Skip to main content
Top
Published in: Fibrogenesis & Tissue Repair 1/2009

Open Access 01-12-2009 | Research

Reactive oxygen and nitrogen species induce protein and DNA modifications driving arthrofibrosis following total knee arthroplasty

Authors: Theresa A Freeman, Javad Parvizi, Craig J Della Valle, Marla J Steinbeck

Published in: Fibrogenesis & Tissue Repair | Issue 1/2009

Login to get access

Abstract

Background

Arthrofibrosis, occurring in 3%-4% of patients following total knee arthroplasty (TKA), is a challenging condition for which there is no defined cause. The hypothesis for this study was that disregulated production of reactive oxygen species (ROS) and nitrogen species (RNS) mediates matrix protein and DNA modifications, which result in excessive fibroblastic proliferation.

Results

We found increased numbers of macrophages and lymphocytes, along with elevated amounts of myeloperoxidase (MPO) in arthrofibrotic tissues when compared to control tissues. MPO expression, an enzyme that generates ROS/RNS, is usually limited to neutrophils and some macrophages, but was found by immunohistochemistry to be expressed in both macrophages and fibroblasts in arthrofibrotic tissue. As direct measurement of ROS/RNS is not feasible, products including DNA hydroxylation (8-OHdG), and protein nitrosylation (nitrotyrosine) were measured by immunohistochemistry. Quantification of the staining showed that 8-OHdg was significantly increased in arthrofibrotic tissue. There was also a direct correlation between the intensity of inflammation and ROS/RNS to the amount of heterotopic ossification (HO). In order to investigate the aberrant expression of MPO, a real-time oxidative stress polymerase chain reaction array was performed on fibroblasts isolated from arthrofibrotic and control tissues. The results of this array confirmed the upregulation of MPO expression in arthrofibrotic fibroblasts and highlighted the downregulated expression of the antioxidants, superoxide dismutase1 and microsomal glutathione S-transferase 3, as well as the significant increase in thioredoxin reductase, a known promoter of cell proliferation, and polynucleotide kinase 3'-phosphatase, a key enzyme in the base excision repair pathway for oxidative DNA damage.

Conclusion

Based on our current findings, we suggest that ROS/RNS initiate and sustain the arthrofibrotic response driving aggressive fibroblast proliferation and subsequent HO.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bong MR, Di Cesare PE: Stiffness after total knee arthroplasty. Journal of the American Academy of Orthopaedic Surgeons. 2004, 12: 164-171.PubMed Bong MR, Di Cesare PE: Stiffness after total knee arthroplasty. Journal of the American Academy of Orthopaedic Surgeons. 2004, 12: 164-171.PubMed
2.
go back to reference Laskin RS, Beksac B: Stiffness after total knee arthroplasty. Journal of Arthroplasty. 2004, 19: 41-46.CrossRefPubMed Laskin RS, Beksac B: Stiffness after total knee arthroplasty. Journal of Arthroplasty. 2004, 19: 41-46.CrossRefPubMed
3.
go back to reference Yercan HS, Sugun TS, Bussiere C, Ait Si Selmi T, Davies A, Neyret P: Stiffness after total knee arthroplasty: prevalence, management and outcomes. Knee. 2006, 13: 111-117.CrossRefPubMed Yercan HS, Sugun TS, Bussiere C, Ait Si Selmi T, Davies A, Neyret P: Stiffness after total knee arthroplasty: prevalence, management and outcomes. Knee. 2006, 13: 111-117.CrossRefPubMed
4.
go back to reference Kim J, Nelson CL, Lotke PA: Stiffness after total knee arthroplasty. Prevalence of the complication and outcomes of revision. Journal of Bone & Joint Surgery American. 2004, 86: 1479-1484.CrossRef Kim J, Nelson CL, Lotke PA: Stiffness after total knee arthroplasty. Prevalence of the complication and outcomes of revision. Journal of Bone & Joint Surgery American. 2004, 86: 1479-1484.CrossRef
5.
go back to reference Anouchi YS, McShane M, Kelly F, Elting J, Stiehl J: Range of motion in total knee replacement. Clinical Orthopaedics & Related Research. 1996, 331: 87-92.CrossRef Anouchi YS, McShane M, Kelly F, Elting J, Stiehl J: Range of motion in total knee replacement. Clinical Orthopaedics & Related Research. 1996, 331: 87-92.CrossRef
6.
go back to reference Diduch DR, Scuderi GR, Scott WN, Insall JN, Kelly MA: The efficacy of arthroscopy following total knee replacement. Arthroscopy. 1997, 13: 166-171.CrossRefPubMed Diduch DR, Scuderi GR, Scott WN, Insall JN, Kelly MA: The efficacy of arthroscopy following total knee replacement. Arthroscopy. 1997, 13: 166-171.CrossRefPubMed
7.
go back to reference Markel DC, Luessenhop CP, Windsor RE, Sculco TA: Arthroscopic treatment of peripatellar fibrosis after total knee arthroplasty. Journal of Arthroplasty. 1996, 11: 293-297.CrossRefPubMed Markel DC, Luessenhop CP, Windsor RE, Sculco TA: Arthroscopic treatment of peripatellar fibrosis after total knee arthroplasty. Journal of Arthroplasty. 1996, 11: 293-297.CrossRefPubMed
8.
go back to reference Mont MA, Serna FK, Krackow KA, Hungerford DS: Exploration of radiographically normal total knee replacements for unexplained pain. Clinical Orthopaedics & Related Research. 1996, 331: 216-220.CrossRef Mont MA, Serna FK, Krackow KA, Hungerford DS: Exploration of radiographically normal total knee replacements for unexplained pain. Clinical Orthopaedics & Related Research. 1996, 331: 216-220.CrossRef
9.
go back to reference Nicholls DW, Dorr LD: Revision surgery for stiff total knee arthroplasty. Journal of Arthroplasty. 1990, 5 (Suppl): S73-7.CrossRefPubMed Nicholls DW, Dorr LD: Revision surgery for stiff total knee arthroplasty. Journal of Arthroplasty. 1990, 5 (Suppl): S73-7.CrossRefPubMed
10.
go back to reference Ries MD, Badalamente M: Arthrofibrosis after total knee arthroplasty. Clinical Orthopaedics & Related Research. 2000, 380: 177-183.CrossRef Ries MD, Badalamente M: Arthrofibrosis after total knee arthroplasty. Clinical Orthopaedics & Related Research. 2000, 380: 177-183.CrossRef
11.
go back to reference Parvizi J, Tarity TD, Steinbeck MJ, Politi RG, Joshi A, Purtill JJ, Sharkey PF: Management of stiffness following total knee arthroplasty. Journal of Bone and Joint Surgery. 2006, 88: 175-181.CrossRefPubMed Parvizi J, Tarity TD, Steinbeck MJ, Politi RG, Joshi A, Purtill JJ, Sharkey PF: Management of stiffness following total knee arthroplasty. Journal of Bone and Joint Surgery. 2006, 88: 175-181.CrossRefPubMed
12.
go back to reference Furia JP, Pellegrini VD: Heterotopic ossification following primary total knee arthroplasty [see comment]. Journal of Arthroplasty. 1995, 10: 413-419.CrossRefPubMed Furia JP, Pellegrini VD: Heterotopic ossification following primary total knee arthroplasty [see comment]. Journal of Arthroplasty. 1995, 10: 413-419.CrossRefPubMed
13.
go back to reference Freeman TA, Parvizi J, Della Valle C, Steinbeck MJ: Mast cells and hypoxia drive tissue metaplasia and heterotopic ossification in idiopathic arthrofibrosis. Fibrogenesis and Tissue Repair. 2009, Submitted Freeman TA, Parvizi J, Della Valle C, Steinbeck MJ: Mast cells and hypoxia drive tissue metaplasia and heterotopic ossification in idiopathic arthrofibrosis. Fibrogenesis and Tissue Repair. 2009, Submitted
15.
go back to reference Abe R, Donnelly SC, Peng T, Bucala R, Metz CN: Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. Journal of Immunology. 2001, 166: 7556-7562.CrossRef Abe R, Donnelly SC, Peng T, Bucala R, Metz CN: Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. Journal of Immunology. 2001, 166: 7556-7562.CrossRef
16.
go back to reference Stramer BM, Mori R, Martin P: The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. Journal of Investigative Dermatology. 2007, 127: 1009-1017.CrossRefPubMed Stramer BM, Mori R, Martin P: The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. Journal of Investigative Dermatology. 2007, 127: 1009-1017.CrossRefPubMed
17.
go back to reference Martin P, Leibovich SJ: Inflammatory cells during wound repair: the good, the bad and the ugly. Trends in Cell Biol. 2005, 15: 599-607.CrossRef Martin P, Leibovich SJ: Inflammatory cells during wound repair: the good, the bad and the ugly. Trends in Cell Biol. 2005, 15: 599-607.CrossRef
18.
go back to reference Baran CP, Zeigler MM, Tridandapani S, Marsh CB: The role of ROS and RNS in regulating life and death of blood monocytes. Current Pharmaceutical Design. 2004, 10: 855-866.CrossRefPubMed Baran CP, Zeigler MM, Tridandapani S, Marsh CB: The role of ROS and RNS in regulating life and death of blood monocytes. Current Pharmaceutical Design. 2004, 10: 855-866.CrossRefPubMed
19.
go back to reference Cochrane AL, Ricardo SD: Oxidant stress and regulation of chemokines in the development of renal interstitial fibrosis. Contributions to Nephrology. 2003, 139: 102-119.CrossRefPubMed Cochrane AL, Ricardo SD: Oxidant stress and regulation of chemokines in the development of renal interstitial fibrosis. Contributions to Nephrology. 2003, 139: 102-119.CrossRefPubMed
20.
go back to reference Diamond JR, Ricardo SD, Klahr S: Mechanisms of interstitial fibrosis in obstructive nephropathy. Seminars in Nephrology. 1998, 18: 594-602.PubMed Diamond JR, Ricardo SD, Klahr S: Mechanisms of interstitial fibrosis in obstructive nephropathy. Seminars in Nephrology. 1998, 18: 594-602.PubMed
21.
go back to reference Ferrini MG, Vernet D, Magee TR, Shahed A, Qian A, Rajfer J, Gonzalez-Cadavid NF: Antifibrotic role of inducible nitric oxide synthase. Nitric Oxide. 2002, 6: 283-294.CrossRefPubMed Ferrini MG, Vernet D, Magee TR, Shahed A, Qian A, Rajfer J, Gonzalez-Cadavid NF: Antifibrotic role of inducible nitric oxide synthase. Nitric Oxide. 2002, 6: 283-294.CrossRefPubMed
22.
go back to reference Marsh CB, Kelley TW, Graham MM, Dong C, Goldschmidt-Clermont PJ: Monocytes may regulate tissue fibrosis. Chest. 2001, 120: 15S-16S.CrossRef Marsh CB, Kelley TW, Graham MM, Dong C, Goldschmidt-Clermont PJ: Monocytes may regulate tissue fibrosis. Chest. 2001, 120: 15S-16S.CrossRef
23.
go back to reference Poli G: Pathogenesis of liver fibrosis: role of oxidative stress. Molecular Aspects of Medicine. 2000, 21: 49-98.CrossRefPubMed Poli G: Pathogenesis of liver fibrosis: role of oxidative stress. Molecular Aspects of Medicine. 2000, 21: 49-98.CrossRefPubMed
24.
go back to reference Poli G, Parola M: Oxidative damage and fibrogenesis. Free Radical Biology & Medicine. 1997, 22: 287-305.CrossRef Poli G, Parola M: Oxidative damage and fibrogenesis. Free Radical Biology & Medicine. 1997, 22: 287-305.CrossRef
25.
go back to reference Ricardo SD, Diamond JR: The role of macrophages and reactive oxygen species in experimental hydronephrosis. Seminars in Nephrology. 1998, 18: 612-621.PubMed Ricardo SD, Diamond JR: The role of macrophages and reactive oxygen species in experimental hydronephrosis. Seminars in Nephrology. 1998, 18: 612-621.PubMed
26.
go back to reference Swindle EJ, Hunt JA, Coleman JW: A comparison of reactive oxygen species generation by rat peritoneal macrophages and mast cells using the highly sensitive real-time chemiluminescent probe pholasin: inhibition of antigen-induced mast cell degranulation by macrophage-derived hydrogen peroxide. Journal of Immunology. 2002, 169: 5866-5873.CrossRef Swindle EJ, Hunt JA, Coleman JW: A comparison of reactive oxygen species generation by rat peritoneal macrophages and mast cells using the highly sensitive real-time chemiluminescent probe pholasin: inhibition of antigen-induced mast cell degranulation by macrophage-derived hydrogen peroxide. Journal of Immunology. 2002, 169: 5866-5873.CrossRef
27.
go back to reference Puxeddu I, Piliponsky AM, Bachelet I, Levi-Schaffer F: Mast cells in allergy and beyond. International Journal of Biochemistry and Cell Biology. 2003, 35: 1601-1607.CrossRefPubMed Puxeddu I, Piliponsky AM, Bachelet I, Levi-Schaffer F: Mast cells in allergy and beyond. International Journal of Biochemistry and Cell Biology. 2003, 35: 1601-1607.CrossRefPubMed
28.
go back to reference Murrell GA: The role of the fibroblast in Dupuytren's contracture. Hand Clinics. 1991, 7: 669-680.PubMed Murrell GA: The role of the fibroblast in Dupuytren's contracture. Hand Clinics. 1991, 7: 669-680.PubMed
29.
go back to reference Murrell GA: Scientific comment. Basic science of Dupuytren's disease. Annales de Chirurgie de la Main et du Membre Superieur. 1992, 11: 355-361.CrossRefPubMed Murrell GA: Scientific comment. Basic science of Dupuytren's disease. Annales de Chirurgie de la Main et du Membre Superieur. 1992, 11: 355-361.CrossRefPubMed
30.
go back to reference Murrell GA: An insight into Dupuytren's contracture. Annals of the Royal College of Surgeons of England. 1992, 74: 156-160.PubMedCentralPubMed Murrell GA: An insight into Dupuytren's contracture. Annals of the Royal College of Surgeons of England. 1992, 74: 156-160.PubMedCentralPubMed
31.
go back to reference Yi IS, Johnson G, Moneim MS: Etiology of Dupuytren's disease. Hand Clinics. 1999, 15: 43-51.PubMed Yi IS, Johnson G, Moneim MS: Etiology of Dupuytren's disease. Hand Clinics. 1999, 15: 43-51.PubMed
32.
go back to reference Cracowski J-L: Isoprostanes as a tool to investigate oxidative stress in scleroderma spectrum disorders--advantages and limitations. Rheumatology. 2006, 45: 922-923.CrossRefPubMed Cracowski J-L: Isoprostanes as a tool to investigate oxidative stress in scleroderma spectrum disorders--advantages and limitations. Rheumatology. 2006, 45: 922-923.CrossRefPubMed
33.
go back to reference Sambo P, Baroni SS, Luchetti M, Paroncini P, Dusi S, Orlandini G, Gabrielli A: Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway [see comment]. Arthritis & Rheumatism. 2001, 44: 2653-2664.CrossRef Sambo P, Baroni SS, Luchetti M, Paroncini P, Dusi S, Orlandini G, Gabrielli A: Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway [see comment]. Arthritis & Rheumatism. 2001, 44: 2653-2664.CrossRef
34.
go back to reference Kruidenier L, Kuiper I, Van Duijn W, Mieremet-Ooms MA, van Hogezand RA, Lamers CB, Verspaget HW: Imbalanced secondary mucosal antioxidant response in inflammatory bowel disease. Journal of Pathology. 2003, 201: 17-27.CrossRefPubMed Kruidenier L, Kuiper I, Van Duijn W, Mieremet-Ooms MA, van Hogezand RA, Lamers CB, Verspaget HW: Imbalanced secondary mucosal antioxidant response in inflammatory bowel disease. Journal of Pathology. 2003, 201: 17-27.CrossRefPubMed
35.
go back to reference Risques RA, Rabinovitch PS, Brentnall TA: Cancer surveillance in inflammmatory bowel disease: new molecular approaches. Current Opinion in Gastroenterology. 2006, 22: 382-390.CrossRefPubMed Risques RA, Rabinovitch PS, Brentnall TA: Cancer surveillance in inflammmatory bowel disease: new molecular approaches. Current Opinion in Gastroenterology. 2006, 22: 382-390.CrossRefPubMed
36.
go back to reference Harrison JE, Schultz J: Studies on the chlorinating activity of myeloperoxidase. Journal of Biological Chemistry. 1976, 251: 1371-1374.PubMed Harrison JE, Schultz J: Studies on the chlorinating activity of myeloperoxidase. Journal of Biological Chemistry. 1976, 251: 1371-1374.PubMed
37.
38.
go back to reference Heijnem HF, van Donselaar E, Slot JW, Fries DM, Blachard-Fillion B, Hodara R, Lightfoot R, Polydoro M, Spielberg DL, et al: Subcellular localization of tyrosine-nitrated proteins is dictated by reactive oxygen species generating enzymes and by proximity to nitric oxide synthase. Free Radical Biology & Medicine. 2006, 40: 1903-1913.CrossRef Heijnem HF, van Donselaar E, Slot JW, Fries DM, Blachard-Fillion B, Hodara R, Lightfoot R, Polydoro M, Spielberg DL, et al: Subcellular localization of tyrosine-nitrated proteins is dictated by reactive oxygen species generating enzymes and by proximity to nitric oxide synthase. Free Radical Biology & Medicine. 2006, 40: 1903-1913.CrossRef
39.
go back to reference van Dalen CJ, Winterbourn CC, Senthilmohan R, Kettle AJ: Nitrite as a substrate and inhibitor of myeloperoxidase. Implications for nitration and hypochlorous acid production at sites of inflammation. J Biol Chem. 2000, 275: 11638-11644.CrossRefPubMed van Dalen CJ, Winterbourn CC, Senthilmohan R, Kettle AJ: Nitrite as a substrate and inhibitor of myeloperoxidase. Implications for nitration and hypochlorous acid production at sites of inflammation. J Biol Chem. 2000, 275: 11638-11644.CrossRefPubMed
40.
go back to reference Takeshita J, Byun J, Nhan TQ, Pritchard DK, Pennathur S, Schwartz SM, Chait A, Heinecke JW: Myeloperoxidase generates 5-chlorouracil in human atherosclerotic tissue: a potential pathway for somatic mutagenesis by macrophages. J Biol Chem. 2006, 281: 3096-3104.CrossRefPubMed Takeshita J, Byun J, Nhan TQ, Pritchard DK, Pennathur S, Schwartz SM, Chait A, Heinecke JW: Myeloperoxidase generates 5-chlorouracil in human atherosclerotic tissue: a potential pathway for somatic mutagenesis by macrophages. J Biol Chem. 2006, 281: 3096-3104.CrossRefPubMed
41.
go back to reference Henderson JP, Byun J, Takeshita J, Heinecke JW: Phagocytes produce 5-chlorouracil and 5-bromouracil, two mutagenic products of myeloperoxidase, in human inflammatory tissue. J Biol Chem. 2003, 278: 23522-23528.CrossRefPubMed Henderson JP, Byun J, Takeshita J, Heinecke JW: Phagocytes produce 5-chlorouracil and 5-bromouracil, two mutagenic products of myeloperoxidase, in human inflammatory tissue. J Biol Chem. 2003, 278: 23522-23528.CrossRefPubMed
42.
go back to reference Fitzgerald AM, Kirkpatrick JJ, Naylor IL: Dupuytren's disease. The way forward?. Journal of Hand Surgery British. 1999, 24: 395-399.CrossRef Fitzgerald AM, Kirkpatrick JJ, Naylor IL: Dupuytren's disease. The way forward?. Journal of Hand Surgery British. 1999, 24: 395-399.CrossRef
43.
go back to reference Murrell GA, Hueston JT: Aetiology of Dupuytren's contracture. Australian & New Zealand Journal of Surgery. 1990, 60: 247-252.CrossRef Murrell GA, Hueston JT: Aetiology of Dupuytren's contracture. Australian & New Zealand Journal of Surgery. 1990, 60: 247-252.CrossRef
44.
45.
go back to reference Murakami S, Muneta T, Furuya K, Saito I, Miyasaka N, Yamamoto H: Immunohistologic analysis of synovium in infrapatellar fat pad after anterior cruciate ligament injury. The American Journal of Sports Medicine. 1995, 23: 763-768.CrossRefPubMed Murakami S, Muneta T, Furuya K, Saito I, Miyasaka N, Yamamoto H: Immunohistologic analysis of synovium in infrapatellar fat pad after anterior cruciate ligament injury. The American Journal of Sports Medicine. 1995, 23: 763-768.CrossRefPubMed
46.
go back to reference Bosch U, Zeichen J, Skutek M, Haeder L, van Griensven M: Arthrofibrosis is the result of a T cell mediated immune response. Knee Surgery, Sports Traumatology, Arthroscopy. 2001, 9: 282-289.CrossRefPubMed Bosch U, Zeichen J, Skutek M, Haeder L, van Griensven M: Arthrofibrosis is the result of a T cell mediated immune response. Knee Surgery, Sports Traumatology, Arthroscopy. 2001, 9: 282-289.CrossRefPubMed
47.
go back to reference Howard PS, Renfrow D, Schechter NM, Kucich U: Mast cell chymase is a possible mediator of neurogenic bladder fibrosis. Neurourology & Urodynamics. 2004, 23: 374-382.CrossRef Howard PS, Renfrow D, Schechter NM, Kucich U: Mast cell chymase is a possible mediator of neurogenic bladder fibrosis. Neurourology & Urodynamics. 2004, 23: 374-382.CrossRef
48.
go back to reference Kaplan FS, Glaser DL, Hebela N, Shore EM: Heterotopic ossification. Journal of the American Academy of Orthopaedic Surgeons. 2004, 12: 116-125.PubMed Kaplan FS, Glaser DL, Hebela N, Shore EM: Heterotopic ossification. Journal of the American Academy of Orthopaedic Surgeons. 2004, 12: 116-125.PubMed
49.
go back to reference Kubiak EN, Moskovich R, Errico TJ, Di Cesare PE: Orthopaedic management of ankylosing spondylitis. Journal of the American Academy of Orthopaedic Surgeons. 2005, 13: 267-278.PubMed Kubiak EN, Moskovich R, Errico TJ, Di Cesare PE: Orthopaedic management of ankylosing spondylitis. Journal of the American Academy of Orthopaedic Surgeons. 2005, 13: 267-278.PubMed
50.
go back to reference Liu K, Tripp S, Layfield LJ: Heterotopic ossification: review of histologic findings and tissue distribution in a 10-year experience. Pathology, Research & Practice. 2007, 203: 633-640.CrossRef Liu K, Tripp S, Layfield LJ: Heterotopic ossification: review of histologic findings and tissue distribution in a 10-year experience. Pathology, Research & Practice. 2007, 203: 633-640.CrossRef
51.
go back to reference Rifas L: T-cell cytokine induction of BMP-2 regulates human mesenchymal stromal cell differentiation and mineralization. Journal of Cellular Biochemistry. 2006, 98: 706-714.CrossRefPubMed Rifas L: T-cell cytokine induction of BMP-2 regulates human mesenchymal stromal cell differentiation and mineralization. Journal of Cellular Biochemistry. 2006, 98: 706-714.CrossRefPubMed
52.
go back to reference Steiner I, Kasparova P, Kohout A, Dominik J: Bone formation in cardiac valves: a histopathological study of 128 cases. Virchows Archiv. 2007, 450: 653-657.CrossRefPubMed Steiner I, Kasparova P, Kohout A, Dominik J: Bone formation in cardiac valves: a histopathological study of 128 cases. Virchows Archiv. 2007, 450: 653-657.CrossRefPubMed
53.
go back to reference Darley-Usmar V, Wiseman H, Halliwell B: Nitric oxide and oxygen radicals: a question of balance. FEBS Letters. 1995, 369: 131-135.CrossRefPubMed Darley-Usmar V, Wiseman H, Halliwell B: Nitric oxide and oxygen radicals: a question of balance. FEBS Letters. 1995, 369: 131-135.CrossRefPubMed
54.
go back to reference Brown GC, Borutaite V: Interactions between nitric oxide, oxygen, reactive oxygen species and reactive nitrogen species. Biochem Society Transactions. 2006, 34: 953-956.CrossRef Brown GC, Borutaite V: Interactions between nitric oxide, oxygen, reactive oxygen species and reactive nitrogen species. Biochem Society Transactions. 2006, 34: 953-956.CrossRef
55.
go back to reference Hurst JK, Barrette WC: Leukocytic oxygen activation and microbicidal oxidative toxins. Critical Reviews in Biochemistry & Molecular Biology. 1989, 24: 271-328.CrossRef Hurst JK, Barrette WC: Leukocytic oxygen activation and microbicidal oxidative toxins. Critical Reviews in Biochemistry & Molecular Biology. 1989, 24: 271-328.CrossRef
56.
go back to reference Daumer KM, Khan AU, Steinbeck MJ: Chlorination of pyridinium compounds. Possible role of hypochlorite, N-chloramines, and chlorine in the oxidation of pyridinoline cross-links of articular cartilage collagen type II during acute inflammation. Journal of Biological Chemistry. 2000, 275: 34681-34692.PubMedCentralCrossRefPubMed Daumer KM, Khan AU, Steinbeck MJ: Chlorination of pyridinium compounds. Possible role of hypochlorite, N-chloramines, and chlorine in the oxidation of pyridinoline cross-links of articular cartilage collagen type II during acute inflammation. Journal of Biological Chemistry. 2000, 275: 34681-34692.PubMedCentralCrossRefPubMed
57.
go back to reference Steinbeck MJ, Nesti LJ, Sharkey PF, Parvizi J: Myeloperoxidase and chlorinated peptides in osteoarthritis: potential biomarkers of the disease. J Ortho Res. 2007, 25: 1128-1135.CrossRef Steinbeck MJ, Nesti LJ, Sharkey PF, Parvizi J: Myeloperoxidase and chlorinated peptides in osteoarthritis: potential biomarkers of the disease. J Ortho Res. 2007, 25: 1128-1135.CrossRef
58.
go back to reference Reynolds WF, Patel K, Pianko S, Blatt LM, Nicholas JJ, McHutchison JG: A genotypic association implicates myeloperoxidase in the progression of hepatic fibrosis in chronic hepatitis c virus infection. Genes and Immunity. 2002, 3: 345-349.CrossRefPubMed Reynolds WF, Patel K, Pianko S, Blatt LM, Nicholas JJ, McHutchison JG: A genotypic association implicates myeloperoxidase in the progression of hepatic fibrosis in chronic hepatitis c virus infection. Genes and Immunity. 2002, 3: 345-349.CrossRefPubMed
59.
go back to reference Reynolds WF, Sermet-Gaudelus I, Gausson V, Feuillet M-N, Bonnefont J-P, Descamps-Latscha B, Witko-Sarsat V: Myeloperoxidase promoter polymorphism -463G is associated with more severe clinical expression of cystic fibrosis pulmonary disease. Mediators of Inflammation. 2006, 36735: 1-8.CrossRef Reynolds WF, Sermet-Gaudelus I, Gausson V, Feuillet M-N, Bonnefont J-P, Descamps-Latscha B, Witko-Sarsat V: Myeloperoxidase promoter polymorphism -463G is associated with more severe clinical expression of cystic fibrosis pulmonary disease. Mediators of Inflammation. 2006, 36735: 1-8.CrossRef
60.
go back to reference Blom IE, Goldschmeding R, Leask A: Gene regulation of connective tissue growth factor: new targets for antifibrotic therapy?. Matrix Biology. 2002, 21: 473-482.CrossRefPubMed Blom IE, Goldschmeding R, Leask A: Gene regulation of connective tissue growth factor: new targets for antifibrotic therapy?. Matrix Biology. 2002, 21: 473-482.CrossRefPubMed
61.
go back to reference Schafer M, Werner S: Oxidative stress in normal and impaired wound repair. Pharmacological Research. 2008, 58: 165-171.CrossRefPubMed Schafer M, Werner S: Oxidative stress in normal and impaired wound repair. Pharmacological Research. 2008, 58: 165-171.CrossRefPubMed
62.
64.
go back to reference Yu YP, Yu G, Tseng G, Cieply K, Nelson J, Defrances M, Zarnegar R, Michalopoulos G, Luo J-H: Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis. Cancer Res. 2007, 67: 8043-8050.CrossRefPubMed Yu YP, Yu G, Tseng G, Cieply K, Nelson J, Defrances M, Zarnegar R, Michalopoulos G, Luo J-H: Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis. Cancer Res. 2007, 67: 8043-8050.CrossRefPubMed
65.
go back to reference Scanzello CR, Plaas A, Crow MK: Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound?. Current Opinion in Rheumatology. 2008, 20: 565-572.CrossRefPubMed Scanzello CR, Plaas A, Crow MK: Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound?. Current Opinion in Rheumatology. 2008, 20: 565-572.CrossRefPubMed
66.
go back to reference Jones KL, Tarochione-Utt KD: DNA methylation in bovine adult and fetal fibroblast cells. Cloning & Stem Cells. 2004, 6: 259-266.CrossRef Jones KL, Tarochione-Utt KD: DNA methylation in bovine adult and fetal fibroblast cells. Cloning & Stem Cells. 2004, 6: 259-266.CrossRef
Metadata
Title
Reactive oxygen and nitrogen species induce protein and DNA modifications driving arthrofibrosis following total knee arthroplasty
Authors
Theresa A Freeman
Javad Parvizi
Craig J Della Valle
Marla J Steinbeck
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Fibrogenesis & Tissue Repair / Issue 1/2009
Electronic ISSN: 1755-1536
DOI
https://doi.org/10.1186/1755-1536-2-5

Other articles of this Issue 1/2009

Fibrogenesis & Tissue Repair 1/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine