Skip to main content
Top
Published in: Annals of Surgical Innovation and Research 1/2011

Open Access 01-12-2011 | Research article

Mandibular reconstruction using an axially vascularized tissue-engineered construct

Authors: Ahmad M Eweida, Ayman S Nabawi, Mona K Marei, Mohamed R Khalil, Habashi A Elhammady

Published in: Annals of Surgical Innovation and Research | Issue 1/2011

Login to get access

Abstract

Background

Current reconstructive techniques for continuity defects of the mandible include the use of free flaps, bone grafts, and alloplastic materials. New methods of regenerative medicine designed to restore tissues depend mainly on the so-called extrinsic neovascularization, where the neovascular bed originates from the periphery of the construct. This method is not applicable for large defects in irradiated fields.

Methods

We are introducing a new animal model for mandibular reconstruction using intrinsic axial vascularization by the Arterio-Venous (AV) loop. In order to test this model, we made cadaveric, mechanical loading, and surgical pilot studies on adult male goats. The cadaveric study aimed at defining the best vascular axis to be used in creating the AV loop in the mandibular region. Mechanical loading studies (3 points bending test) were done to ensure that the mechanical properties of the mandible were significantly affected by the designed defect, and to put a base line for further mechanical testing after bone regeneration. A pilot surgical study was done to ensure smooth operative and post operative procedures.

Results

The best vascular axis to reconstruct defects in the posterior half of the mandible is the facial artery (average length 32.5 ± 1.9 mm, caliber 2.5 mm), and facial vein (average length 33.3 ± 1.8 mm, caliber 2.6 mm). Defects in the anterior half require an additional venous graft. The defect was shown to be significantly affecting the mechanical properties of the mandible (P value 0.0204). The animal was able to feed on soft diet from the 3rd postoperative day and returned to normal diet within a week. The mandible did not break during the period of follow up (2 months).

Conclusions

Our model introduces the concept of axial vascularization of mandibular constructs. This model can be used to assess bone regeneration for large bony defects in irradiated fields. This is the first study to introduce the concept of axial vascularization using the AV loop for angiogenesis in the mandibular region. Moreover, this is the first study aiming at axial vascularization of synthetic tissue engineering constructs at the site of the defect without any need for tissue transfer (in contrast to what was done previously in prefabricated flaps).
Appendix
Available only for authorised users
Literature
1.
go back to reference Betz RR: Limitations of autograft and allograft: new synthetic solutions. Orthopedics 2002, 25: 561–570. Betz RR: Limitations of autograft and allograft: new synthetic solutions. Orthopedics 2002, 25: 561–570.
2.
go back to reference Horch H, Pautke C: Regeneration instead of reparation. Mund Kiefer Gesichtschir 2006, 10: 213–220. 10.1007/s10006-006-0004-xPubMedCrossRef Horch H, Pautke C: Regeneration instead of reparation. Mund Kiefer Gesichtschir 2006, 10: 213–220. 10.1007/s10006-006-0004-xPubMedCrossRef
3.
go back to reference Springer IN, Nocini PF, Schlegel KA, et al.: Two techniques for the preparation of cell-scaffold constructs suitable for sinus augmentation: steps into clinical application. Tissue Eng 2006, 12: 2649–56. 10.1089/ten.2006.12.2649PubMedCrossRef Springer IN, Nocini PF, Schlegel KA, et al.: Two techniques for the preparation of cell-scaffold constructs suitable for sinus augmentation: steps into clinical application. Tissue Eng 2006, 12: 2649–56. 10.1089/ten.2006.12.2649PubMedCrossRef
6.
go back to reference Rogers SN, Lakshmiah SR, Narayan B, et al.: A comparison of the long term morbidity following deep circumflex iliac and fibula free flaps for reconstruction following head and neck cancer. Plast Reconstr Surg 2003, 112: 1517–25. 10.1097/01.PRS.0000082817.26407.86PubMedCrossRef Rogers SN, Lakshmiah SR, Narayan B, et al.: A comparison of the long term morbidity following deep circumflex iliac and fibula free flaps for reconstruction following head and neck cancer. Plast Reconstr Surg 2003, 112: 1517–25. 10.1097/01.PRS.0000082817.26407.86PubMedCrossRef
7.
go back to reference Hartman EH, Spauwen PH, Jansen JA: Donor-site complications in vascularized bone flap surgery. J Invest Surg 2002, 15: 185–197. 10.1080/08941930290085967PubMedCrossRef Hartman EH, Spauwen PH, Jansen JA: Donor-site complications in vascularized bone flap surgery. J Invest Surg 2002, 15: 185–197. 10.1080/08941930290085967PubMedCrossRef
8.
go back to reference Hodde J: Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng 2002,8(2):295–308. 10.1089/107632702753725058PubMedCrossRef Hodde J: Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng 2002,8(2):295–308. 10.1089/107632702753725058PubMedCrossRef
9.
go back to reference Kneser U, Polykandriotis E, Ohnolz J, et al.: Engineering of vascularized transplantable bone tissues: Induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng 2006, 12: 1721–31. 10.1089/ten.2006.12.1721PubMedCrossRef Kneser U, Polykandriotis E, Ohnolz J, et al.: Engineering of vascularized transplantable bone tissues: Induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng 2006, 12: 1721–31. 10.1089/ten.2006.12.1721PubMedCrossRef
10.
go back to reference Goldstein AS, Juarez TM, Helmke CD, Gustin MC, Mikos AG: Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 2001, 22: 1279–88. 10.1016/S0142-9612(00)00280-5PubMedCrossRef Goldstein AS, Juarez TM, Helmke CD, Gustin MC, Mikos AG: Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 2001, 22: 1279–88. 10.1016/S0142-9612(00)00280-5PubMedCrossRef
11.
go back to reference Polykandriotis E, Arkudas A, Horch RE, Stürzl M, Kneser U: Autonomously vascularized cellular constructs in tissue engineering: opening a new perspective for biomedical science. J Cell Mol Med 2007, 11: 6–20. 10.1111/j.1582-4934.2007.00012.xPubMedCentralPubMedCrossRef Polykandriotis E, Arkudas A, Horch RE, Stürzl M, Kneser U: Autonomously vascularized cellular constructs in tissue engineering: opening a new perspective for biomedical science. J Cell Mol Med 2007, 11: 6–20. 10.1111/j.1582-4934.2007.00012.xPubMedCentralPubMedCrossRef
12.
go back to reference Khouri RK, Upton J, Shaw WW: Prefabrication of composite free flaps through staged microvascular transfer: an experimental and clinical study. Plast Reconstr Surg 1991, 87: 108. 10.1097/00006534-199101000-00017PubMedCrossRef Khouri RK, Upton J, Shaw WW: Prefabrication of composite free flaps through staged microvascular transfer: an experimental and clinical study. Plast Reconstr Surg 1991, 87: 108. 10.1097/00006534-199101000-00017PubMedCrossRef
13.
go back to reference Polykandriotis E, Tjiawi J, Euler S, et al.: The venous graft as an effector of early angiogenesis in a fibrin matrix. Microvasc Res 2007, 75: 25–33. 10.1016/j.mvr.2007.04.003PubMedCrossRef Polykandriotis E, Tjiawi J, Euler S, et al.: The venous graft as an effector of early angiogenesis in a fibrin matrix. Microvasc Res 2007, 75: 25–33. 10.1016/j.mvr.2007.04.003PubMedCrossRef
14.
go back to reference Polykandriotis E, Horch RE, Arkudas A, et al.: Intrinsic versus extrinsic Vascularization in tissue engineering. Adv Exp Med Biol 2006, 585: 311–326. full_textPubMedCrossRef Polykandriotis E, Horch RE, Arkudas A, et al.: Intrinsic versus extrinsic Vascularization in tissue engineering. Adv Exp Med Biol 2006, 585: 311–326. full_textPubMedCrossRef
15.
go back to reference The Guide for the Care and Use of Laboratory Animals Published by the National Institutes of Health (NIH publication No. 85–23, revised 1996) The Guide for the Care and Use of Laboratory Animals Published by the National Institutes of Health (NIH publication No. 85–23, revised 1996)
16.
go back to reference Reuther T, Schuster T, Mende U, Kubler A: Osteoradionecrosis of the jaws as a side effect of radiotherapy of head and neck tumour patients-a report of a thirty year retrospective review. Int J Oral Maxillofac Surg 2003, 32: 289–295. 10.1054/ijom.2002.0332PubMedCrossRef Reuther T, Schuster T, Mende U, Kubler A: Osteoradionecrosis of the jaws as a side effect of radiotherapy of head and neck tumour patients-a report of a thirty year retrospective review. Int J Oral Maxillofac Surg 2003, 32: 289–295. 10.1054/ijom.2002.0332PubMedCrossRef
17.
go back to reference Khouri RK, Brown DM, Koudsi B, et al.: Repair of calvarial defects with flap tissue: role of bone morphogenetic proteins and competent responding tissues. Plast Reconstr Surg 1996, 98: 103–109. 10.1097/00006534-199607000-00017PubMedCrossRef Khouri RK, Brown DM, Koudsi B, et al.: Repair of calvarial defects with flap tissue: role of bone morphogenetic proteins and competent responding tissues. Plast Reconstr Surg 1996, 98: 103–109. 10.1097/00006534-199607000-00017PubMedCrossRef
18.
go back to reference Howard BK, Brown KR, Leach JL, Chang CH, Rosenthal DI: Osteoinduction using bone morphogenic protein in irradiated tissue. Arch Otolaryngol Head Neck Surg 1998, 124: 985–988.PubMedCrossRef Howard BK, Brown KR, Leach JL, Chang CH, Rosenthal DI: Osteoinduction using bone morphogenic protein in irradiated tissue. Arch Otolaryngol Head Neck Surg 1998, 124: 985–988.PubMedCrossRef
19.
go back to reference Würzler KK, DeWeese TL, Sebald W, Reddi AH: Radiation-induced impairment of bone healing can be overcome by recombinant human bone morphogenetic protein-2. J Craniofac Surg 1998, 9: 131–137.PubMedCrossRef Würzler KK, DeWeese TL, Sebald W, Reddi AH: Radiation-induced impairment of bone healing can be overcome by recombinant human bone morphogenetic protein-2. J Craniofac Surg 1998, 9: 131–137.PubMedCrossRef
20.
go back to reference Ehrhart NP, Hong L, Morgan AL, Eurell JA, Jamison RD: Effect of transforming growth factor-beta1 on bone regeneration in critical-sized bone defects after irradiation of host tissues. Am J Vet Res 2005, 66: 1039–45. 10.2460/ajvr.2005.66.1039PubMedCrossRef Ehrhart NP, Hong L, Morgan AL, Eurell JA, Jamison RD: Effect of transforming growth factor-beta1 on bone regeneration in critical-sized bone defects after irradiation of host tissues. Am J Vet Res 2005, 66: 1039–45. 10.2460/ajvr.2005.66.1039PubMedCrossRef
21.
go back to reference Kaigler D, Wang Z, Horger K, Mooney DJ, Krebsbach PH: VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res 2006, 21: 735–744. 10.1359/jbmr.060120PubMedCrossRef Kaigler D, Wang Z, Horger K, Mooney DJ, Krebsbach PH: VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res 2006, 21: 735–744. 10.1359/jbmr.060120PubMedCrossRef
22.
go back to reference Franceschi RT: Biological approaches to bone regeneration by gene therapy. J Dent Res 2005, 84: 1093–1103. 10.1177/154405910508401204PubMedCrossRef Franceschi RT: Biological approaches to bone regeneration by gene therapy. J Dent Res 2005, 84: 1093–1103. 10.1177/154405910508401204PubMedCrossRef
23.
24.
go back to reference Mian R, Morrison WA, Hurley JV, Penington AJ, Romeo R, Tanaka Y, Knight KR: Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Eng 2000, 6: 595–603. 10.1089/10763270050199541PubMedCrossRef Mian R, Morrison WA, Hurley JV, Penington AJ, Romeo R, Tanaka Y, Knight KR: Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Eng 2000, 6: 595–603. 10.1089/10763270050199541PubMedCrossRef
25.
go back to reference Lokmic Z, Stillaert F, Morrison WA, Thompson EW, Mitchell GM: An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. Faseb J 2007, 21: 511–522. 10.1096/fj.06-6614comPubMedCrossRef Lokmic Z, Stillaert F, Morrison WA, Thompson EW, Mitchell GM: An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. Faseb J 2007, 21: 511–522. 10.1096/fj.06-6614comPubMedCrossRef
26.
go back to reference Lovett M, Lee K, Edwards A, Kaplan D: Vascularization Strategies for Tissue Engineering. Tissue Eng 2009,15(3):353–370. 10.1089/ten.teb.2009.0085CrossRef Lovett M, Lee K, Edwards A, Kaplan D: Vascularization Strategies for Tissue Engineering. Tissue Eng 2009,15(3):353–370. 10.1089/ten.teb.2009.0085CrossRef
27.
go back to reference Beier JP, Horch RE, Arkudas A, et al.: De novo generation of axially vascularized tissue in a large animal model. Microsurgery 2009,29(1):42–51. 10.1002/micr.20564PubMedCrossRef Beier JP, Horch RE, Arkudas A, et al.: De novo generation of axially vascularized tissue in a large animal model. Microsurgery 2009,29(1):42–51. 10.1002/micr.20564PubMedCrossRef
28.
go back to reference Beier JP, Horch RE, Hess A, et al.: Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model. J Tissue Eng Regen Med 2010, 4: 216–223. 10.1002/term.229PubMedCrossRef Beier JP, Horch RE, Hess A, et al.: Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model. J Tissue Eng Regen Med 2010, 4: 216–223. 10.1002/term.229PubMedCrossRef
29.
go back to reference Hori Y, Tamai S, Okuda H, et al.: Blood vessel transplantation to bone. J Hand Surg Am 1979,4(1):23–33.PubMedCrossRef Hori Y, Tamai S, Okuda H, et al.: Blood vessel transplantation to bone. J Hand Surg Am 1979,4(1):23–33.PubMedCrossRef
30.
go back to reference Bochud RC, Büchler U: Kienböck's disease, early stage 3-height reconstruction and core revascularization of the lunate. J Hand Surg Br 1994,19(4):466–78. 10.1016/0266-7681(94)90212-7PubMedCrossRef Bochud RC, Büchler U: Kienböck's disease, early stage 3-height reconstruction and core revascularization of the lunate. J Hand Surg Br 1994,19(4):466–78. 10.1016/0266-7681(94)90212-7PubMedCrossRef
31.
go back to reference Tamai S, Yajima H, Ono H: Revascularization procedures in the treatment of Kienböck's disease. Hand Clin 1993,9(3):455–66.PubMed Tamai S, Yajima H, Ono H: Revascularization procedures in the treatment of Kienböck's disease. Hand Clin 1993,9(3):455–66.PubMed
32.
go back to reference Lokmic Z, Mitchell G: Engineering the microcirculation. Tissue Eng 2008,14(1):87–103. 10.1089/teb.2007.0299CrossRef Lokmic Z, Mitchell G: Engineering the microcirculation. Tissue Eng 2008,14(1):87–103. 10.1089/teb.2007.0299CrossRef
33.
go back to reference Viateeau V, Avramoglou D, Guillemin G, et al.: Animal Models for Bone Tissue Engineering Purposes. Edited by: Conn PM. New Jersey: Humana press; 2008:725–763. Sourcebook of models for biomedical research.CrossRef Viateeau V, Avramoglou D, Guillemin G, et al.: Animal Models for Bone Tissue Engineering Purposes. Edited by: Conn PM. New Jersey: Humana press; 2008:725–763. Sourcebook of models for biomedical research.CrossRef
34.
go back to reference Yazar S: Selection of recipient vessels in microsurgical free tissue reconstruction of head and neck defects. Microsurgery 2007,27(7):588–94. 10.1002/micr.20407PubMedCrossRef Yazar S: Selection of recipient vessels in microsurgical free tissue reconstruction of head and neck defects. Microsurgery 2007,27(7):588–94. 10.1002/micr.20407PubMedCrossRef
Metadata
Title
Mandibular reconstruction using an axially vascularized tissue-engineered construct
Authors
Ahmad M Eweida
Ayman S Nabawi
Mona K Marei
Mohamed R Khalil
Habashi A Elhammady
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Annals of Surgical Innovation and Research / Issue 1/2011
Electronic ISSN: 1750-1164
DOI
https://doi.org/10.1186/1750-1164-5-2

Other articles of this Issue 1/2011

Annals of Surgical Innovation and Research 1/2011 Go to the issue