Skip to main content
Top
Published in: Molecular Brain 1/2012

Open Access 01-12-2012 | Research

Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells

Authors: Tarja A Juopperi, Woon Ryoung Kim, Cheng-Hsuan Chiang, Huimei Yu, Russell L Margolis, Christopher A Ross, Guo-li Ming, Hongjun Song

Published in: Molecular Brain | Issue 1/2012

Login to get access

Abstract

Background

Huntington’s Disease (HD) is a devastating neurodegenerative disorder that clinically manifests as motor dysfunction, cognitive impairment and psychiatric symptoms. There is currently no cure for this progressive and fatal disorder. The causative mutation of this hereditary disease is a trinucleotide repeat expansion (CAG) in the Huntingtin gene that results in an expanded polyglutamine tract. Multiple mechanisms have been proposed to explain the preferential striatal and cortical degeneration that occurs with HD, including non-cell-autonomous contribution from astrocytes. Although numerous cell culture and animal models exist, there is a great need for experimental systems that can more accurately replicate the human disease. Human induced pluripotent stem cells (iPSCs) are a remarkable new tool to study neurological disorders because this cell type can be derived from patients as a renewable, genetically tractable source for unlimited cells that are difficult to acquire, such as neurons and astrocytes. The development of experimental systems based on iPSC technology could aid in the identification of molecular lesions and therapeutic treatments.

Results

We derived iPSCs from a father with adult onset HD and 50 CAG repeats (F-HD-iPSC) and his daughter with juvenile HD and 109 CAG repeats (D-HD-iPSC). These disease-specific iPSC lines were characterized by standard assays to assess the quality of iPSC lines and to demonstrate their pluripotency. HD-iPSCs were capable of producing phenotypically normal, functional neurons in vitro and were able to survive and differentiate into neurons in the adult mouse brain in vivo after transplantation. Surprisingly, when HD-iPSCs were directed to differentiate into an astrocytic lineage, we observed the presence of cytoplasmic, electron clear vacuoles in astrocytes from both F-HD-iPSCs and D-HD-iPSCs, which were significantly more pronounced in D-HD-astrocytes. Remarkably, the vacuolation in diseased astrocytes was observed under basal culture conditions without additional stressors and increased over time. Importantly, similar vacuolation phenotype has also been observed in peripheral blood lymphocytes from individuals with HD. Together, these data suggest that vacuolation may be a phenotype associated with HD.

Conclusions

We have generated a unique in vitro system to study HD pathogenesis using patient-specific iPSCs. The astrocytes derived from patient-specific iPSCs exhibit a vacuolation phenotype, a phenomenon previously documented in primary lymphocytes from HD patients. Our studies pave the way for future mechanistic investigations using human iPSCs to model HD and for high-throughput therapeutic screens.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gusella JF, MacDonald ME: Huntington’s disease: seeing the pathogenic process through a genetic lens. Trends Biochem Sci. 2006, 31 (9): 533-540. 10.1016/j.tibs.2006.06.009.CrossRefPubMed Gusella JF, MacDonald ME: Huntington’s disease: seeing the pathogenic process through a genetic lens. Trends Biochem Sci. 2006, 31 (9): 533-540. 10.1016/j.tibs.2006.06.009.CrossRefPubMed
2.
go back to reference Ross CA, Tabrizi SJ: Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011, 10 (1): 83-98. 10.1016/S1474-4422(10)70245-3.CrossRefPubMed Ross CA, Tabrizi SJ: Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011, 10 (1): 83-98. 10.1016/S1474-4422(10)70245-3.CrossRefPubMed
3.
go back to reference A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993, 72 (6): 971-983. 10.1016/0092-8674(93)90585-E. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993, 72 (6): 971-983. 10.1016/0092-8674(93)90585-E.
4.
go back to reference DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N: Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997, 277 (5334): 1990-1993. 10.1126/science.277.5334.1990.CrossRefPubMed DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N: Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997, 277 (5334): 1990-1993. 10.1126/science.277.5334.1990.CrossRefPubMed
5.
go back to reference Imarisio S, Carmichael J, Korolchuk V, Chen CW, Saiki S, Rose C, Krishna G, Davies JE, Ttofi E, Underwood BR, et al: Huntington’s disease: from pathology and genetics to potential therapies. Biochem J. 2008, 412 (2): 191-209. 10.1042/BJ20071619.CrossRefPubMed Imarisio S, Carmichael J, Korolchuk V, Chen CW, Saiki S, Rose C, Krishna G, Davies JE, Ttofi E, Underwood BR, et al: Huntington’s disease: from pathology and genetics to potential therapies. Biochem J. 2008, 412 (2): 191-209. 10.1042/BJ20071619.CrossRefPubMed
6.
go back to reference Sharp AH, Loev SJ, Schilling G, Li SH, Li XJ, Bao J, Wagster MV, Kotzuk JA, Steiner JP, Lo A, et al: Widespread expression of Huntington’s disease gene (IT15) protein product. Neuron. 1995, 14 (5): 1065-1074. 10.1016/0896-6273(95)90345-3.CrossRefPubMed Sharp AH, Loev SJ, Schilling G, Li SH, Li XJ, Bao J, Wagster MV, Kotzuk JA, Steiner JP, Lo A, et al: Widespread expression of Huntington’s disease gene (IT15) protein product. Neuron. 1995, 14 (5): 1065-1074. 10.1016/0896-6273(95)90345-3.CrossRefPubMed
7.
go back to reference Li H, Li SH, Johnston H, Shelbourne PF, Li XJ: Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nat Genet. 2000, 25 (4): 385-389. 10.1038/78054.CrossRefPubMed Li H, Li SH, Johnston H, Shelbourne PF, Li XJ: Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nat Genet. 2000, 25 (4): 385-389. 10.1038/78054.CrossRefPubMed
8.
go back to reference Singhrao SK, Thomas P, Wood JD, MacMillan JC, Neal JW, Harper PS, Jones AL: Huntingtin protein colocalizes with lesions of neurodegenerative diseases: an investigation in Huntington’s, Alzheimer’s, and Pick’s diseases. Exp Neurol. 1998, 150 (2): 213-222. 10.1006/exnr.1998.6778.CrossRefPubMed Singhrao SK, Thomas P, Wood JD, MacMillan JC, Neal JW, Harper PS, Jones AL: Huntingtin protein colocalizes with lesions of neurodegenerative diseases: an investigation in Huntington’s, Alzheimer’s, and Pick’s diseases. Exp Neurol. 1998, 150 (2): 213-222. 10.1006/exnr.1998.6778.CrossRefPubMed
9.
go back to reference Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ: Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol. 2005, 171 (6): 1001-1012. 10.1083/jcb.200508072.PubMedCentralCrossRefPubMed Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ: Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol. 2005, 171 (6): 1001-1012. 10.1083/jcb.200508072.PubMedCentralCrossRefPubMed
11.
go back to reference Graveland GA, Williams RS, DiFiglia M: Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science. 1985, 227 (4688): 770-773. 10.1126/science.3155875.CrossRefPubMed Graveland GA, Williams RS, DiFiglia M: Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science. 1985, 227 (4688): 770-773. 10.1126/science.3155875.CrossRefPubMed
12.
go back to reference Spargo E, Everall IP, Lantos PL: Neuronal loss in the hippocampus in Huntington’s disease: a comparison with HIV infection. J Neurol Neurosurg Psychiatry. 1993, 56 (5): 487-491. 10.1136/jnnp.56.5.487.PubMedCentralCrossRefPubMed Spargo E, Everall IP, Lantos PL: Neuronal loss in the hippocampus in Huntington’s disease: a comparison with HIV infection. J Neurol Neurosurg Psychiatry. 1993, 56 (5): 487-491. 10.1136/jnnp.56.5.487.PubMedCentralCrossRefPubMed
13.
go back to reference Margolis RL, Ross CA: Diagnosis of huntington disease. Clin Chem. 2003, 49 (10): 1726-1732. 10.1373/49.10.1726.CrossRefPubMed Margolis RL, Ross CA: Diagnosis of huntington disease. Clin Chem. 2003, 49 (10): 1726-1732. 10.1373/49.10.1726.CrossRefPubMed
14.
go back to reference Lee JM RE, Lee JH, Gillis T, Mysore JS, Hayden MR, Warby SC, Morrison PNM, Ross CA, Margolis RL, Squitieri F, Orobello S, Di Donato S, Gomez-Tortosa EAC, Suchowersky O, Trent RJ, McCusker E, Novelletto A, Frontali MJR, Ashizawa T, Frank S, Saint-Hilaire MH, Hersch SM, Rosas HD, Lucente DHM, Zanko A, Abramson RK, Marder K, Sequeiros J, Paulsen JS, on behalf of the PREDICT-HD study of the Huntington Study Group (HSG), Huntington’s LGobotRsotE, Disease Network MRobotH-MSG, Macdonald ME, HSG. GJobotCsot: CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology. 2012, 78 (1): 690-695. 10.1212/WNL.0b013e318249f683.PubMedCentralPubMed Lee JM RE, Lee JH, Gillis T, Mysore JS, Hayden MR, Warby SC, Morrison PNM, Ross CA, Margolis RL, Squitieri F, Orobello S, Di Donato S, Gomez-Tortosa EAC, Suchowersky O, Trent RJ, McCusker E, Novelletto A, Frontali MJR, Ashizawa T, Frank S, Saint-Hilaire MH, Hersch SM, Rosas HD, Lucente DHM, Zanko A, Abramson RK, Marder K, Sequeiros J, Paulsen JS, on behalf of the PREDICT-HD study of the Huntington Study Group (HSG), Huntington’s LGobotRsotE, Disease Network MRobotH-MSG, Macdonald ME, HSG. GJobotCsot: CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology. 2012, 78 (1): 690-695. 10.1212/WNL.0b013e318249f683.PubMedCentralPubMed
15.
go back to reference Ranen NG, Stine OC, Abbott MH, Sherr M, Codori AM, Franz ML, Chao NI, Chung AS, Pleasant N, Callahan C, et al: Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with Huntington disease. Am J Hum Genet. 1995, 57 (3): 593-602.PubMedCentralPubMed Ranen NG, Stine OC, Abbott MH, Sherr M, Codori AM, Franz ML, Chao NI, Chung AS, Pleasant N, Callahan C, et al: Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with Huntington disease. Am J Hum Genet. 1995, 57 (3): 593-602.PubMedCentralPubMed
16.
go back to reference Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA, et al: The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet. 1993, 4 (4): 398-403. 10.1038/ng0893-398.CrossRefPubMed Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA, et al: The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet. 1993, 4 (4): 398-403. 10.1038/ng0893-398.CrossRefPubMed
17.
go back to reference Niclis JC, Trounson AO, Dottori M, Ellisdon AM, Bottomley SP, Verlinsky Y, Cram DS: Human embryonic stem cell models of Huntington disease. Reprod Biomed Online. 2009, 19 (1): 106-113. 10.1016/S1472-6483(10)60053-3.CrossRefPubMed Niclis JC, Trounson AO, Dottori M, Ellisdon AM, Bottomley SP, Verlinsky Y, Cram DS: Human embryonic stem cell models of Huntington disease. Reprod Biomed Online. 2009, 19 (1): 106-113. 10.1016/S1472-6483(10)60053-3.CrossRefPubMed
18.
go back to reference Bradley CK, Scott HA, Chami O, Peura TT, Dumevska B, Schmidt U, Stojanov T: Derivation of Huntington’s disease-affected human embryonic stem cell lines. Stem Cells Dev. 2011, 20 (3): 495-502. 10.1089/scd.2010.0120.CrossRefPubMed Bradley CK, Scott HA, Chami O, Peura TT, Dumevska B, Schmidt U, Stojanov T: Derivation of Huntington’s disease-affected human embryonic stem cell lines. Stem Cells Dev. 2011, 20 (3): 495-502. 10.1089/scd.2010.0120.CrossRefPubMed
19.
go back to reference Heng MY, Detloff PJ, Albin RL: Rodent genetic models of Huntington disease. Neurobiol Dis. 2008, 32 (1): 1-9. 10.1016/j.nbd.2008.06.005.CrossRefPubMed Heng MY, Detloff PJ, Albin RL: Rodent genetic models of Huntington disease. Neurobiol Dis. 2008, 32 (1): 1-9. 10.1016/j.nbd.2008.06.005.CrossRefPubMed
20.
go back to reference Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP: Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997, 90 (3): 537-548. 10.1016/S0092-8674(00)80513-9.CrossRefPubMed Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP: Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997, 90 (3): 537-548. 10.1016/S0092-8674(00)80513-9.CrossRefPubMed
21.
go back to reference Ehrnhoefer DE, Wong BK, Hayden MR: Convergent pathogenic pathways in Alzheimer’s and Huntington’s diseases: shared targets for drug development. Nat Rev Drug Discov. 2011, 10 (11): 853-867. 10.1038/nrd3556.PubMedCentralCrossRefPubMed Ehrnhoefer DE, Wong BK, Hayden MR: Convergent pathogenic pathways in Alzheimer’s and Huntington’s diseases: shared targets for drug development. Nat Rev Drug Discov. 2011, 10 (11): 853-867. 10.1038/nrd3556.PubMedCentralCrossRefPubMed
22.
go back to reference Bradford J, Shin JY, Roberts M, Wang CE, Li XJ, Li S: Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A. 2009, 106 (52): 22480-22485. 10.1073/pnas.0911503106.PubMedCentralCrossRefPubMed Bradford J, Shin JY, Roberts M, Wang CE, Li XJ, Li S: Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A. 2009, 106 (52): 22480-22485. 10.1073/pnas.0911503106.PubMedCentralCrossRefPubMed
23.
go back to reference Bradford J, Shin JY, Roberts M, Wang CE, Sheng G, Li S, Li XJ: Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem. 2010, 285 (14): 10653-10661. 10.1074/jbc.M109.083287.PubMedCentralCrossRefPubMed Bradford J, Shin JY, Roberts M, Wang CE, Sheng G, Li S, Li XJ: Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem. 2010, 285 (14): 10653-10661. 10.1074/jbc.M109.083287.PubMedCentralCrossRefPubMed
24.
go back to reference Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, Dufour N, Guillermier M, Brouillet E, Hantraye P, et al: In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet. 2010, 19 (15): 3053-3067. 10.1093/hmg/ddq212.PubMedCentralCrossRefPubMed Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, Dufour N, Guillermier M, Brouillet E, Hantraye P, et al: In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet. 2010, 19 (15): 3053-3067. 10.1093/hmg/ddq212.PubMedCentralCrossRefPubMed
25.
go back to reference Valenza M, Leoni V, Karasinska JM, Petricca L, Fan J, Carroll J, Pouladi MA, Fossale E, Nguyen HP, Riess O, et al: Cholesterol defect is marked across multiple rodent models of Huntington’s disease and is manifest in astrocytes. J Neurosci. 2010, 30 (32): 10844-10850. 10.1523/JNEUROSCI.0917-10.2010.PubMedCentralCrossRefPubMed Valenza M, Leoni V, Karasinska JM, Petricca L, Fan J, Carroll J, Pouladi MA, Fossale E, Nguyen HP, Riess O, et al: Cholesterol defect is marked across multiple rodent models of Huntington’s disease and is manifest in astrocytes. J Neurosci. 2010, 30 (32): 10844-10850. 10.1523/JNEUROSCI.0917-10.2010.PubMedCentralCrossRefPubMed
26.
go back to reference Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126 (4): 663-676. 10.1016/j.cell.2006.07.024.CrossRefPubMed Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126 (4): 663-676. 10.1016/j.cell.2006.07.024.CrossRefPubMed
27.
go back to reference Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007, 131 (5): 861-872. 10.1016/j.cell.2007.11.019.CrossRefPubMed Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007, 131 (5): 861-872. 10.1016/j.cell.2007.11.019.CrossRefPubMed
28.
go back to reference Staerk J, Dawlaty MM, Gao Q, Maetzel D, Hanna J, Sommer CA, Mostoslavsky G, Jaenisch R: Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell. 2010, 7 (1): 20-24. 10.1016/j.stem.2010.06.002.PubMedCentralCrossRefPubMed Staerk J, Dawlaty MM, Gao Q, Maetzel D, Hanna J, Sommer CA, Mostoslavsky G, Jaenisch R: Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell. 2010, 7 (1): 20-24. 10.1016/j.stem.2010.06.002.PubMedCentralCrossRefPubMed
29.
go back to reference Seki T, Yuasa S, Oda M, Egashira T, Yae K, Kusumoto D, Nakata H, Tohyama S, Hashimoto H, Kodaira M, et al: Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell. 2010, 7 (1): 11-14. 10.1016/j.stem.2010.06.003.CrossRefPubMed Seki T, Yuasa S, Oda M, Egashira T, Yae K, Kusumoto D, Nakata H, Tohyama S, Hashimoto H, Kodaira M, et al: Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell. 2010, 7 (1): 11-14. 10.1016/j.stem.2010.06.003.CrossRefPubMed
30.
go back to reference Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM: Embryonic stem cell lines derived from human blastocysts. Science. 1998, 282 (5391): 1145-1147.CrossRefPubMed Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM: Embryonic stem cell lines derived from human blastocysts. Science. 1998, 282 (5391): 1145-1147.CrossRefPubMed
31.
go back to reference Juopperi TA, Song H, Ming GL: Modeling neurological diseases using patient-derived induced pluripotent stem cells. Future Neurol. 2011, 6 (3): 363-373. 10.2217/fnl.11.14.PubMedCentralCrossRefPubMed Juopperi TA, Song H, Ming GL: Modeling neurological diseases using patient-derived induced pluripotent stem cells. Future Neurol. 2011, 6 (3): 363-373. 10.2217/fnl.11.14.PubMedCentralCrossRefPubMed
32.
go back to reference Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, et al: Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012, 482 (7384): 216-220.PubMedCentralPubMed Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, et al: Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012, 482 (7384): 216-220.PubMedCentralPubMed
33.
go back to reference Mattis VB, Svendsen CN: Induced pluripotent stem cells: a new revolution for clinical neurology?. Lancet Neurol. 2011, 10 (4): 383-394. 10.1016/S1474-4422(11)70022-9.CrossRefPubMed Mattis VB, Svendsen CN: Induced pluripotent stem cells: a new revolution for clinical neurology?. Lancet Neurol. 2011, 10 (4): 383-394. 10.1016/S1474-4422(11)70022-9.CrossRefPubMed
34.
go back to reference Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N: Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet. 2011, 20 (23): 4530-4539. 10.1093/hmg/ddr394.CrossRefPubMed Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N: Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet. 2011, 20 (23): 4530-4539. 10.1093/hmg/ddr394.CrossRefPubMed
35.
go back to reference Ming GL, Brustle O, Muotri A, Studer L, Wernig M, Christian KM: Cellular reprogramming: recent advances in modeling neurological diseases. J Neurosci. 2011, 31 (45): 16070-16075. 10.1523/JNEUROSCI.4218-11.2011.PubMedCentralCrossRefPubMed Ming GL, Brustle O, Muotri A, Studer L, Wernig M, Christian KM: Cellular reprogramming: recent advances in modeling neurological diseases. J Neurosci. 2011, 31 (45): 16070-16075. 10.1523/JNEUROSCI.4218-11.2011.PubMedCentralCrossRefPubMed
36.
go back to reference Wu H, Xu J, Pang ZP, Ge W, Kim KJ, Blanchi B, Chen C, Sudhof TC, Sun YE: Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines. Proc Natl Acad Sci U S A. 2007, 104 (34): 13821-13826. 10.1073/pnas.0706199104.PubMedCentralCrossRefPubMed Wu H, Xu J, Pang ZP, Ge W, Kim KJ, Blanchi B, Chen C, Sudhof TC, Sun YE: Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines. Proc Natl Acad Sci U S A. 2007, 104 (34): 13821-13826. 10.1073/pnas.0706199104.PubMedCentralCrossRefPubMed
37.
go back to reference Carpenter M, Rao MS, Freed W, Zeng X: Derivation and characterization of neuronal precursors and dopaminergic neurons from human embryonic stem cells in vitro. Methods Mol Biol. 2006, 331: 153-167.PubMed Carpenter M, Rao MS, Freed W, Zeng X: Derivation and characterization of neuronal precursors and dopaminergic neurons from human embryonic stem cells in vitro. Methods Mol Biol. 2006, 331: 153-167.PubMed
38.
go back to reference Vazin T, Chen J, Lee CT, Amable R, Freed WJ: Assessment of stromal-derived inducing activity in the generation of dopaminergic neurons from human embryonic stem cells. Stem Cells. 2008, 26 (6): 1517-1525. 10.1634/stemcells.2008-0039.PubMedCentralCrossRefPubMed Vazin T, Chen J, Lee CT, Amable R, Freed WJ: Assessment of stromal-derived inducing activity in the generation of dopaminergic neurons from human embryonic stem cells. Stem Cells. 2008, 26 (6): 1517-1525. 10.1634/stemcells.2008-0039.PubMedCentralCrossRefPubMed
39.
go back to reference Song HJ, Stevens CF, Gage FH: Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat Neurosci. 2002, 5 (5): 438-445.PubMed Song HJ, Stevens CF, Gage FH: Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat Neurosci. 2002, 5 (5): 438-445.PubMed
40.
go back to reference Ming GL, Song H: Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011, 70 (4): 687-702. 10.1016/j.neuron.2011.05.001.PubMedCentralCrossRefPubMed Ming GL, Song H: Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011, 70 (4): 687-702. 10.1016/j.neuron.2011.05.001.PubMedCentralCrossRefPubMed
41.
go back to reference Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T: LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci. 2004, 117 (Pt 13): 2805-2812.CrossRefPubMed Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T: LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci. 2004, 117 (Pt 13): 2805-2812.CrossRefPubMed
42.
go back to reference Maherali N, Hochedlinger K: Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell. 2008, 3 (6): 595-605. 10.1016/j.stem.2008.11.008.CrossRefPubMed Maherali N, Hochedlinger K: Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell. 2008, 3 (6): 595-605. 10.1016/j.stem.2008.11.008.CrossRefPubMed
43.
go back to reference Induced pluripotent stem cells from patiwnts with Huntington’s Disease show CAG repeat expansion associated phenotypes. Cell Stem Cell. 2012, In press Induced pluripotent stem cells from patiwnts with Huntington’s Disease show CAG repeat expansion associated phenotypes. Cell Stem Cell. 2012, In press
44.
go back to reference Zhang N, An MC, Montoro D, Ellerby LM: Characterization of human Huntington’s disease cell model from induced pluripotent stem cells. PLoS Curr. 2010, 2: RRN1193-PubMedCentralCrossRefPubMed Zhang N, An MC, Montoro D, Ellerby LM: Characterization of human Huntington’s disease cell model from induced pluripotent stem cells. PLoS Curr. 2010, 2: RRN1193-PubMedCentralCrossRefPubMed
45.
go back to reference Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, et al: Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. 2009, 136 (5): 964-977. 10.1016/j.cell.2009.02.013.PubMedCentralCrossRefPubMed Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, et al: Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. 2009, 136 (5): 964-977. 10.1016/j.cell.2009.02.013.PubMedCentralCrossRefPubMed
46.
go back to reference Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, et al: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008, 321 (5893): 1218-1221. 10.1126/science.1158799.CrossRefPubMed Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, et al: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008, 321 (5893): 1218-1221. 10.1126/science.1158799.CrossRefPubMed
47.
go back to reference Song H, Stevens CF, Gage FH: Astroglia induce neurogenesis from adult neural stem cells. Nature. 2002, 417 (6884): 39-44. 10.1038/417039a.CrossRefPubMed Song H, Stevens CF, Gage FH: Astroglia induce neurogenesis from adult neural stem cells. Nature. 2002, 417 (6884): 39-44. 10.1038/417039a.CrossRefPubMed
48.
go back to reference Hamilton NB, Attwell D: Do astrocytes really exocytose neurotransmitters?. Nat Rev Neurosci. 2010, 11 (4): 227-238. 10.1038/nrn2803.CrossRefPubMed Hamilton NB, Attwell D: Do astrocytes really exocytose neurotransmitters?. Nat Rev Neurosci. 2010, 11 (4): 227-238. 10.1038/nrn2803.CrossRefPubMed
49.
go back to reference Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC: Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell. 2008, 3 (6): 637-648. 10.1016/j.stem.2008.09.017.CrossRefPubMed Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC: Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell. 2008, 3 (6): 637-648. 10.1016/j.stem.2008.09.017.CrossRefPubMed
50.
go back to reference Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K: Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci. 2007, 10 (5): 608-614. 10.1038/nn1885.PubMedCentralCrossRefPubMed Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K: Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci. 2007, 10 (5): 608-614. 10.1038/nn1885.PubMedCentralCrossRefPubMed
51.
go back to reference Halliday GM, Stevens CH: Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord. 2011, 26 (1): 6-17. 10.1002/mds.23455.CrossRefPubMed Halliday GM, Stevens CH: Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord. 2011, 26 (1): 6-17. 10.1002/mds.23455.CrossRefPubMed
52.
go back to reference Vincent AJ, Gasperini R, Foa L, Small DH: Astrocytes in Alzheimer’s disease: emerging roles in calcium dysregulation and synaptic plasticity. J Alzheimers Dis. 2010, 22 (3): 699-714.PubMed Vincent AJ, Gasperini R, Foa L, Small DH: Astrocytes in Alzheimer’s disease: emerging roles in calcium dysregulation and synaptic plasticity. J Alzheimers Dis. 2010, 22 (3): 699-714.PubMed
53.
go back to reference Wang L, Lin F, Wang J, Wu J, Han R, Zhu L, Difiglia M, Qin Z: Expression of mutant N-terminal huntingtin fragment (htt552-100Q) in astrocytes suppresses the secretion of BDNF. Brain Res. 2012, 1449: 69-82.CrossRefPubMed Wang L, Lin F, Wang J, Wu J, Han R, Zhu L, Difiglia M, Qin Z: Expression of mutant N-terminal huntingtin fragment (htt552-100Q) in astrocytes suppresses the secretion of BDNF. Brain Res. 2012, 1449: 69-82.CrossRefPubMed
54.
go back to reference Nagata E, Sawa A, Ross CA, Snyder SH: Autophagosome-like vacuole formation in Huntington’s disease lymphoblasts. Neuroreport. 2004, 15 (8): 1325-1328. 10.1097/01.wnr.0000127073.66692.8f.CrossRefPubMed Nagata E, Sawa A, Ross CA, Snyder SH: Autophagosome-like vacuole formation in Huntington’s disease lymphoblasts. Neuroreport. 2004, 15 (8): 1325-1328. 10.1097/01.wnr.0000127073.66692.8f.CrossRefPubMed
55.
go back to reference Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, de Vries R, Arias E, Harris S, Sulzer D, et al: Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci. 2010, 13 (5): 567-576. 10.1038/nn.2528.PubMedCentralCrossRefPubMed Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, de Vries R, Arias E, Harris S, Sulzer D, et al: Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci. 2010, 13 (5): 567-576. 10.1038/nn.2528.PubMedCentralCrossRefPubMed
56.
go back to reference Ebert AD, Yu J, Rose FF, Mattis VB, Lorson CL, Thomson JA, Svendsen CN: Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009, 457 (7227): 277-280. 10.1038/nature07677.PubMedCentralCrossRefPubMed Ebert AD, Yu J, Rose FF, Mattis VB, Lorson CL, Thomson JA, Svendsen CN: Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009, 457 (7227): 277-280. 10.1038/nature07677.PubMedCentralCrossRefPubMed
57.
go back to reference Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR: A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010, 143 (4): 527-539. 10.1016/j.cell.2010.10.016.PubMedCentralCrossRefPubMed Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR: A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010, 143 (4): 527-539. 10.1016/j.cell.2010.10.016.PubMedCentralCrossRefPubMed
58.
go back to reference Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A, et al: Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature. 2009, 461 (7262): 402-406. 10.1038/nature08320.PubMedCentralCrossRefPubMed Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A, et al: Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature. 2009, 461 (7262): 402-406. 10.1038/nature08320.PubMedCentralCrossRefPubMed
59.
go back to reference Chiang CH, Su Y, Wen Z, Yoritomo N, Ross CA, Margolis RL, Song H, Ming GL: Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry. 2011, 16 (4): 358-360. 10.1038/mp.2011.13.PubMedCentralCrossRefPubMed Chiang CH, Su Y, Wen Z, Yoritomo N, Ross CA, Margolis RL, Song H, Ming GL: Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry. 2011, 16 (4): 358-360. 10.1038/mp.2011.13.PubMedCentralCrossRefPubMed
60.
go back to reference Ohnuki M, Takahashi K, Yamanaka S: Generation and characterization of human induced pluripotent stem cells. Curr Protoc Stem Cell Biol. 2009, Chapter 4: Unit 4A 2-PubMed Ohnuki M, Takahashi K, Yamanaka S: Generation and characterization of human induced pluripotent stem cells. Curr Protoc Stem Cell Biol. 2009, Chapter 4: Unit 4A 2-PubMed
61.
go back to reference Ma DK, Chiang CH, Ponnusamy K, Ming GL, Song H: G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cells. 2008, 26 (8): 2131-2141. 10.1634/stemcells.2008-0388.PubMedCentralCrossRefPubMed Ma DK, Chiang CH, Ponnusamy K, Ming GL, Song H: G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cells. 2008, 26 (8): 2131-2141. 10.1634/stemcells.2008-0388.PubMedCentralCrossRefPubMed
62.
go back to reference Prokhorova TA, Harkness LM, Frandsen U, Ditzel N, Schroder HD, Burns JS, Kassem M: Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of matrigel. Stem Cells Dev. 2009, 18 (1): 47-54. 10.1089/scd.2007.0266.CrossRefPubMed Prokhorova TA, Harkness LM, Frandsen U, Ditzel N, Schroder HD, Burns JS, Kassem M: Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of matrigel. Stem Cells Dev. 2009, 18 (1): 47-54. 10.1089/scd.2007.0266.CrossRefPubMed
63.
go back to reference Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H: GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature. 2006, 439 (7076): 589-593. 10.1038/nature04404.PubMedCentralCrossRefPubMed Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H: GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature. 2006, 439 (7076): 589-593. 10.1038/nature04404.PubMedCentralCrossRefPubMed
64.
go back to reference Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, et al: Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell. 2007, 130 (6): 1146-1158. 10.1016/j.cell.2007.07.010.PubMedCentralCrossRefPubMed Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, et al: Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell. 2007, 130 (6): 1146-1158. 10.1016/j.cell.2007.07.010.PubMedCentralCrossRefPubMed
65.
go back to reference Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ, Ming GL, Song H: In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell. 2011, 145 (7): 1142-1155. 10.1016/j.cell.2011.05.024.PubMedCentralCrossRefPubMed Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ, Ming GL, Song H: In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell. 2011, 145 (7): 1142-1155. 10.1016/j.cell.2011.05.024.PubMedCentralCrossRefPubMed
66.
go back to reference Kim JY, Liu CY, Zhang F, Duan X, Wen Z, Song J, Feighery E, Lu B, Rujescu D, Clair D, et al: Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell. 2012, 148 (5): 1051-1064. 10.1016/j.cell.2011.12.037.PubMedCentralCrossRefPubMed Kim JY, Liu CY, Zhang F, Duan X, Wen Z, Song J, Feighery E, Lu B, Rujescu D, Clair D, et al: Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell. 2012, 148 (5): 1051-1064. 10.1016/j.cell.2011.12.037.PubMedCentralCrossRefPubMed
Metadata
Title
Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells
Authors
Tarja A Juopperi
Woon Ryoung Kim
Cheng-Hsuan Chiang
Huimei Yu
Russell L Margolis
Christopher A Ross
Guo-li Ming
Hongjun Song
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2012
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/1756-6606-5-17

Other articles of this Issue 1/2012

Molecular Brain 1/2012 Go to the issue