Skip to main content
Top
Published in: Molecular Brain 1/2012

Open Access 01-12-2012 | Research

Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons

Authors: Jillian C Belrose, Yu-Feng Xie, Lynn J Gierszewski, John F MacDonald, Michael F Jackson

Published in: Molecular Brain | Issue 1/2012

Login to get access

Abstract

Background

Glutathione (GSH) plays an important role in neuronal oxidant defence. Depletion of cellular GSH is observed in neurodegenerative diseases and thereby contributes to the associated oxidative stress and Ca2+ dysregulation. Whether depletion of cellular GSH, associated with neuronal senescence, directly influences Ca2+ permeation pathways is not known. Transient receptor potential melastatin type 2 (TRPM2) is a Ca2+ permeable non-selective cation channel expressed in several cell types including hippocampal pyramidal neurons. Moreover, activation of TRPM2 during oxidative stress has been linked to cell death. Importantly, GSH has been reported to inhibit TRPM2 channels, suggesting they may directly contribute to Ca2+ dysregulation associated with neuronal senescence. Herein, we explore the relation between cellular GSH and TRPM2 channel activity in long-term cultures of hippocampal neurons.

Results

In whole-cell voltage-clamp recordings, we observe that TRPM2 current density increases in cultured pyramidal neurons over time in vitro. The observed increase in current density was prevented by treatment with NAC, a precursor to GSH synthesis. Conversely, treatment of cultures maintained for 2 weeks in vitro with L-BSO, which depletes GSH by inhibiting its synthesis, augments TRPM2 currents. Additionally, we demonstrate that GSH inhibits TRPM2 currents through a thiol-independent mechanism, and produces a 3.5-fold shift in the dose-response curve generated by ADPR, the intracellular agonist for TRPM2.

Conclusion

These results indicate that GSH plays a physiologically relevant role in the regulation of TRPM2 currents in hippocampal pyramidal neurons. This interaction may play an important role in aging and neurological diseases associated with depletion of GSH.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thibault O, Gant JC, Landfield PW: Expansion of the calcium hypothesis of brain aging and Alzheimer's disease: minding the store. Aging Cell. 2007, 6 (3): 307-317. 10.1111/j.1474-9726.2007.00295.x.PubMedCentralCrossRefPubMed Thibault O, Gant JC, Landfield PW: Expansion of the calcium hypothesis of brain aging and Alzheimer's disease: minding the store. Aging Cell. 2007, 6 (3): 307-317. 10.1111/j.1474-9726.2007.00295.x.PubMedCentralCrossRefPubMed
2.
go back to reference Camandola S, Mattson MP: Aberrant subcellular neuronal calcium regulation in aging and Alzheimer's disease. Biochim Biophys Acta. 2011, 1813 (5): 965-973. 10.1016/j.bbamcr.2010.10.005.PubMedCentralCrossRefPubMed Camandola S, Mattson MP: Aberrant subcellular neuronal calcium regulation in aging and Alzheimer's disease. Biochim Biophys Acta. 2011, 1813 (5): 965-973. 10.1016/j.bbamcr.2010.10.005.PubMedCentralCrossRefPubMed
3.
go back to reference Cooper AJ, Kristal BS: Multiple roles of glutathione in the central nervous system. Biol Chem. 1997, 378 (8): 793-802.PubMed Cooper AJ, Kristal BS: Multiple roles of glutathione in the central nervous system. Biol Chem. 1997, 378 (8): 793-802.PubMed
4.
go back to reference Chen TS, Richie JP, Lang CA: The effect of aging on glutathione and cysteine levels in different regions of the mouse brain. Proc Soc Exp Biol Med. 1989, 190 (4): 399-402.CrossRefPubMed Chen TS, Richie JP, Lang CA: The effect of aging on glutathione and cysteine levels in different regions of the mouse brain. Proc Soc Exp Biol Med. 1989, 190 (4): 399-402.CrossRefPubMed
5.
go back to reference Sasaki T, Senda M, Kim S, Kojima S, Kubodera A: Age-related changes of glutathione content, glucose transport and metabolism, and mitochondrial electron transfer function in mouse brain. Nucl Med Biol. 2001, 28 (1): 25-31. 10.1016/S0969-8051(00)00180-3.CrossRefPubMed Sasaki T, Senda M, Kim S, Kojima S, Kubodera A: Age-related changes of glutathione content, glucose transport and metabolism, and mitochondrial electron transfer function in mouse brain. Nucl Med Biol. 2001, 28 (1): 25-31. 10.1016/S0969-8051(00)00180-3.CrossRefPubMed
6.
go back to reference Liu RM: Down-regulation of gamma-glutamylcysteine synthetase regulatory subunit gene expression in rat brain tissue during aging. J Neurosci Res. 2002, 68 (3): 344-351. 10.1002/jnr.10217.CrossRefPubMed Liu RM: Down-regulation of gamma-glutamylcysteine synthetase regulatory subunit gene expression in rat brain tissue during aging. J Neurosci Res. 2002, 68 (3): 344-351. 10.1002/jnr.10217.CrossRefPubMed
7.
go back to reference Parihar MS, Kunz EA, Brewer GJ: Age-related decreases in NAD(P)H and glutathione cause redox declines before ATP loss during glutamate treatment of hippocampal neurons. J Neurosci Res. 2008, 86 (10): 2339-2352. 10.1002/jnr.21679.CrossRefPubMed Parihar MS, Kunz EA, Brewer GJ: Age-related decreases in NAD(P)H and glutathione cause redox declines before ATP loss during glutamate treatment of hippocampal neurons. J Neurosci Res. 2008, 86 (10): 2339-2352. 10.1002/jnr.21679.CrossRefPubMed
8.
go back to reference Rebrin I, Forster MJ, Sohal RS: Effects of age and caloric intake on glutathione redox state in different brain regions of C57BL/6 and DBA/2 mice. Brain Res. 2007, 1127 (1): 10-18.PubMedCentralCrossRefPubMed Rebrin I, Forster MJ, Sohal RS: Effects of age and caloric intake on glutathione redox state in different brain regions of C57BL/6 and DBA/2 mice. Brain Res. 2007, 1127 (1): 10-18.PubMedCentralCrossRefPubMed
9.
go back to reference Robillard JM, Gordon GR, Choi HB, Christie BR, MacVicar BA: Glutathione restores the mechanism of synaptic plasticity in aged mice to that of the adult. PLoS One. 2011, 6 (5): e20676-10.1371/journal.pone.0020676.PubMedCentralCrossRefPubMed Robillard JM, Gordon GR, Choi HB, Christie BR, MacVicar BA: Glutathione restores the mechanism of synaptic plasticity in aged mice to that of the adult. PLoS One. 2011, 6 (5): e20676-10.1371/journal.pone.0020676.PubMedCentralCrossRefPubMed
10.
go back to reference Perry TL, Godin DV, Hansen S: Parkinson's disease: a disorder due to nigral glutathione deficiency?. Neurosci Lett. 1982, 33 (3): 305-310. 10.1016/0304-3940(82)90390-1.CrossRefPubMed Perry TL, Godin DV, Hansen S: Parkinson's disease: a disorder due to nigral glutathione deficiency?. Neurosci Lett. 1982, 33 (3): 305-310. 10.1016/0304-3940(82)90390-1.CrossRefPubMed
11.
go back to reference Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD: Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol. 1994, 36 (3): 348-355. 10.1002/ana.410360305.CrossRefPubMed Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD: Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol. 1994, 36 (3): 348-355. 10.1002/ana.410360305.CrossRefPubMed
12.
go back to reference Martin HL, Teismann P: Glutathione-a review on its role and significance in Parkinson's disease. FASEB J. 2009, 23 (10): 3263-3272. 10.1096/fj.08-125443.CrossRefPubMed Martin HL, Teismann P: Glutathione-a review on its role and significance in Parkinson's disease. FASEB J. 2009, 23 (10): 3263-3272. 10.1096/fj.08-125443.CrossRefPubMed
13.
go back to reference Rehncrona S, Siesjo BK: Cortical and cerebrospinal fluid concentrations of reduced and oxidized glutathione during and after cerebral ischemia. Adv Neurol. 1979, 26: 285-286.PubMed Rehncrona S, Siesjo BK: Cortical and cerebrospinal fluid concentrations of reduced and oxidized glutathione during and after cerebral ischemia. Adv Neurol. 1979, 26: 285-286.PubMed
14.
go back to reference Anderson MF, Sims NR: The effects of focal ischemia and reperfusion on the glutathione content of mitochondria from rat brain subregions. J Neurochem. 2002, 81 (3): 541-549. 10.1046/j.1471-4159.2002.00836.x.CrossRefPubMed Anderson MF, Sims NR: The effects of focal ischemia and reperfusion on the glutathione content of mitochondria from rat brain subregions. J Neurochem. 2002, 81 (3): 541-549. 10.1046/j.1471-4159.2002.00836.x.CrossRefPubMed
15.
go back to reference Salemi G, Gueli MC, D'Amelio M, Saia V, Mangiapane P, Aridon P, Ragonese P, Lupo I: Blood levels of homocysteine, cysteine, glutathione, folic acid, and vitamin B(12) in the acute phase of atherothrombotic stroke. Neurol Sci. 2009 Salemi G, Gueli MC, D'Amelio M, Saia V, Mangiapane P, Aridon P, Ragonese P, Lupo I: Blood levels of homocysteine, cysteine, glutathione, folic acid, and vitamin B(12) in the acute phase of atherothrombotic stroke. Neurol Sci. 2009
16.
go back to reference Bragin DE, Zhou B, Ramamoorthy P, Muller WS, Connor JA, Shi H: Differential changes of glutathione levels in astrocytes and neurons in ischemic brains by two-photon imaging. J Cereb Blood Flow Metab. 2010, 30 (4): 734-738. 10.1038/jcbfm.2010.9.PubMedCentralCrossRefPubMed Bragin DE, Zhou B, Ramamoorthy P, Muller WS, Connor JA, Shi H: Differential changes of glutathione levels in astrocytes and neurons in ischemic brains by two-photon imaging. J Cereb Blood Flow Metab. 2010, 30 (4): 734-738. 10.1038/jcbfm.2010.9.PubMedCentralCrossRefPubMed
17.
go back to reference de Bernardo S, Canals S, Casarejos MJ, Solano RM, Menendez J, Mena MA: Role of extracellular signal-regulated protein kinase in neuronal cell death induced by glutathione depletion in neuron/glia mesencephalic cultures. J Neurochem. 2004, 91 (3): 667-682. 10.1111/j.1471-4159.2004.02744.x.CrossRefPubMed de Bernardo S, Canals S, Casarejos MJ, Solano RM, Menendez J, Mena MA: Role of extracellular signal-regulated protein kinase in neuronal cell death induced by glutathione depletion in neuron/glia mesencephalic cultures. J Neurochem. 2004, 91 (3): 667-682. 10.1111/j.1471-4159.2004.02744.x.CrossRefPubMed
18.
go back to reference Wullner U, Seyfried J, Groscurth P, Beinroth S, Winter S, Gleichmann M, Heneka M, Loschmann P, Schulz JB, Weller M, Klockgether T: Glutathione depletion and neuronal cell death: the role of reactive oxygen intermediates and mitochondrial function. Brain Res. 1999, 826 (1): 53-62. 10.1016/S0006-8993(99)01228-7.CrossRefPubMed Wullner U, Seyfried J, Groscurth P, Beinroth S, Winter S, Gleichmann M, Heneka M, Loschmann P, Schulz JB, Weller M, Klockgether T: Glutathione depletion and neuronal cell death: the role of reactive oxygen intermediates and mitochondrial function. Brain Res. 1999, 826 (1): 53-62. 10.1016/S0006-8993(99)01228-7.CrossRefPubMed
19.
go back to reference Khanna S, Roy S, Ryu H, Bahadduri P, Swaan PW, Ratan RR, Sen CK: Molecular basis of vitamin E action: tocotrienol modulates 12-lipoxygenase, a key mediator of glutamate-induced neurodegeneration. J Biol Chem. 2003, 278 (44): 43508-43515. 10.1074/jbc.M307075200.PubMedCentralCrossRefPubMed Khanna S, Roy S, Ryu H, Bahadduri P, Swaan PW, Ratan RR, Sen CK: Molecular basis of vitamin E action: tocotrienol modulates 12-lipoxygenase, a key mediator of glutamate-induced neurodegeneration. J Biol Chem. 2003, 278 (44): 43508-43515. 10.1074/jbc.M307075200.PubMedCentralCrossRefPubMed
20.
go back to reference Naziroglu M, Ozgul C, Cig B, Dogan S, Uguz AC: Glutathione modulates Ca(2+) influx and oxidative toxicity through TRPM2 channel in rat dorsal root ganglion neurons. J Membr Biol. 2011, 242 (3): 109-118. 10.1007/s00232-011-9382-6.CrossRefPubMed Naziroglu M, Ozgul C, Cig B, Dogan S, Uguz AC: Glutathione modulates Ca(2+) influx and oxidative toxicity through TRPM2 channel in rat dorsal root ganglion neurons. J Membr Biol. 2011, 242 (3): 109-118. 10.1007/s00232-011-9382-6.CrossRefPubMed
22.
go back to reference McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ: Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem. 2003, 278 (13): 11002-11006. 10.1074/jbc.M210810200.CrossRefPubMed McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ: Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem. 2003, 278 (13): 11002-11006. 10.1074/jbc.M210810200.CrossRefPubMed
23.
go back to reference Olah ME, Jackson MF, Li H, Perez Y, Sun HS, Kiyonaka S, Mori Y, Tymianski M, MacDonald JF: Ca2 + -dependent induction of TRPM2 currents in hippocampal neurons. J Physiol. 2009, 587 (Pt 5): 965-979.PubMedCentralCrossRefPubMed Olah ME, Jackson MF, Li H, Perez Y, Sun HS, Kiyonaka S, Mori Y, Tymianski M, MacDonald JF: Ca2 + -dependent induction of TRPM2 currents in hippocampal neurons. J Physiol. 2009, 587 (Pt 5): 965-979.PubMedCentralCrossRefPubMed
24.
go back to reference Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S: Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res. 2006, 26 (3): 159-178. 10.1080/10799890600637506.CrossRefPubMed Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S: Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res. 2006, 26 (3): 159-178. 10.1080/10799890600637506.CrossRefPubMed
25.
go back to reference Mattson MP, Guthrie PB, Kater SB: Intrinsic factors in the selective vulnerability of hippocampal pyramidal neurons. Prog Clin Biol Res. 1989, 317: 333-351.PubMed Mattson MP, Guthrie PB, Kater SB: Intrinsic factors in the selective vulnerability of hippocampal pyramidal neurons. Prog Clin Biol Res. 1989, 317: 333-351.PubMed
26.
go back to reference Wang X, Michaelis EK: Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci. 2010, 2: 12-PubMedCentralPubMed Wang X, Michaelis EK: Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci. 2010, 2: 12-PubMedCentralPubMed
27.
go back to reference Xie YF, Belrose JC, Lei G, Tymianski M, Mori Y, Macdonald JF, Jackson MF: Dependence of NMDA/GSK3beta Mediated Metaplasticity on TRPM2 Channels at Hippocampal CA3-CA1 Synapses. Mol Brain. 2011, 4 (1): 44-10.1186/1756-6606-4-44.PubMedCentralCrossRefPubMed Xie YF, Belrose JC, Lei G, Tymianski M, Mori Y, Macdonald JF, Jackson MF: Dependence of NMDA/GSK3beta Mediated Metaplasticity on TRPM2 Channels at Hippocampal CA3-CA1 Synapses. Mol Brain. 2011, 4 (1): 44-10.1186/1756-6606-4-44.PubMedCentralCrossRefPubMed
28.
go back to reference Takahashi N, Kozai D, Kobayashi R, Ebert M, Mori Y: Roles of TRPM2 in oxidative stress. Cell Calcium. 2011 Takahashi N, Kozai D, Kobayashi R, Ebert M, Mori Y: Roles of TRPM2 in oxidative stress. Cell Calcium. 2011
29.
go back to reference Fonfria E, Marshall IC, Boyfield I, Skaper SD, Hughes JP, Owen DE, Zhang W, Miller BA, Benham CD, McNulty S: Amyloid beta-peptide(1-42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem. 2005, 95 (3): 715-723. 10.1111/j.1471-4159.2005.03396.x.CrossRefPubMed Fonfria E, Marshall IC, Boyfield I, Skaper SD, Hughes JP, Owen DE, Zhang W, Miller BA, Benham CD, McNulty S: Amyloid beta-peptide(1-42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem. 2005, 95 (3): 715-723. 10.1111/j.1471-4159.2005.03396.x.CrossRefPubMed
30.
go back to reference Jia J, Verma S, Nakayama S, Quillinan N, Grafe MR, Hurn PD, Herson PS: Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab. 2011 Jia J, Verma S, Nakayama S, Quillinan N, Grafe MR, Hurn PD, Herson PS: Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab. 2011
31.
go back to reference Lee M, Cho T, Jantaratnotai N, Wang YT, McGeer E, McGeer PL: Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J. 2010, 24 (7): 2533-2545. 10.1096/fj.09-149997.CrossRefPubMed Lee M, Cho T, Jantaratnotai N, Wang YT, McGeer E, McGeer PL: Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J. 2010, 24 (7): 2533-2545. 10.1096/fj.09-149997.CrossRefPubMed
32.
go back to reference Bertrand SJ, Aksenova MV, Aksenov MY, Mactutus CF, Booze RM: Endogenous amyloidogenesis in long-term rat hippocampal cell cultures. BMC Neurosci. 2011, 12: 38-10.1186/1471-2202-12-38.PubMedCentralCrossRefPubMed Bertrand SJ, Aksenova MV, Aksenov MY, Mactutus CF, Booze RM: Endogenous amyloidogenesis in long-term rat hippocampal cell cultures. BMC Neurosci. 2011, 12: 38-10.1186/1471-2202-12-38.PubMedCentralCrossRefPubMed
33.
go back to reference Aksenova MV, Aksenov MY, Markesbery WR, Butterfield DA: Aging in a dish: age-dependent changes of neuronal survival, protein oxidation, and creatine kinase BB expression in long-term hippocampal cell culture. J Neurosci Res. 1999, 58 (2): 308-317. 10.1002/(SICI)1097-4547(19991015)58:2<308::AID-JNR11>3.0.CO;2-#.CrossRefPubMed Aksenova MV, Aksenov MY, Markesbery WR, Butterfield DA: Aging in a dish: age-dependent changes of neuronal survival, protein oxidation, and creatine kinase BB expression in long-term hippocampal cell culture. J Neurosci Res. 1999, 58 (2): 308-317. 10.1002/(SICI)1097-4547(19991015)58:2<308::AID-JNR11>3.0.CO;2-#.CrossRefPubMed
34.
go back to reference Kim MJ, Oh SJ, Park SH, Kang HJ, Won MH, Kang TC, Park JB, Kim JI, Kim J, Lee JY: Neuronal loss in primary long-term cortical culture involves neurodegeneration-like cell death via calpain and p35 processing, but not developmental apoptosis or aging. Exp Mol Med. 2007, 39 (1): 14-26.CrossRefPubMed Kim MJ, Oh SJ, Park SH, Kang HJ, Won MH, Kang TC, Park JB, Kim JI, Kim J, Lee JY: Neuronal loss in primary long-term cortical culture involves neurodegeneration-like cell death via calpain and p35 processing, but not developmental apoptosis or aging. Exp Mol Med. 2007, 39 (1): 14-26.CrossRefPubMed
35.
go back to reference Lesuisse C, Martin LJ: Long-term culture of mouse cortical neurons as a model for neuronal development, aging, and death. J Neurobiol. 2002, 51 (1): 9-23. 10.1002/neu.10037.CrossRefPubMed Lesuisse C, Martin LJ: Long-term culture of mouse cortical neurons as a model for neuronal development, aging, and death. J Neurobiol. 2002, 51 (1): 9-23. 10.1002/neu.10037.CrossRefPubMed
36.
go back to reference Keelan J, Allen NJ, Antcliffe D, Pal S, Duchen MR: Quantitative imaging of glutathione in hippocampal neurons and glia in culture using monochlorobimane. J Neurosci Res. 2001, 66 (5): 873-884. 10.1002/jnr.10085.CrossRefPubMed Keelan J, Allen NJ, Antcliffe D, Pal S, Duchen MR: Quantitative imaging of glutathione in hippocampal neurons and glia in culture using monochlorobimane. J Neurosci Res. 2001, 66 (5): 873-884. 10.1002/jnr.10085.CrossRefPubMed
37.
go back to reference Sagara JI, Miura K, Bannai S: Maintenance of neuronal glutathione by glial cells. J Neurochem. 1993, 61 (5): 1672-1676. 10.1111/j.1471-4159.1993.tb09802.x.CrossRefPubMed Sagara JI, Miura K, Bannai S: Maintenance of neuronal glutathione by glial cells. J Neurochem. 1993, 61 (5): 1672-1676. 10.1111/j.1471-4159.1993.tb09802.x.CrossRefPubMed
38.
go back to reference Kohr G, Eckardt S, Luddens H, Monyer H, Seeburg PH: NMDA receptor channels: subunit-specific potentiation by reducing agents. Neuron. 1994, 12 (5): 1031-1040. 10.1016/0896-6273(94)90311-5.CrossRefPubMed Kohr G, Eckardt S, Luddens H, Monyer H, Seeburg PH: NMDA receptor channels: subunit-specific potentiation by reducing agents. Neuron. 1994, 12 (5): 1031-1040. 10.1016/0896-6273(94)90311-5.CrossRefPubMed
39.
go back to reference Oja SS, Janaky R, Varga V, Saransaari P: Modulation of glutamate receptor functions by glutathione. Neurochem Int. 2000, 37 (2-3): 299-306. 10.1016/S0197-0186(00)00031-0.CrossRefPubMed Oja SS, Janaky R, Varga V, Saransaari P: Modulation of glutamate receptor functions by glutathione. Neurochem Int. 2000, 37 (2-3): 299-306. 10.1016/S0197-0186(00)00031-0.CrossRefPubMed
40.
go back to reference Jayalakshmi K, Sairam M, Singh SB, Sharma SK, Ilavazhagan G, Banerjee PK: Neuroprotective effect of N-acetyl cysteine on hypoxia-induced oxidative stress in primary hippocampal culture. Brain Res. 2005, 1046 (1-2): 97-104. 10.1016/j.brainres.2005.03.054.CrossRefPubMed Jayalakshmi K, Sairam M, Singh SB, Sharma SK, Ilavazhagan G, Banerjee PK: Neuroprotective effect of N-acetyl cysteine on hypoxia-induced oxidative stress in primary hippocampal culture. Brain Res. 2005, 1046 (1-2): 97-104. 10.1016/j.brainres.2005.03.054.CrossRefPubMed
41.
go back to reference Gao Y, Howard A, Ban K, Chandra J: Oxidative stress promotes transcriptional up-regulation of Fyn in BCR-ABL1-expressing cells. J Biol Chem. 2009, 284 (11): 7114-7125.PubMedCentralCrossRefPubMed Gao Y, Howard A, Ban K, Chandra J: Oxidative stress promotes transcriptional up-regulation of Fyn in BCR-ABL1-expressing cells. J Biol Chem. 2009, 284 (11): 7114-7125.PubMedCentralCrossRefPubMed
42.
go back to reference Aoyama K, Watabe M, Nakaki T: Regulation of neuronal glutathione synthesis. J Pharmacol Sci. 2008, 108 (3): 227-238. 10.1254/jphs.08R01CR.CrossRefPubMed Aoyama K, Watabe M, Nakaki T: Regulation of neuronal glutathione synthesis. J Pharmacol Sci. 2008, 108 (3): 227-238. 10.1254/jphs.08R01CR.CrossRefPubMed
43.
go back to reference Aruoma OI, Halliwell B, Hoey BM, Butler J: The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med. 1989, 6 (6): 593-597. 10.1016/0891-5849(89)90066-X.CrossRefPubMed Aruoma OI, Halliwell B, Hoey BM, Butler J: The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med. 1989, 6 (6): 593-597. 10.1016/0891-5849(89)90066-X.CrossRefPubMed
44.
go back to reference Anderson ME: Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact. 1998, 111-112: 1-14.CrossRefPubMed Anderson ME: Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact. 1998, 111-112: 1-14.CrossRefPubMed
45.
go back to reference Sebastia J, Cristofol R, Martin M, Rodriguez-Farre E, Sanfeliu C: Evaluation of fluorescent dyes for measuring intracellular glutathione content in primary cultures of human neurons and neuroblastoma SH-SY5Y. Cytometry A. 2003, 51 (1): 16-25.CrossRefPubMed Sebastia J, Cristofol R, Martin M, Rodriguez-Farre E, Sanfeliu C: Evaluation of fluorescent dyes for measuring intracellular glutathione content in primary cultures of human neurons and neuroblastoma SH-SY5Y. Cytometry A. 2003, 51 (1): 16-25.CrossRefPubMed
46.
go back to reference Bodhinathan K, Kumar A, Foster TC: Intracellular redox state alters NMDA receptor response during aging through Ca2+/calmodulin-dependent protein kinase II. J Neurosci. 2010, 30 (5): 1914-1924. 10.1523/JNEUROSCI.5485-09.2010.PubMedCentralCrossRefPubMed Bodhinathan K, Kumar A, Foster TC: Intracellular redox state alters NMDA receptor response during aging through Ca2+/calmodulin-dependent protein kinase II. J Neurosci. 2010, 30 (5): 1914-1924. 10.1523/JNEUROSCI.5485-09.2010.PubMedCentralCrossRefPubMed
47.
go back to reference Wang W, Oliva C, Li G, Holmgren A, Lillig CH, Kirk KL: Reversible silencing of CFTR chloride channels by glutathionylation. J Gen Physiol. 2005, 125 (2): 127-141. 10.1085/jgp.200409115.PubMedCentralCrossRefPubMed Wang W, Oliva C, Li G, Holmgren A, Lillig CH, Kirk KL: Reversible silencing of CFTR chloride channels by glutathionylation. J Gen Physiol. 2005, 125 (2): 127-141. 10.1085/jgp.200409115.PubMedCentralCrossRefPubMed
48.
go back to reference Yang Y, Shi W, Cui N, Wu Z, Jiang C: Oxidative stress inhibits vascular K(ATP) channels by S-glutathionylation. J Biol Chem. 2010, 285 (49): 38641-38648. 10.1074/jbc.M110.162578.PubMedCentralCrossRefPubMed Yang Y, Shi W, Cui N, Wu Z, Jiang C: Oxidative stress inhibits vascular K(ATP) channels by S-glutathionylation. J Biol Chem. 2010, 285 (49): 38641-38648. 10.1074/jbc.M110.162578.PubMedCentralCrossRefPubMed
49.
go back to reference Herson PS, Ashford ML: Reduced glutathione inhibits beta-NAD+-activated non-selective cation currents in the CRI-G1 rat insulin-secreting cell line. J Physio. 1999, 514 (1): 47-57. 10.1111/j.1469-7793.1999.047af.x.CrossRef Herson PS, Ashford ML: Reduced glutathione inhibits beta-NAD+-activated non-selective cation currents in the CRI-G1 rat insulin-secreting cell line. J Physio. 1999, 514 (1): 47-57. 10.1111/j.1469-7793.1999.047af.x.CrossRef
51.
go back to reference Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM: ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature. 2001, 411 (6837): 595-599. 10.1038/35079100.CrossRefPubMed Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM: ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature. 2001, 411 (6837): 595-599. 10.1038/35079100.CrossRefPubMed
52.
go back to reference Katano M, Numata T, Aguan K, Hara Y, Kiyonaka S, Yamamoto S, Miki T, Sawamura S, Suzuki T, Yamakawa K, Mori Y: The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redox-sensitive TRPM2 channel linked to cell death. Cell Calcium. 2012 Katano M, Numata T, Aguan K, Hara Y, Kiyonaka S, Yamamoto S, Miki T, Sawamura S, Suzuki T, Yamakawa K, Mori Y: The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redox-sensitive TRPM2 channel linked to cell death. Cell Calcium. 2012
53.
go back to reference Numata T, Sato K, Christmann J, Marx R, Mori Y, Okada Y, Wehner F: The {Delta}C splice-variant of TRPM2 is the hypertonicity-induced cation channel (HICC) in HeLa cells, and the ecto-enzyme CD38 mediates its activation. J Physiol. 2012 Numata T, Sato K, Christmann J, Marx R, Mori Y, Okada Y, Wehner F: The {Delta}C splice-variant of TRPM2 is the hypertonicity-induced cation channel (HICC) in HeLa cells, and the ecto-enzyme CD38 mediates its activation. J Physiol. 2012
54.
go back to reference Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dydak U, Hell D, Holsboer F, Boesiger P, Cuenod M: Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci. 2000, 12 (10): 3721-3728. 10.1046/j.1460-9568.2000.00229.x.CrossRefPubMed Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dydak U, Hell D, Holsboer F, Boesiger P, Cuenod M: Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci. 2000, 12 (10): 3721-3728. 10.1046/j.1460-9568.2000.00229.x.CrossRefPubMed
55.
go back to reference Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT: Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol. 2011, 14 (1): 123-130. 10.1017/S1461145710000805.CrossRefPubMed Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT: Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol. 2011, 14 (1): 123-130. 10.1017/S1461145710000805.CrossRefPubMed
56.
go back to reference Rothstein JD, Bristol LA, Hosler B, Brown RH, Kuncl RW: Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proc Natl Acad Sci USA. 1994, 91 (10): 4155-4159. 10.1073/pnas.91.10.4155.PubMedCentralCrossRefPubMed Rothstein JD, Bristol LA, Hosler B, Brown RH, Kuncl RW: Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proc Natl Acad Sci USA. 1994, 91 (10): 4155-4159. 10.1073/pnas.91.10.4155.PubMedCentralCrossRefPubMed
57.
go back to reference Mayer M, Noble M: N-acetyl-L-cysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro. Proc Natl Acad Sci USA. 1994, 91 (16): 7496-7500. 10.1073/pnas.91.16.7496.PubMedCentralCrossRefPubMed Mayer M, Noble M: N-acetyl-L-cysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro. Proc Natl Acad Sci USA. 1994, 91 (16): 7496-7500. 10.1073/pnas.91.16.7496.PubMedCentralCrossRefPubMed
58.
go back to reference Henderson JT, Javaheri M, Kopko S, Roder JC: Reduction of lower motor neuron degeneration in wobbler mice by N-acetyl-L-cysteine. J Neurosci. 1996, 16 (23): 7574-7582.PubMed Henderson JT, Javaheri M, Kopko S, Roder JC: Reduction of lower motor neuron degeneration in wobbler mice by N-acetyl-L-cysteine. J Neurosci. 1996, 16 (23): 7574-7582.PubMed
59.
go back to reference Morshead CM, van der Kooy D: A cell-survival factor (N-acetyl-L-cysteine) alters the in vivo fate of constitutively proliferating subependymal cells in the adult forebrain. J Neurobiol. 2000, 42 (3): 338-346. 10.1002/(SICI)1097-4695(20000215)42:3<338::AID-NEU5>3.0.CO;2-K.CrossRefPubMed Morshead CM, van der Kooy D: A cell-survival factor (N-acetyl-L-cysteine) alters the in vivo fate of constitutively proliferating subependymal cells in the adult forebrain. J Neurobiol. 2000, 42 (3): 338-346. 10.1002/(SICI)1097-4695(20000215)42:3<338::AID-NEU5>3.0.CO;2-K.CrossRefPubMed
60.
go back to reference Andreassen OA, Dedeoglu A, Klivenyi P, Beal MF, Bush AI: N-acetyl-L-cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis. Neuroreport. 2000, 11 (11): 2491-2493. 10.1097/00001756-200008030-00029.CrossRefPubMed Andreassen OA, Dedeoglu A, Klivenyi P, Beal MF, Bush AI: N-acetyl-L-cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis. Neuroreport. 2000, 11 (11): 2491-2493. 10.1097/00001756-200008030-00029.CrossRefPubMed
61.
go back to reference Clark J, Clore EL, Zheng K, Adame A, Masliah E, Simon DK: Oral N-acetyl-cysteine attenuates loss of dopaminergic terminals in alpha-synuclein overexpressing mice. PLoS One. 2010, 5 (8): e12333-10.1371/journal.pone.0012333.PubMedCentralCrossRefPubMed Clark J, Clore EL, Zheng K, Adame A, Masliah E, Simon DK: Oral N-acetyl-cysteine attenuates loss of dopaminergic terminals in alpha-synuclein overexpressing mice. PLoS One. 2010, 5 (8): e12333-10.1371/journal.pone.0012333.PubMedCentralCrossRefPubMed
62.
go back to reference Chung KK, Freestone PS, Lipski J: Expression and functional properties of TRPM2 channels in dopaminergic neurons of the substantia nigra of the rat. J Neurophysiol. 2011, 106 (6): 2865-2875. 10.1152/jn.00994.2010.CrossRefPubMed Chung KK, Freestone PS, Lipski J: Expression and functional properties of TRPM2 channels in dopaminergic neurons of the substantia nigra of the rat. J Neurophysiol. 2011, 106 (6): 2865-2875. 10.1152/jn.00994.2010.CrossRefPubMed
63.
go back to reference MacDonald JF, Mody I, Salter MW: Regulation of N-methyl-D-aspartate receptors revealed by intracellular dialysis of murine neurones in culture. J Physiol. 1989, 414: 17-34.PubMedCentralCrossRefPubMed MacDonald JF, Mody I, Salter MW: Regulation of N-methyl-D-aspartate receptors revealed by intracellular dialysis of murine neurones in culture. J Physiol. 1989, 414: 17-34.PubMedCentralCrossRefPubMed
Metadata
Title
Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons
Authors
Jillian C Belrose
Yu-Feng Xie
Lynn J Gierszewski
John F MacDonald
Michael F Jackson
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2012
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/1756-6606-5-11

Other articles of this Issue 1/2012

Molecular Brain 1/2012 Go to the issue