200729.PubMed
50.
go back to reference Brune W, Weber RG, Saul B, von Knebel Doeberitz M, Grond-Ginsbach C, Kellerman K, Meinck HM, Becker CM: A GLRA1 null mutation in recessive hyperekplexia challenges the functional role of glycine receptors. Am J Hum Genet. 1996, 58: 989-997.PubMedPubMedCentral Brune W, Weber RG, Saul B, von Knebel Doeberitz M, Grond-Ginsbach C, Kellerman K, Meinck HM, Becker CM: A GLRA1 null mutation in recessive hyperekplexia challenges the functional role of glycine receptors. Am J Hum Genet. 1996, 58: 989-997.PubMedPubMedCentral
51.
go back to reference Tsai CH, Chang FC, Su YC, Tsai FJ, Lu MK, Lee CC, Kuo CC, Yang YW, Lu CS: Two novel mutations of the glycine receptor gene in a Taiwanese hyperekplexia family. Neurology. 2004, 63: 893-896. 10.1212/01.WNL.0000138566.65519.67.PubMed Tsai CH, Chang FC, Su YC, Tsai FJ, Lu MK, Lee CC, Kuo CC, Yang YW, Lu CS: Two novel mutations of the glycine receptor gene in a Taiwanese hyperekplexia family. Neurology. 2004, 63: 893-896. 10.1212/01.WNL.0000138566.65519.67.PubMed
52.
go back to reference Rees MI, Lewis TM, Vafa B, Ferrie C, Corry P, Muntoni F, Jungbluth H, Stephenson JB, Kerr M, Snell RG, Schofield PR, Owen MJ: Compound heterozygosity and nonsense mutations in the alpha (1)-subunit of the inhibitory glycine receptor in hyperekplexia. Hum Genet. 2001, 109: 267-270. 10.1007/s004390100569.PubMed Rees MI, Lewis TM, Vafa B, Ferrie C, Corry P, Muntoni F, Jungbluth H, Stephenson JB, Kerr M, Snell RG, Schofield PR, Owen MJ: Compound heterozygosity and nonsense mutations in the alpha (1)-subunit of the inhibitory glycine receptor in hyperekplexia. Hum Genet. 2001, 109: 267-270. 10.1007/s004390100569.PubMed
53.
go back to reference Coto E, Armenta D, Espinosa R, Argente J, Castro MG, Alvarez V: Recessive hyperekplexia due to a new mutation (R100H) in the GLRA1 gene. Mov Disord. 2005, 20: 1626-1629. 10.1002/mds.20637.PubMed Coto E, Armenta D, Espinosa R, Argente J, Castro MG, Alvarez V: Recessive hyperekplexia due to a new mutation (R100H) in the GLRA1 gene. Mov Disord. 2005, 20: 1626-1629. 10.1002/mds.20637.PubMed
54.
go back to reference Zoons E, Ginjaar IB, Bouma PA, Carpay JA, Tijssen MA: A new hyperekplexia family with a recessive frameshift mutation in the GLRA1 gene. Mov Disord. 2012, 27: 795-796. 10.1002/mds.24917.PubMed Zoons E, Ginjaar IB, Bouma PA, Carpay JA, Tijssen MA: A new hyperekplexia family with a recessive frameshift mutation in the GLRA1 gene. Mov Disord. 2012, 27: 795-796. 10.1002/mds.24917.PubMed
55.
go back to reference Chan KK, Cherk SW, Lee HH, Poon WT, Chan AY: Hyperekplexia: a Chinese adolescent with 2 novel mutations of the GLRA1 gene. J Child Neurol. 2012, 29: 111-113.PubMed Chan KK, Cherk SW, Lee HH, Poon WT, Chan AY: Hyperekplexia: a Chinese adolescent with 2 novel mutations of the GLRA1 gene. J Child Neurol. 2012, 29: 111-113.PubMed
56.
go back to reference Al-Futaisi AM, Al-Kindi MN, Al-Mawali AM, Koul RL, Al-Adawi S, Al-Yahyaee SA: Novel mutation of GLRA1 in Omani families with hyperekplexia and mild mental retardation. Pediatr Neurol. 2012, 46: 89-93. 10.1016/j.pediatrneurol.2011.11.008.PubMed Al-Futaisi AM, Al-Kindi MN, Al-Mawali AM, Koul RL, Al-Adawi S, Al-Yahyaee SA: Novel mutation of GLRA1 in Omani families with hyperekplexia and mild mental retardation. Pediatr Neurol. 2012, 46: 89-93. 10.1016/j.pediatrneurol.2011.11.008.PubMed
57.
go back to reference Forsyth RJ, Gika AD, Ginjaar I, Tijssen MA: A novel GLRA1 mutation in a recessive hyperekplexia pedigree. Mov Disord. 2007, 22: 1643-1645. 10.1002/mds.21574.PubMed Forsyth RJ, Gika AD, Ginjaar I, Tijssen MA: A novel GLRA1 mutation in a recessive hyperekplexia pedigree. Mov Disord. 2007, 22: 1643-1645. 10.1002/mds.21574.PubMed
58.
go back to reference Humeny A, Bonk T, Becker K, Jafari-Boroujerdi M, Stephani U, Reuter K, Becker CM: A novel recessive hyperekplexia allele GLRA1 (S231R): genotyping by MALDI-TOF mass spectrometry and functional characterisation as a determinant of cellular glycine receptor trafficking. Eur J Hum Genet. 2002, 10: 188-196. 10.1038/sj.ejhg.5200779.PubMed Humeny A, Bonk T, Becker K, Jafari-Boroujerdi M, Stephani U, Reuter K, Becker CM: A novel recessive hyperekplexia allele GLRA1 (S231R): genotyping by MALDI-TOF mass spectrometry and functional characterisation as a determinant of cellular glycine receptor trafficking. Eur J Hum Genet. 2002, 10: 188-196. 10.1038/sj.ejhg.5200779.PubMed
59.
go back to reference Gilbert SL, Ozdag F, Ulas UH, Dobyns WB, Lahn BT: Hereditary hyperekplexia caused by novel mutations of GLRA1 in Turkish families. Mol Diagn. 2004, 8: 151-155.PubMed Gilbert SL, Ozdag F, Ulas UH, Dobyns WB, Lahn BT: Hereditary hyperekplexia caused by novel mutations of GLRA1 in Turkish families. Mol Diagn. 2004, 8: 151-155.PubMed
60.
go back to reference Saul B, Kuner T, Sobetzko D, Brune W, Hanefeld F, Meinck HM, Becker CM: Novel GLRA1 missense mutation (P250T) in dominant hyperekplexia defines an intracellular determinant of glycine receptor channel gating. J Neurosci. 1999, 19: 869-877.PubMed Saul B, Kuner T, Sobetzko D, Brune W, Hanefeld F, Meinck HM, Becker CM: Novel GLRA1 missense mutation (P250T) in dominant hyperekplexia defines an intracellular determinant of glycine receptor channel gating. J Neurosci. 1999, 19: 869-877.PubMed
61.
go back to reference Milani N, Dalpra L, del Prete A, Zanini R, Larizza L: A novel mutation (Gln266 - > His) in the alpha 1 subunit of the inhibitory glycine-receptor gene (GLRA1) in hereditary hyperekplexia. Am J Hum Genet. 1996, 58: 420-422.PubMedPubMedCentral Milani N, Dalpra L, del Prete A, Zanini R, Larizza L: A novel mutation (Gln266 - > His) in the alpha 1 subunit of the inhibitory glycine-receptor gene (GLRA1) in hereditary hyperekplexia. Am J Hum Genet. 1996, 58: 420-422.PubMedPubMedCentral
62.
go back to reference Becker K, Breitinger HG, Humeny A, Meinck HM, Dietz B, Aksu F, Becker CM: The novel hyperekplexia allele GLRA1(S267N) affects the ethanol site of the glycine receptor. Eur J Hum Genet. 2008, 16: 223-228. 10.1038/sj.ejhg.5201958.PubMed Becker K, Breitinger HG, Humeny A, Meinck HM, Dietz B, Aksu F, Becker CM: The novel hyperekplexia allele GLRA1(S267N) affects the ethanol site of the glycine receptor. Eur J Hum Genet. 2008, 16: 223-228. 10.1038/sj.ejhg.5201958.PubMed
63.
go back to reference Lapunzina P, Sanchez JM, Cabrera M, Moreno A, Delicado A, de Torres ML, Mori AM, Quero J, Lopez Pajares I: Hyperekplexia (startle disease): a novel mutation (S270T) in the M2 domain of the GLRA1 gene and a molecular review of the disorder. Mol Diagn. 2003, 7: 125-128.PubMed Lapunzina P, Sanchez JM, Cabrera M, Moreno A, Delicado A, de Torres ML, Mori AM, Quero J, Lopez Pajares I: Hyperekplexia (startle disease): a novel mutation (S270T) in the M2 domain of the GLRA1 gene and a molecular review of the disorder. Mol Diagn. 2003, 7: 125-128.PubMed
64.
go back to reference Gregory ML, Guzauskas GF, Edgar TS, Clarkson KB, Srivastava AK, Holden KR: A novel GLRA1 mutation associated with an atypical hyperekplexia phenotype. J Child Neurol. 2008, 23: 1433-1438. 10.1177/0883073808320754.PubMed Gregory ML, Guzauskas GF, Edgar TS, Clarkson KB, Srivastava AK, Holden KR: A novel GLRA1 mutation associated with an atypical hyperekplexia phenotype. J Child Neurol. 2008, 23: 1433-1438. 10.1177/0883073808320754.PubMed
65.
go back to reference Elmslie FV, Hutchings SM, Spencer V, Curtis A, Covanis T, Gardiner RM, Rees M: Analysis of GLRA1 in hereditary and sporadic hyperekplexia: a novel mutation in a family cosegregating for hyperekplexia and spastic paraparesis. J Med Genet. 1996, 33: 435-436. 10.1136/jmg.33.5.435.PubMedPubMedCentral Elmslie FV, Hutchings SM, Spencer V, Curtis A, Covanis T, Gardiner RM, Rees M: Analysis of GLRA1 in hereditary and sporadic hyperekplexia: a novel mutation in a family cosegregating for hyperekplexia and spastic paraparesis. J Med Genet. 1996, 33: 435-436. 10.1136/jmg.33.5.435.PubMedPubMedCentral
66.
go back to reference Kang HC, Jeong You S, Jae Chey M, Sam Baik J, Kim JW, Ki CS: Identification of a de novo Lys304Gln mutation in the glycine receptor alpha-1 subunit gene in a Korean infant with hyperekplexia. Mov Disord. 2008, 23: 610-613. 10.1002/mds.21909.PubMed Kang HC, Jeong You S, Jae Chey M, Sam Baik J, Kim JW, Ki CS: Identification of a de novo Lys304Gln mutation in the glycine receptor alpha-1 subunit gene in a Korean infant with hyperekplexia. Mov Disord. 2008, 23: 610-613. 10.1002/mds.21909.PubMed
67.
go back to reference Shiang R, Ryan SG, Zhu YZ, Fielder TJ, Allen RJ, Fryer A, Yamashita S, O’Connell P, Wasmuth JJ: Mutational analysis of familial and sporadic hyperekplexia. Ann Neurol. 1995, 38: 85-91. 10.1002/ana.410380115.PubMed Shiang R, Ryan SG, Zhu YZ, Fielder TJ, Allen RJ, Fryer A, Yamashita S, O’Connell P, Wasmuth JJ: Mutational analysis of familial and sporadic hyperekplexia. Ann Neurol. 1995, 38: 85-91. 10.1002/ana.410380115.PubMed
68.
go back to reference Poon WT, Au KM, Chan YW, Chan KY, Chow CB, Tong SF, Lam CW: Novel missense mutation (Y279S) in the GLRA1 gene causing hyperekplexia. Clin Chim Acta. 2006, 364: 361-362. 10.1016/j.cca.2005.09.018.PubMed Poon WT, Au KM, Chan YW, Chan KY, Chow CB, Tong SF, Lam CW: Novel missense mutation (Y279S) in the GLRA1 gene causing hyperekplexia. Clin Chim Acta. 2006, 364: 361-362. 10.1016/j.cca.2005.09.018.PubMed
69.
go back to reference Bellini G, Miceli F, Mangano S, Miraglia Del Giudice E, Coppola G, Barbagallo A, Taglialatela M, Pascotto A: Hyperekplexia caused by dominant-negative suppression of glyra1 function. Neurology. 2007, 68: 1947-1949. 10.1212/01.wnl.0000263193.75291.85.PubMed Bellini G, Miceli F, Mangano S, Miraglia Del Giudice E, Coppola G, Barbagallo A, Taglialatela M, Pascotto A: Hyperekplexia caused by dominant-negative suppression of glyra1 function. Neurology. 2007, 68: 1947-1949. 10.1212/01.wnl.0000263193.75291.85.PubMed
70.
go back to reference Jungbluth H, Rees MI, Manzur AY, Mercuri E, Sewry CA, Gobbi P, Muntoni F: An unusual case of hyperekplexia. Eur J Paediatr Neurol. 2000, 4: 77-80. 10.1053/ejpn.1999.0267.PubMed Jungbluth H, Rees MI, Manzur AY, Mercuri E, Sewry CA, Gobbi P, Muntoni F: An unusual case of hyperekplexia. Eur J Paediatr Neurol. 2000, 4: 77-80. 10.1053/ejpn.1999.0267.PubMed
71.
go back to reference Engel AG, Shen XM, Selcen D, Sine SM: What have we learned from the congenital myasthenic syndromes. J Mol Neurosci. 2010, 40: 143-153. 10.1007/s12031-009-9229-0.PubMedPubMedCentral Engel AG, Shen XM, Selcen D, Sine SM: What have we learned from the congenital myasthenic syndromes. J Mol Neurosci. 2010, 40: 143-153. 10.1007/s12031-009-9229-0.PubMedPubMedCentral
72.
go back to reference Tijssen MA, Shiang R, van Deutekom J, Boerman RH, Wasmuth JJ, Sandkuijl LA, Frants RR, Padberg GW: Molecular genetic reevaluation of the Dutch hyperekplexia family. Arch Neurol. 1995, 52: 578-582. 10.1001/archneur.1995.00540300052012.PubMed Tijssen MA, Shiang R, van Deutekom J, Boerman RH, Wasmuth JJ, Sandkuijl LA, Frants RR, Padberg GW: Molecular genetic reevaluation of the Dutch hyperekplexia family. Arch Neurol. 1995, 52: 578-582. 10.1001/archneur.1995.00540300052012.PubMed
73.
go back to reference Langosch D, Laube B, Rundstrom N, Schmieden V, Bormann J, Betz H: Decreased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia. EMBO J. 1994, 13: 4223-4228.PubMedPubMedCentral Langosch D, Laube B, Rundstrom N, Schmieden V, Bormann J, Betz H: Decreased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia. EMBO J. 1994, 13: 4223-4228.PubMedPubMedCentral
74.
go back to reference Lynch JW, Rajendra S, Pierce KD, Handford CA, Barry PH, Schofield PR: Identification of intracellular and extracellular domains mediating signal transduction in the inhibitory glycine receptor chloride channel. EMBO J. 1997, 16: 110-120. 10.1093/emboj/16.1.110.PubMedPubMedCentral Lynch JW, Rajendra S, Pierce KD, Handford CA, Barry PH, Schofield PR: Identification of intracellular and extracellular domains mediating signal transduction in the inhibitory glycine receptor chloride channel. EMBO J. 1997, 16: 110-120. 10.1093/emboj/16.1.110.PubMedPubMedCentral
75.
go back to reference Maksay G, Biro T, Laube B: Hyperekplexia mutation of glycine receptors: decreased gating efficacy with altered binding thermodynamics. Biochem Pharmacol. 2002, 64: 285-288. 10.1016/S0006-2952(02)01111-5.PubMed Maksay G, Biro T, Laube B: Hyperekplexia mutation of glycine receptors: decreased gating efficacy with altered binding thermodynamics. Biochem Pharmacol. 2002, 64: 285-288. 10.1016/S0006-2952(02)01111-5.PubMed
76.
go back to reference Rajendra S, Lynch JW, Pierce KD, French CR, Barry PH, Schofield PR: Startle disease mutations reduce the agonist sensitivity of the human inhibitory glycine receptor. J Biol Chem. 1994, 269: 18739-18742.PubMed Rajendra S, Lynch JW, Pierce KD, French CR, Barry PH, Schofield PR: Startle disease mutations reduce the agonist sensitivity of the human inhibitory glycine receptor. J Biol Chem. 1994, 269: 18739-18742.PubMed
77.
go back to reference Rajendra S, Lynch JW, Pierce KD, French CR, Barry PH, Schofield PR: Mutation of an arginine residue in the human glycine receptor transforms beta-alanine and taurine from agonists into competitive antagonists. Neuron. 1995, 14: 169-175. 10.1016/0896-6273(95)90251-1.PubMed Rajendra S, Lynch JW, Pierce KD, French CR, Barry PH, Schofield PR: Mutation of an arginine residue in the human glycine receptor transforms beta-alanine and taurine from agonists into competitive antagonists. Neuron. 1995, 14: 169-175. 10.1016/0896-6273(95)90251-1.PubMed
78.
go back to reference Keramidas A, Moorhouse AJ, Schofield PR, Barry PH: Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog Biophys Mol Biol. 2004, 86: 161-204. 10.1016/j.pbiomolbio.2003.09.002.PubMed Keramidas A, Moorhouse AJ, Schofield PR, Barry PH: Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog Biophys Mol Biol. 2004, 86: 161-204. 10.1016/j.pbiomolbio.2003.09.002.PubMed
79.
go back to reference Colquhoun D: Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br J Pharmacol. 1998, 125: 924-947.PubMed Colquhoun D: Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br J Pharmacol. 1998, 125: 924-947.PubMed
80.
go back to reference Lape R, Plested AJ, Moroni M, Colquhoun D, Sivilotti LG: The alpha1K276E startle disease mutation reveals multiple intermediate states in the gating of glycine receptors. J Neurosci. 2012, 32: 1336-1352. 10.1523/JNEUROSCI.4346-11.2012.PubMed Lape R, Plested AJ, Moroni M, Colquhoun D, Sivilotti LG: The alpha1K276E startle disease mutation reveals multiple intermediate states in the gating of glycine receptors. J Neurosci. 2012, 32: 1336-1352. 10.1523/JNEUROSCI.4346-11.2012.PubMed
81.
go back to reference Lewis TM, Sivilotti LG, Colquhoun D, Gardiner RM, Schoepfer R, Rees M: Properties of human glycine receptors containing the hyperekplexia mutation alpha1(K276E), expressed in Xenopus oocytes. J Physiol. 1998, 507 (Pt 1): 25-40.PubMedPubMedCentral Lewis TM, Sivilotti LG, Colquhoun D, Gardiner RM, Schoepfer R, Rees M: Properties of human glycine receptors containing the hyperekplexia mutation alpha1(K276E), expressed in Xenopus oocytes. J Physiol. 1998, 507 (Pt 1): 25-40.PubMedPubMedCentral
82.
go back to reference Schaefer N, Langlhofer G, Kluck CJ, Villmann C: Glycine receptor mouse mutants: model systems for human hyperekplexia. Br J Pharmacol. 2013, 170: 933-952. 10.1111/bph.12335.PubMedPubMedCentral Schaefer N, Langlhofer G, Kluck CJ, Villmann C: Glycine receptor mouse mutants: model systems for human hyperekplexia. Br J Pharmacol. 2013, 170: 933-952. 10.1111/bph.12335.PubMedPubMedCentral
83.
go back to reference Shan Q, Han L, Lynch JW: Function of hyperekplexia-causing alpha1R271Q/L glycine receptors is restored by shifting the affected residue out of the allosteric signalling pathway. Br J Pharmacol. 2012, 165: 2113-2123. 10.1111/j.1476-5381.2011.01701.x.PubMedPubMedCentral Shan Q, Han L, Lynch JW: Function of hyperekplexia-causing alpha1R271Q/L glycine receptors is restored by shifting the affected residue out of the allosteric signalling pathway. Br J Pharmacol. 2012, 165: 2113-2123. 10.1111/j.1476-5381.2011.01701.x.PubMedPubMedCentral
84.
go back to reference Nussinov R: Allosteric modulators can restore function in an amino acid neurotransmitter receptor by slightly altering intra-molecular communication pathways. Br J Pharmacol. 2012, 165: 2110-2112. 10.1111/j.1476-5381.2011.01793.x.PubMedPubMedCentral Nussinov R: Allosteric modulators can restore function in an amino acid neurotransmitter receptor by slightly altering intra-molecular communication pathways. Br J Pharmacol. 2012, 165: 2110-2112. 10.1111/j.1476-5381.2011.01793.x.PubMedPubMedCentral
85.
go back to reference Maksay G, Biro T, Laube B, Nemes P: Hyperekplexia mutation R271L of alpha1 glycine receptors potentiates allosteric interactions of nortropeines, propofol and glycine with [3H] strychnine binding. Neurochem Int. 2008, 52: 235-240. 10.1016/j.neuint.2007.06.009.PubMed Maksay G, Biro T, Laube B, Nemes P: Hyperekplexia mutation R271L of alpha1 glycine receptors potentiates allosteric interactions of nortropeines, propofol and glycine with [3H] strychnine binding. Neurochem Int. 2008, 52: 235-240. 10.1016/j.neuint.2007.06.009.PubMed
86.
go back to reference O’Shea SM, Becker L, Weiher H, Betz H, Laube B: Propofol restores the function of “hyperekplexic” mutant glycine receptors in Xenopus oocytes and mice. J Neurosci. 2004, 24: 2322-2327. 10.1523/JNEUROSCI.4675-03.2004.PubMed O’Shea SM, Becker L, Weiher H, Betz H, Laube B: Propofol restores the function of “hyperekplexic” mutant glycine receptors in Xenopus oocytes and mice. J Neurosci. 2004, 24: 2322-2327. 10.1523/JNEUROSCI.4675-03.2004.PubMed
87.
go back to reference Nury H, Van Renterghem C, Weng Y, Tran A, Baaden M, Dufresne V, Changeux JP, Sonner JM, Delarue M, Corringer PJ: X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature. 2011, 469: 428-431. 10.1038/nature09647.PubMed Nury H, Van Renterghem C, Weng Y, Tran A, Baaden M, Dufresne V, Changeux JP, Sonner JM, Delarue M, Corringer PJ: X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature. 2011, 469: 428-431. 10.1038/nature09647.PubMed
88.
go back to reference Moorhouse AJ, Jacques P, Barry PH, Schofield PR: The startle disease mutation Q266H, in the second transmembrane domain of the human glycine receptor, impairs channel gating. Mol Pharmacol. 1999, 55: 386-395.PubMed Moorhouse AJ, Jacques P, Barry PH, Schofield PR: The startle disease mutation Q266H, in the second transmembrane domain of the human glycine receptor, impairs channel gating. Mol Pharmacol. 1999, 55: 386-395.PubMed
89.
go back to reference Castaldo P, Stefanoni P, Miceli F, Coppola G, Del Giudice EM, Bellini G, Pascotto A, Trudell JR, Harrison NL, Annunziato L, Taglialatela M: A novel hyperekplexia-causing mutation in the pre-transmembrane segment 1 of the human glycine receptor alpha1 subunit reduces membrane expression and impairs gating by agonists. J Biol Chem. 2004, 279: 25598-25604. 10.1074/jbc.M311021200.PubMed Castaldo P, Stefanoni P, Miceli F, Coppola G, Del Giudice EM, Bellini G, Pascotto A, Trudell JR, Harrison NL, Annunziato L, Taglialatela M: A novel hyperekplexia-causing mutation in the pre-transmembrane segment 1 of the human glycine receptor alpha1 subunit reduces membrane expression and impairs gating by agonists. J Biol Chem. 2004, 279: 25598-25604. 10.1074/jbc.M311021200.PubMed
90.
go back to reference Pless SA, Leung AW, Galpin JD, Ahern CA: Contributions of conserved residues at the gating interface of glycine receptors. J Biol Chem. 2011, 286: 35129-35136. 10.1074/jbc.M111.269027.PubMedPubMedCentral Pless SA, Leung AW, Galpin JD, Ahern CA: Contributions of conserved residues at the gating interface of glycine receptors. J Biol Chem. 2011, 286: 35129-35136. 10.1074/jbc.M111.269027.PubMedPubMedCentral
91.
go back to reference Breitinger HG, Villmann C, Becker K, Becker CM: Opposing effects of molecular volume and charge at the hyperekplexia site alpha 1(P250) govern glycine receptor activation and desensitization. J Biol Chem. 2001, 276: 29657-29663. 10.1074/jbc.M100446200.PubMed Breitinger HG, Villmann C, Becker K, Becker CM: Opposing effects of molecular volume and charge at the hyperekplexia site alpha 1(P250) govern glycine receptor activation and desensitization. J Biol Chem. 2001, 276: 29657-29663. 10.1074/jbc.M100446200.PubMed
92.
go back to reference Breitinger HG, Lanig H, Vohwinkel C, Grewer C, Breitinger U, Clark T, Becker CM: Molecular dynamics simulation links conformation of a pore-flanking region to hyperekplexia-related dysfunction of the inhibitory glycine receptor. Chem Biol. 2004, 11: 1339-1350. 10.1016/j.chembiol.2004.07.008.PubMed Breitinger HG, Lanig H, Vohwinkel C, Grewer C, Breitinger U, Clark T, Becker CM: Molecular dynamics simulation links conformation of a pore-flanking region to hyperekplexia-related dysfunction of the inhibitory glycine receptor. Chem Biol. 2004, 11: 1339-1350. 10.1016/j.chembiol.2004.07.008.PubMed
93.
go back to reference Wang Q, Lynch JW: Activation and desensitization induce distinct conformational changes at the extracellular-transmembrane domain interface of the glycine receptor. J Biol Chem. 2011, 286: 38814-38824. 10.1074/jbc.M111.273631.PubMedPubMedCentral Wang Q, Lynch JW: Activation and desensitization induce distinct conformational changes at the extracellular-transmembrane domain interface of the glycine receptor. J Biol Chem. 2011, 286: 38814-38824. 10.1074/jbc.M111.273631.PubMedPubMedCentral
94.
go back to reference Villmann C, Oertel J, Melzer N, Becker CM: Recessive hyperekplexia mutations of the glycine receptor alpha1 subunit affect cell surface integration and stability. J Neurochem. 2009, 111: 837-847. 10.1111/j.1471-4159.2009.06372.x.PubMed Villmann C, Oertel J, Melzer N, Becker CM: Recessive hyperekplexia mutations of the glycine receptor alpha1 subunit affect cell surface integration and stability. J Neurochem. 2009, 111: 837-847. 10.1111/j.1471-4159.2009.06372.x.PubMed
95.
go back to reference Villmann C, Oertel J, Ma-Hogemeier ZL, Hollmann M, Sprengel R, Becker K, Breitinger HG, Becker CM: Functional complementation of Glra1(spd-ot), a glycine receptor subunit mutant, by independently expressed C-terminal domains. J Neurosci. 2009, 29: 2440-2452. 10.1523/JNEUROSCI.4400-08.2009.PubMed Villmann C, Oertel J, Ma-Hogemeier ZL, Hollmann M, Sprengel R, Becker K, Breitinger HG, Becker CM: Functional complementation of Glra1(spd-ot), a glycine receptor subunit mutant, by independently expressed C-terminal domains. J Neurosci. 2009, 29: 2440-2452. 10.1523/JNEUROSCI.4400-08.2009.PubMed
96.
go back to reference Laube B, Kuhse J, Rundstrom N, Kirsch J, Schmieden V, Betz H: Modulation by zinc ions of native rat and recombinant human inhibitory glycine receptors. J Physiol. 1995, 483 (Pt 3): 613-619.PubMedPubMedCentral Laube B, Kuhse J, Rundstrom N, Kirsch J, Schmieden V, Betz H: Modulation by zinc ions of native rat and recombinant human inhibitory glycine receptors. J Physiol. 1995, 483 (Pt 3): 613-619.PubMedPubMedCentral
97.
go back to reference Hirzel K, Muller U, Latal AT, Hulsmann S, Grudzinska J, Seeliger MW, Betz H, Laube B: Hyperekplexia phenotype of glycine receptor alpha1 subunit mutant mice identifies Zn (2+) as an essential endogenous modulator of glycinergic neurotransmission. Neuron. 2006, 52: 679-690. 10.1016/j.neuron.2006.09.035.PubMed Hirzel K, Muller U, Latal AT, Hulsmann S, Grudzinska J, Seeliger MW, Betz H, Laube B: Hyperekplexia phenotype of glycine receptor alpha1 subunit mutant mice identifies Zn (2+) as an essential endogenous modulator of glycinergic neurotransmission. Neuron. 2006, 52: 679-690. 10.1016/j.neuron.2006.09.035.PubMed
98.
go back to reference Zhou N, Wang CH, Zhang S, Wu DC: The GLRA1 missense mutation W170S associates lack of Zn2+ potentiation with human hyperekplexia. J Neurosci. 2013, 33: 17675-17681. 10.1523/JNEUROSCI.3240-13.2013.PubMedPubMedCentral Zhou N, Wang CH, Zhang S, Wu DC: The GLRA1 missense mutation W170S associates lack of Zn2+ potentiation with human hyperekplexia. J Neurosci. 2013, 33: 17675-17681. 10.1523/JNEUROSCI.3240-13.2013.PubMedPubMedCentral
99.
go back to reference Bianchi MT, Macdonald RL: Mutation of the 9′ leucine in the GABA (A) receptor gamma2L subunit produces an apparent decrease in desensitization by stabilizing open states without altering desensitized states. Neuropharmacology. 2001, 41: 737-744. 10.1016/S0028-3908(01)00132-0.PubMed Bianchi MT, Macdonald RL: Mutation of the 9′ leucine in the GABA (A) receptor gamma2L subunit produces an apparent decrease in desensitization by stabilizing open states without altering desensitized states. Neuropharmacology. 2001, 41: 737-744. 10.1016/S0028-3908(01)00132-0.PubMed
100.
go back to reference Chang Y, Weiss DS: Substitutions of the highly conserved M2 leucine create spontaneously opening rho1 gamma-aminobutyric acid receptors. Mol Pharmacol. 1998, 53: 511-523.PubMed Chang Y, Weiss DS: Substitutions of the highly conserved M2 leucine create spontaneously opening rho1 gamma-aminobutyric acid receptors. Mol Pharmacol. 1998, 53: 511-523.PubMed
101.
go back to reference Chang Y, Weiss DS: Allosteric activation mechanism of the alpha 1 beta 2 gamma 2 gamma-aminobutyric acid type A receptor revealed by mutation of the conserved M2 leucine. Biophys J. 1999, 77: 2542-2551. 10.1016/S0006-3495(99)77089-X.PubMedPubMedCentral Chang Y, Weiss DS: Allosteric activation mechanism of the alpha 1 beta 2 gamma 2 gamma-aminobutyric acid type A receptor revealed by mutation of the conserved M2 leucine. Biophys J. 1999, 77: 2542-2551. 10.1016/S0006-3495(99)77089-X.PubMedPubMedCentral
102.
go back to reference Tierney ML, Birnir B, Pillai NP, Clements JD, Howitt SM, Cox GB, Gage PW: Effects of mutating leucine to threonine in the M2 segment of alpha1 and beta1 subunits of GABAA alpha1beta1 receptors. J Membr Biol. 1996, 154: 11-21. 10.1007/s002329900128.PubMed Tierney ML, Birnir B, Pillai NP, Clements JD, Howitt SM, Cox GB, Gage PW: Effects of mutating leucine to threonine in the M2 segment of alpha1 and beta1 subunits of GABAA alpha1beta1 receptors. J Membr Biol. 1996, 154: 11-21. 10.1007/s002329900128.PubMed
103.
go back to reference Ganser LR, Yan Q, James VM, Kozol R, Topf M, Harvey RJ, Dallman JE: Distinct phenotypes in zebrafish models of human startle disease. Neurobiol Dis. 2013, 60: 139-151.PubMedPubMedCentral Ganser LR, Yan Q, James VM, Kozol R, Topf M, Harvey RJ, Dallman JE: Distinct phenotypes in zebrafish models of human startle disease. Neurobiol Dis. 2013, 60: 139-151.PubMedPubMedCentral
104.
go back to reference Lynch JW: Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 2004, 84: 1051-1095. 10.1152/physrev.00042.2003.PubMed Lynch JW: Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 2004, 84: 1051-1095. 10.1152/physrev.00042.2003.PubMed
Metadata
Title
The impact of human hyperekplexia mutations on glycine receptor structure and function
Authors
Anna Bode
Joseph W Lynch
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2014
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/1756-6606-7-2

Other articles of this Issue 1/2014

Molecular Brain 1/2014 Go to the issue