Skip to main content
Top
Published in: Radiation Oncology 1/2013

Open Access 01-12-2013 | Research

Detection of interfraction displacement and volume variance during radiotherapy of primary thoracic esophageal cancer based on repeated four-dimensional CT scans

Authors: Jin Zhi Wang, Jian Bin Li, Wei Wang, Huan Peng Qi, Zhi Fang Ma, Ying Jie Zhang, Ting Yong Fan, Qian Shao, Min Xu

Published in: Radiation Oncology | Issue 1/2013

Login to get access

Abstract

Background

To investigate the interfraction displacement and volume variation of primary thoracic esophagus carcinoma with enhanced four-dimensional computed tomography (4DCT) scanning during fractionated radiotherapy.

Methods

4DCT data sets were acquired at the time of treatment simulation and every ten fraction for each of 32 patients throughout treatment. Scans were registered to baseline (simulation) 4DCT scans by using bony landmarks. The gross tumor volumes (GTVs) were delineated on each data set. Coordinates of the GTV centroids were acquired on each respiration phase. Distance between center of the GTV contour on the simulation scan and the centers on subsequent scans were used to assess interfraction displacement between fractions. Volumes were constructed using three approaches: The GTV delineated from the maximum intensity projection (MIP) was defined IGTVMIP, all 10 GTVs were combined to form IGTV10, GTVmean was the average of all 10 phases of each GTV.

Results

Interfraction displacement in left-right (LR), anterior-posterior (AP), superior-inferior (SI) directions and 3D vector were 0.13 ± 0.09 cm, 0.16 ± 0.12 cm, 0.34 ± 0.26 cm and 0.43 ± 0.24 cm, respectively between the tenth fraction and simulation 4DCT scan. 0.14 ± 0.09 cm, 0.19 ± 0.16 cm, 0.45 ± 0.43 cm and 0.56 ± 0.40 cm in LR, AP, SI and 3D vector respectively between the twentieth fraction and simulation 4DCT scan. Displacement in SI direction was larger than LR and AP directions during treatment. For distal esophageal cancer, increased interfraction displacements were observed in SI direction and 3D vector (P = 0.002 and P = 0.001, respectively) during radiotherapy. The volume of GTVmean, IGTVMIP, and IGTV10 decreased significantly at the twentieth fraction for middle (median: 34.01%, 33.09% and 28.71%, respectively) and distal (median: 22.76%, 25.27% and 23.96%, respectively) esophageal cancer, but for the upper third, no significant variation were observed during radiotherapy.

Conclusions

Interfractional displacements in SI direction were larger than LR and AP directions. For distal location, significant changes were observed in SI direction and 3D vector during radiotherapy. For middle and distal locations, the best time to reset position should be selected at the twentieth fraction when the primary tumor target volume changed significantly, and it was preferable to guide target correction and planning modification.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wu VW, Sham JS, Kwong DL: Inverse planning in three-dimensional conformal and intensity-modulated radiotherapy of mid-thoracic esophageal cancer. Br J Radiol 2004, 77: 568-572. 10.1259/bjr/19972578CrossRefPubMed Wu VW, Sham JS, Kwong DL: Inverse planning in three-dimensional conformal and intensity-modulated radiotherapy of mid-thoracic esophageal cancer. Br J Radiol 2004, 77: 568-572. 10.1259/bjr/19972578CrossRefPubMed
2.
go back to reference Chandra A, Guerrero TM, Liu HH, Tucker SL, Liao Z, Wang X, Murshed H, Bonnen MD, Garg AK, Stevens CW, Chang JY, Jeter MD, Mohan R, Cox JD, Komaki R: Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer. Radiother Oncol 2005, 77: 247-253. 10.1016/j.radonc.2005.10.017CrossRefPubMed Chandra A, Guerrero TM, Liu HH, Tucker SL, Liao Z, Wang X, Murshed H, Bonnen MD, Garg AK, Stevens CW, Chang JY, Jeter MD, Mohan R, Cox JD, Komaki R: Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer. Radiother Oncol 2005, 77: 247-253. 10.1016/j.radonc.2005.10.017CrossRefPubMed
3.
go back to reference Hashimoto T, Shirato H, Kato M, Yamazaki K, Kurauchi N, Morikawa T, Shimizu S, Ahn TC, Akine Y, Miyasaka K: Real-time monitoring of a digestive tract marker to reduce adverse effects of moving organs at risk (OAR) in radiotherapy for thoracic and abdominal tumors. Int J Radiat Oncol Biol Phys 2005, 61: 1559-1564. 10.1016/j.ijrobp.2005.01.006CrossRefPubMed Hashimoto T, Shirato H, Kato M, Yamazaki K, Kurauchi N, Morikawa T, Shimizu S, Ahn TC, Akine Y, Miyasaka K: Real-time monitoring of a digestive tract marker to reduce adverse effects of moving organs at risk (OAR) in radiotherapy for thoracic and abdominal tumors. Int J Radiat Oncol Biol Phys 2005, 61: 1559-1564. 10.1016/j.ijrobp.2005.01.006CrossRefPubMed
4.
go back to reference Lorchel F, Dumas J, Noel A, Wolf D, Bosset JF, Aletti P: Esophageal cancer: determination of internal target volume for conformal radiotherapy. Radiother Oncol 2006, 80: 327-332. 10.1016/j.radonc.2006.08.003CrossRefPubMed Lorchel F, Dumas J, Noel A, Wolf D, Bosset JF, Aletti P: Esophageal cancer: determination of internal target volume for conformal radiotherapy. Radiother Oncol 2006, 80: 327-332. 10.1016/j.radonc.2006.08.003CrossRefPubMed
5.
go back to reference Zhao KL, Liao Z, Bucci MK, Komaki R, Cox JD, Yu ZH, Zhang L, Mohan R, Dong L: Evaluation of respiratory-induced target motion for esophageal tumors at the gastro-esophageal junction. Radiother Oncol 2007, 84: 283-289. 10.1016/j.radonc.2007.07.008CrossRefPubMed Zhao KL, Liao Z, Bucci MK, Komaki R, Cox JD, Yu ZH, Zhang L, Mohan R, Dong L: Evaluation of respiratory-induced target motion for esophageal tumors at the gastro-esophageal junction. Radiother Oncol 2007, 84: 283-289. 10.1016/j.radonc.2007.07.008CrossRefPubMed
6.
go back to reference Yaremko BP, Guerrero TM, McAleer MF, Bucci MK, Noyola-Martinez J, Nguyen LT, Balter PA, Guerra R, Komaki R, Liao Z: Determination of respiratory motion for distal esophagus cancer using four-dimensional computed tomography. Int J Radiat Oncol Biol Phys 2008, 70: 145-153. 10.1016/j.ijrobp.2007.05.031CrossRefPubMed Yaremko BP, Guerrero TM, McAleer MF, Bucci MK, Noyola-Martinez J, Nguyen LT, Balter PA, Guerra R, Komaki R, Liao Z: Determination of respiratory motion for distal esophagus cancer using four-dimensional computed tomography. Int J Radiat Oncol Biol Phys 2008, 70: 145-153. 10.1016/j.ijrobp.2007.05.031CrossRefPubMed
7.
go back to reference Patel AA, Wolfgang JA, Niemierko A, Hong TS, Yock T, Choi NC: Implications of respiratory motion as measured by four-dimensional computed tomography for radiation treatment planning of esophageal cancer. Int J Radiat Oncol Biol Phys 2009, 74: 290-296. 10.1016/j.ijrobp.2008.12.060CrossRefPubMed Patel AA, Wolfgang JA, Niemierko A, Hong TS, Yock T, Choi NC: Implications of respiratory motion as measured by four-dimensional computed tomography for radiation treatment planning of esophageal cancer. Int J Radiat Oncol Biol Phys 2009, 74: 290-296. 10.1016/j.ijrobp.2008.12.060CrossRefPubMed
8.
go back to reference Yamashita H, Kida S, Sakumi A, Haga A, Ito S, Onoe T, Okuma K, Akahane M, Nakagawa K: Four-dimensional measurement of the displacement of internal fiducial markers during 320-multislice computed tomography scanning of thoracic esophageal cancer. Int J Radiat Oncol Biol Phys 2011, 79: 588-595. 10.1016/j.ijrobp.2010.03.045CrossRefPubMed Yamashita H, Kida S, Sakumi A, Haga A, Ito S, Onoe T, Okuma K, Akahane M, Nakagawa K: Four-dimensional measurement of the displacement of internal fiducial markers during 320-multislice computed tomography scanning of thoracic esophageal cancer. Int J Radiat Oncol Biol Phys 2011, 79: 588-595. 10.1016/j.ijrobp.2010.03.045CrossRefPubMed
9.
go back to reference Bosmans G, Baardwijk A, Dekker A, Dekker A, Ollers M, Boersma L, Minken A, Lambin P, De Ruysscher D: Intra-patient variability of tumor volume and tumor motion during conventionally fractionated radiotherapy for locally advanced non–small-cell lung cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys 2006, 66: 748-753. 10.1016/j.ijrobp.2006.05.022CrossRefPubMed Bosmans G, Baardwijk A, Dekker A, Dekker A, Ollers M, Boersma L, Minken A, Lambin P, De Ruysscher D: Intra-patient variability of tumor volume and tumor motion during conventionally fractionated radiotherapy for locally advanced non–small-cell lung cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys 2006, 66: 748-753. 10.1016/j.ijrobp.2006.05.022CrossRefPubMed
10.
go back to reference Britton KR, Starkschall G, Tucker SL, Pan T, Nelson C, Chang JY, Cox JD, Mohan R, Komaki R: Assessment of gross tumor volume regression and motion changes during radiotherapy for non–small-cell-lung cancer as measured by four-dimensional computed tomography. Int J Radiat Oncol Biol Phys 2007, 68: 1036-1046. 10.1016/j.ijrobp.2007.01.021CrossRefPubMed Britton KR, Starkschall G, Tucker SL, Pan T, Nelson C, Chang JY, Cox JD, Mohan R, Komaki R: Assessment of gross tumor volume regression and motion changes during radiotherapy for non–small-cell-lung cancer as measured by four-dimensional computed tomography. Int J Radiat Oncol Biol Phys 2007, 68: 1036-1046. 10.1016/j.ijrobp.2007.01.021CrossRefPubMed
11.
go back to reference Juhler-Nøttrup T, Korreman SS, Pedersen AN, Persson GF, Aarup LR, Nystrom H, Olsen M, Tarnavski N, Specht L: Inter-fractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance. Acta Oncol 2008, 47: 1406-1413. 10.1080/02841860802258778CrossRefPubMed Juhler-Nøttrup T, Korreman SS, Pedersen AN, Persson GF, Aarup LR, Nystrom H, Olsen M, Tarnavski N, Specht L: Inter-fractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance. Acta Oncol 2008, 47: 1406-1413. 10.1080/02841860802258778CrossRefPubMed
12.
go back to reference International Commission on Radiation Units and Measurements: ICRT report 62, prescribing, recording and reporting photon bream therapy (supplement to ICRU report 50). Bethesda: ICRU; 1999. International Commission on Radiation Units and Measurements: ICRT report 62, prescribing, recording and reporting photon bream therapy (supplement to ICRU report 50). Bethesda: ICRU; 1999.
13.
go back to reference Wang J, Lin SH, Dong L, Balter P, Mohan R, Komaki R, Cox JD, Starkschall G: Quantifying the interfractional displacement of the gastroesophageal junction during radiation therapy for esophageal cancer. Int J Radiat Oncol Biol Phys 2012, 83: e273-e280.CrossRefPubMedPubMedCentral Wang J, Lin SH, Dong L, Balter P, Mohan R, Komaki R, Cox JD, Starkschall G: Quantifying the interfractional displacement of the gastroesophageal junction during radiation therapy for esophageal cancer. Int J Radiat Oncol Biol Phys 2012, 83: e273-e280.CrossRefPubMedPubMedCentral
14.
go back to reference Cohen RJ, Paskalev K, Litwin S, Price RA Jr, Feigenberg SJ, Konski AA: Esophageal motion during radiotherapy: quantification and margin implications. Dis Esophagus 2010, 23: 473-479. 10.1111/j.1442-2050.2009.01037.xCrossRefPubMedPubMedCentral Cohen RJ, Paskalev K, Litwin S, Price RA Jr, Feigenberg SJ, Konski AA: Esophageal motion during radiotherapy: quantification and margin implications. Dis Esophagus 2010, 23: 473-479. 10.1111/j.1442-2050.2009.01037.xCrossRefPubMedPubMedCentral
15.
go back to reference Yamashita H, Haga A, Hayakawa Y, Okuma K, Yoda K, Okano Y, Tanaka K, Imae T, Ohtomo K, Nakagawa K: Patient setup error and day-to-day esophageal motion error analyzed by cone-beam computed tomography in radiation therapy. Acta Oncol 2010, 49: 485-490. 10.3109/02841861003652574CrossRefPubMed Yamashita H, Haga A, Hayakawa Y, Okuma K, Yoda K, Okano Y, Tanaka K, Imae T, Ohtomo K, Nakagawa K: Patient setup error and day-to-day esophageal motion error analyzed by cone-beam computed tomography in radiation therapy. Acta Oncol 2010, 49: 485-490. 10.3109/02841861003652574CrossRefPubMed
16.
go back to reference Peterson AM, Meltzer CC, Evanson EJ, Flickinger JC, Kondziolka D: MR imaging response of brain metastases after gamma knife stereotactic radiosurgery. Radiology 1999, 211: 807-814. 10.1148/radiology.211.3.r99jn48807CrossRefPubMed Peterson AM, Meltzer CC, Evanson EJ, Flickinger JC, Kondziolka D: MR imaging response of brain metastases after gamma knife stereotactic radiosurgery. Radiology 1999, 211: 807-814. 10.1148/radiology.211.3.r99jn48807CrossRefPubMed
17.
go back to reference Huber PE, Hawighorst H, Fuss M, van Kaick G, Wannenmacher MF, Debus J: Transient enlargement of contrast uptake on MRI after linear accelerator (linac) stereotactic radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 2001, 49: 1339-1349. 10.1016/S0360-3016(00)01511-XCrossRefPubMed Huber PE, Hawighorst H, Fuss M, van Kaick G, Wannenmacher MF, Debus J: Transient enlargement of contrast uptake on MRI after linear accelerator (linac) stereotactic radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 2001, 49: 1339-1349. 10.1016/S0360-3016(00)01511-XCrossRefPubMed
18.
go back to reference Szeifert GT, Massager N, DeVriendt D, David P, De Smedt F, Rorive S, Salmon I, Brotchi J, Levivier M: Observations of intracranial neoplasms treated with gamma knife radiosurgery. J Neurosurg 2002,97(Suppl 5):623-626.PubMed Szeifert GT, Massager N, DeVriendt D, David P, De Smedt F, Rorive S, Salmon I, Brotchi J, Levivier M: Observations of intracranial neoplasms treated with gamma knife radiosurgery. J Neurosurg 2002,97(Suppl 5):623-626.PubMed
19.
go back to reference Nakamura H, Jokura H, Takahashi K, Boku N, Akabane A, Yoshimoto T: Serial follow-up MR imaging after gamma knife radiosurgery for vestibular schwannoma. Am J Neuroradiol 2000, 21: 1540-1546.PubMed Nakamura H, Jokura H, Takahashi K, Boku N, Akabane A, Yoshimoto T: Serial follow-up MR imaging after gamma knife radiosurgery for vestibular schwannoma. Am J Neuroradiol 2000, 21: 1540-1546.PubMed
20.
go back to reference Chung WY, Pan DH, Shiau CY, Guo WY, Wang LW: Gamma knife radiosurgery for craniopharyngiomas. J Neurosurg 2000,93(Suppl. 3):47-56.PubMed Chung WY, Pan DH, Shiau CY, Guo WY, Wang LW: Gamma knife radiosurgery for craniopharyngiomas. J Neurosurg 2000,93(Suppl. 3):47-56.PubMed
21.
go back to reference Bakardjiev AI, Barnes PD, Goumnerova LC, Black PM, Scott RM, Pomeroy SL, Billett A, Loeffler JS, Tarbell NJ: Magnetic resonance imaging changes after stereotactic radiation therapy for childhood low grade astrocytoma. Cancer 1996, 78: 864-873. 10.1002/(SICI)1097-0142(19960815)78:4<864::AID-CNCR25>3.0.CO;2-SCrossRefPubMed Bakardjiev AI, Barnes PD, Goumnerova LC, Black PM, Scott RM, Pomeroy SL, Billett A, Loeffler JS, Tarbell NJ: Magnetic resonance imaging changes after stereotactic radiation therapy for childhood low grade astrocytoma. Cancer 1996, 78: 864-873. 10.1002/(SICI)1097-0142(19960815)78:4<864::AID-CNCR25>3.0.CO;2-SCrossRefPubMed
22.
go back to reference Tung GA, Noren G, Rogg JM, Jackson IM: MR imaging of pituitary adenomas after gamma knife stereotactic radiosurgery. Am J Roentgenol 2001, 177: 919-924. 10.2214/ajr.177.4.1770919CrossRef Tung GA, Noren G, Rogg JM, Jackson IM: MR imaging of pituitary adenomas after gamma knife stereotactic radiosurgery. Am J Roentgenol 2001, 177: 919-924. 10.2214/ajr.177.4.1770919CrossRef
23.
go back to reference Underberg RW, Lagerwaard FJ, van Tinteren H, Cuijpers JP, Slotman BJ, Senan S: Time trends in target volumes for stage I non-small-cell lung cancer after stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 2006, 64: 1221-1228. 10.1016/j.ijrobp.2005.09.045CrossRefPubMed Underberg RW, Lagerwaard FJ, van Tinteren H, Cuijpers JP, Slotman BJ, Senan S: Time trends in target volumes for stage I non-small-cell lung cancer after stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 2006, 64: 1221-1228. 10.1016/j.ijrobp.2005.09.045CrossRefPubMed
24.
go back to reference Ezhil M, Vedam S, Balter P, Choi B, Mirkovic D, Starkschall G, Chang JY: Determination of patient-specific internal gross tumor volumes for lung cancer using four dimensional computed tomography. Radiat Oncol 2009, 4: l-14.CrossRef Ezhil M, Vedam S, Balter P, Choi B, Mirkovic D, Starkschall G, Chang JY: Determination of patient-specific internal gross tumor volumes for lung cancer using four dimensional computed tomography. Radiat Oncol 2009, 4: l-14.CrossRef
25.
go back to reference Kang Y, Zhang X, Chang JY, Wang H, Wei X, Liao Z, Komaki R, Cox JD, Balter PA, Liu H, Zhu XR, Mohan R, Dong L: 4D Proton treatment planning strategy for mobile lung tumors. Int J Radiat Oncol Biol Phys 2007, 67: 906-914. 10.1016/j.ijrobp.2006.10.045CrossRefPubMed Kang Y, Zhang X, Chang JY, Wang H, Wei X, Liao Z, Komaki R, Cox JD, Balter PA, Liu H, Zhu XR, Mohan R, Dong L: 4D Proton treatment planning strategy for mobile lung tumors. Int J Radiat Oncol Biol Phys 2007, 67: 906-914. 10.1016/j.ijrobp.2006.10.045CrossRefPubMed
Metadata
Title
Detection of interfraction displacement and volume variance during radiotherapy of primary thoracic esophageal cancer based on repeated four-dimensional CT scans
Authors
Jin Zhi Wang
Jian Bin Li
Wei Wang
Huan Peng Qi
Zhi Fang Ma
Ying Jie Zhang
Ting Yong Fan
Qian Shao
Min Xu
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2013
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-8-224

Other articles of this Issue 1/2013

Radiation Oncology 1/2013 Go to the issue