Skip to main content
Top
Published in: Radiation Oncology 1/2008

Open Access 01-12-2008 | Methodology

The GLAaS algorithm for portal dosimetry and quality assurance of RapidArc, an intensity modulated rotational therapy

Authors: Giorgia Nicolini, Eugenio Vanetti, Alessandro Clivio, Antonella Fogliata, Stine Korreman, Jiri Bocanek, Luca Cozzi

Published in: Radiation Oncology | Issue 1/2008

Login to get access

Abstract

Background

To expand and test the dosimetric procedure, known as GLAaS, for amorphous silicon detectors to the RapidArc intensity modulated arc delivery with Varian infrastructures and to test the RapidArc dosimetric reliability between calculation and delivery.

Methods

The GLAaS algorithm was applied and tested on a set of RapidArc fields at both low (6 MV) and high (18 MV) beam energies with a PV-aS1000 detector. Pilot tests for short arcs were performed on a 6 MV beam associated to a PV-aS500. RapidArc is a novel planning and delivery method in the category of intensity modulated arc therapies aiming to deliver highly modulated plans with variable MLC shapes, dose rate and gantry speed during rotation. Tests were repeated for entire (360 degrees) gantry rotations on composite dose plans and for short partial arcs (of ~6 or 12 degrees) to assess GLAaS and RapidArc mutual relationships on global and fine delivery scales. The gamma index concept of Low and the Modulation Index concept of Webb were applied to compare quantitatively TPS dose matrices and dose converted PV images.

Results

The Gamma Agreement Index computed for a Distance to Agreement of 3 mm and a Dose Difference (ΔD) of 3% was, as mean ± 1 SD, 96.7 ± 1.2% at 6 MV and 94.9 ± 1.3% at 18 MV, over the field area. These findings deteriorated slightly is ΔD was reduced to 2% (93.4 ± 3.2% and 90.1 ± 3.1%, respectively) and improved with ΔD = 4% (98.3 ± 0.8% and 97.3 ± 0.9%, respectively). For all tests a grid of 1 mm and the AAA photon dose calculation algorithm were applied. The spatial resolution of the PV-aS1000 is 0.392 mm/pxl. The Modulation Index for calculations resulted 17.0 ± 3.2 at 6 MV and 15.3 ± 2.7 at 18 MV while the corresponding data for measurements were: 18.5 ± 3.7 and 17.5 ± 3.7. Partial arcs findings were (for ΔD = 3%): GAI = 96.7 ± 0.9% for 6° rotations and 98.0 ± 1.1% for 12° rotations.

Conclusion

The GLAaS method can be considered as a valid Quality Assurance tool for the verification of RapidArc fields. The two implementations (composite rotation or short arcs) allow the verification of either the entire delivery or of short partial segments to possibly identify local discrepancies between delivery and calculations. RapidArc, according to the findings, appears to be a safe delivery method in terms of dosimetric accuracy allowing its clinical application.
Appendix
Available only for authorised users
Literature
1.
go back to reference Berger L, François P, Gaboriaud G, Rosenwald JC: Performance optimization of the Varian aS500 EPID system. J Appl Clin Med Phys 2006, 7: 105-114. 10.1120/jacmp.2027.25376CrossRefPubMed Berger L, François P, Gaboriaud G, Rosenwald JC: Performance optimization of the Varian aS500 EPID system. J Appl Clin Med Phys 2006, 7: 105-114. 10.1120/jacmp.2027.25376CrossRefPubMed
2.
go back to reference Greer PB, Popescu CC: Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy. Med Phys 2003, 30: 1618-1627. 10.1118/1.1582469CrossRefPubMed Greer PB, Popescu CC: Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy. Med Phys 2003, 30: 1618-1627. 10.1118/1.1582469CrossRefPubMed
3.
go back to reference Greer PB: Off-axis dose response characteristics of an amorphous silicon electronic portal imaging device. Med Phys 2007, 34: 3815-3824. 10.1118/1.2779944CrossRefPubMed Greer PB: Off-axis dose response characteristics of an amorphous silicon electronic portal imaging device. Med Phys 2007, 34: 3815-3824. 10.1118/1.2779944CrossRefPubMed
4.
go back to reference Greer PB, Vial P, Oliver L, Baldock C: Experimental investigation of the response of an amorphous silicon EPID to intensity modulated radiotherapy beams. Med Phys 2007, 34: 4389-4398. 10.1118/1.2789406CrossRefPubMed Greer PB, Vial P, Oliver L, Baldock C: Experimental investigation of the response of an amorphous silicon EPID to intensity modulated radiotherapy beams. Med Phys 2007, 34: 4389-4398. 10.1118/1.2789406CrossRefPubMed
5.
go back to reference Grein EE, Lee R, Luchka K: An investigation of a new amorphous silicon portal imaging device for transit dosimetry. Med Phys 2002, 29: 2262-2268. 10.1118/1.1508108CrossRefPubMed Grein EE, Lee R, Luchka K: An investigation of a new amorphous silicon portal imaging device for transit dosimetry. Med Phys 2002, 29: 2262-2268. 10.1118/1.1508108CrossRefPubMed
6.
go back to reference Parent L, Fielding AL, Dance DR, Seco J, Evans PM: Amorphous silicon EPID calibration for dosimetric applications: comparison of a method based on Monte Carlo prediction of response with existing techniques. Phys Med Biol 2007, 52: 3351-3368. 10.1088/0031-9155/52/12/003CrossRefPubMed Parent L, Fielding AL, Dance DR, Seco J, Evans PM: Amorphous silicon EPID calibration for dosimetric applications: comparison of a method based on Monte Carlo prediction of response with existing techniques. Phys Med Biol 2007, 52: 3351-3368. 10.1088/0031-9155/52/12/003CrossRefPubMed
7.
go back to reference Winkler P, Hefner A, Georg D: Dose-response characteristics of an amorphous silicon EPID. Med Phys 2005, 32: 3095-3105. 10.1118/1.2040711CrossRefPubMed Winkler P, Hefner A, Georg D: Dose-response characteristics of an amorphous silicon EPID. Med Phys 2005, 32: 3095-3105. 10.1118/1.2040711CrossRefPubMed
8.
go back to reference Nicolini G, Fogliata A, Vanetti E, Clivio A, Cozzi L: GLAaS: an absolute dose calibration algorithm for an amorphous silicon portal imager. Applications to IMRT verification. Med Phys 2006, 33: 2839-2851. 10.1118/1.2218314CrossRefPubMed Nicolini G, Fogliata A, Vanetti E, Clivio A, Cozzi L: GLAaS: an absolute dose calibration algorithm for an amorphous silicon portal imager. Applications to IMRT verification. Med Phys 2006, 33: 2839-2851. 10.1118/1.2218314CrossRefPubMed
9.
go back to reference Nicolini G, Fogliata A, Vanetti E, Clivio A, Vetterli D, Cozzi L: Testing the GLAaS algorithm for dose measurements on an amorphous silicon portal imager on low and high energy photon beams. Med Phys 2008, 35: 464-472. 10.1118/1.2828182CrossRefPubMed Nicolini G, Fogliata A, Vanetti E, Clivio A, Vetterli D, Cozzi L: Testing the GLAaS algorithm for dose measurements on an amorphous silicon portal imager on low and high energy photon beams. Med Phys 2008, 35: 464-472. 10.1118/1.2828182CrossRefPubMed
10.
go back to reference Nicolini G, Vanetti E, Clivio A, Fogliata A, Boka G, Cozzi L: Testing the portal imager GLAaS algorithm for machine quality assurance. Radiat Oncol 2008, 3: 14. 10.1186/1748-717X-3-14PubMedCentralCrossRefPubMed Nicolini G, Vanetti E, Clivio A, Fogliata A, Boka G, Cozzi L: Testing the portal imager GLAaS algorithm for machine quality assurance. Radiat Oncol 2008, 3: 14. 10.1186/1748-717X-3-14PubMedCentralCrossRefPubMed
11.
go back to reference Duthoy W, De Gersem W, Vergote K, et al.: Clinical implementation of intensity-modulated arc therapy (IMAT) for rectal cancer. Int J Radiat Oncol Biol Phys 2004, 60: 794-806.CrossRefPubMed Duthoy W, De Gersem W, Vergote K, et al.: Clinical implementation of intensity-modulated arc therapy (IMAT) for rectal cancer. Int J Radiat Oncol Biol Phys 2004, 60: 794-806.CrossRefPubMed
12.
go back to reference Earl MA, Shepard DM, Naqvi S, Li XA, Yu CX: Inverse planning for intensity-modulated arc therapy using direct aperture optimization. Phys Med Biol 2003, 48: 1075-89. 10.1088/0031-9155/48/8/309CrossRefPubMed Earl MA, Shepard DM, Naqvi S, Li XA, Yu CX: Inverse planning for intensity-modulated arc therapy using direct aperture optimization. Phys Med Biol 2003, 48: 1075-89. 10.1088/0031-9155/48/8/309CrossRefPubMed
13.
go back to reference Wong E, Chen JZ, Greenland J: Intensity-modulated arc therapy simiplified. Int J Radiat Oncol Biol Phys 2002, 53: 222-35.CrossRefPubMed Wong E, Chen JZ, Greenland J: Intensity-modulated arc therapy simiplified. Int J Radiat Oncol Biol Phys 2002, 53: 222-35.CrossRefPubMed
14.
go back to reference Yu CX: Intensity modulated arc therapy with dynamic multileaf collimation: an alternative to TomoTherapy. Phys Med Biol 1995, 40: 1435-49. 10.1088/0031-9155/40/9/004CrossRefPubMed Yu CX: Intensity modulated arc therapy with dynamic multileaf collimation: an alternative to TomoTherapy. Phys Med Biol 1995, 40: 1435-49. 10.1088/0031-9155/40/9/004CrossRefPubMed
15.
go back to reference Yu CX, Li XA, Ma L, et al.: Clinical Implementation of intensity-modulated arch therapy. Int J Radiat Oncol Biol Phys 2002, 53: 453-63.CrossRefPubMed Yu CX, Li XA, Ma L, et al.: Clinical Implementation of intensity-modulated arch therapy. Int J Radiat Oncol Biol Phys 2002, 53: 453-63.CrossRefPubMed
16.
go back to reference van Esch A, Clermont C, Devillers M, Iori M, Huyskens DP: On-line quality assurance of rotational radiotherapy treatment delivery by means of a 2D ion chamber array and the Octavius phantom. Med Phys 2007, 34: 3825-37. 10.1118/1.2777006CrossRefPubMed van Esch A, Clermont C, Devillers M, Iori M, Huyskens DP: On-line quality assurance of rotational radiotherapy treatment delivery by means of a 2D ion chamber array and the Octavius phantom. Med Phys 2007, 34: 3825-37. 10.1118/1.2777006CrossRefPubMed
17.
go back to reference Otto K: Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 2008, 35: 310-7. 10.1118/1.2818738CrossRefPubMed Otto K: Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 2008, 35: 310-7. 10.1118/1.2818738CrossRefPubMed
18.
go back to reference Low DA, Harms WB, Mutic S, Purdy JA: A technique for the quantitative evaluation of dose distributions. Med Phys 1998, 25: 656-660. 10.1118/1.598248CrossRefPubMed Low DA, Harms WB, Mutic S, Purdy JA: A technique for the quantitative evaluation of dose distributions. Med Phys 1998, 25: 656-660. 10.1118/1.598248CrossRefPubMed
19.
go back to reference Webb S: Use of a quantitative index of beam modulation to characterize dose conformality: illustration by a comparison of full beamlet IMRT, few-segment IMRT (fsIMRT) and conformal unmodulated radiotherapy. Phys Med Biol 2003, 48: 2051-2062. 10.1088/0031-9155/48/14/301CrossRefPubMed Webb S: Use of a quantitative index of beam modulation to characterize dose conformality: illustration by a comparison of full beamlet IMRT, few-segment IMRT (fsIMRT) and conformal unmodulated radiotherapy. Phys Med Biol 2003, 48: 2051-2062. 10.1088/0031-9155/48/14/301CrossRefPubMed
20.
go back to reference Nicolini G, Fogliata A, Vanetti E, Clivio A, Ammazzalorso F, Cozzi L: What is an acceptably smoothed fluence? Dosimetric and delivery considerations for dynamic sliding window IMRT. Radiat Oncol 2007, 2: 42. 10.1186/1748-717X-2-42CrossRef Nicolini G, Fogliata A, Vanetti E, Clivio A, Ammazzalorso F, Cozzi L: What is an acceptably smoothed fluence? Dosimetric and delivery considerations for dynamic sliding window IMRT. Radiat Oncol 2007, 2: 42. 10.1186/1748-717X-2-42CrossRef
Metadata
Title
The GLAaS algorithm for portal dosimetry and quality assurance of RapidArc, an intensity modulated rotational therapy
Authors
Giorgia Nicolini
Eugenio Vanetti
Alessandro Clivio
Antonella Fogliata
Stine Korreman
Jiri Bocanek
Luca Cozzi
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2008
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-3-24

Other articles of this Issue 1/2008

Radiation Oncology 1/2008 Go to the issue