Skip to main content
Top
Published in: Scoliosis and Spinal Disorders 2/2015

Open Access 01-12-2015 | Research

Factors affecting intradiscal pressure measurement during in vitro biomechanical tests

Authors: Jaëlle Tremblay, Vladimir Brailovski, Jean-Marc Mac-Thiong, Yvan Petit

Published in: Scoliosis and Spinal Disorders | Special Issue 2/2015

Login to get access

Abstract

Objectives

To assess the reliability of intradiscal pressure measurement during in vitro biomechanical testing. In particular, the variability of measurements will be assessed for repeated measures by considering the effect of specimens and of freezing/thawing cycles.

Methods

Thirty-six functional units from 8 porcine spines (S1: T7-T8, S2: T9-T10, S3: T12-T11, S4: T14-T13, S5: L1-L2 and S6: L3-L4) have been used. The intervertebral discs were measured to obtain the frontal and sagittal dimensions. These measurements helped locate the center of the disc where a modified catheter was positioned. A fiber optic pressure sensor (measuring range: -0.1 to 17 bar) (360HP, SAMBA Sensors, Sweden) was then inserted into the catheter. The specimens were divided into 3 groups: 1) fresh (F), 2) after one freeze/thaw cycle (C1) and 3) after 2 freeze/thaw cycles (C2). These groups were divided in two, depending on whether specimens were subjected to 400 N axial loading or not. Ten measurements (insertion of the sensor for a period of one minute, then removal) were taken for each case. Statistical analyses evaluated the influence of porcine specimen and the vertebral level using a MANOVA. The effect of repeated measurements was evaluated with ANOVA. The difference between freeze/thaw cycles were analysed with U Mann-Whitney test (P≤0.05).

Results

Without axial loading, the F group showed 365 mbar intradiscal pressure, 473 mbar for the C1 group, and 391 mbar for the C2 group. With 400N axial load, the F group showed intradiscal pressure of 10610 mbar, the C1 group 10132 mbar, the C2 group 12074 mbar. The statistical analysis shows a significant influence of the porcine specimen (p<0.001), with or without axial loading and of the vertebral level with (p=0.048) and without load (p<0.001). The results were also significantly different between the freeze/thaw cycles, with (p<0.001) and without load (p=0.033). Repeated measurement (without load p = 0.82 and with p = 0.56) did not show significant influence.

Conclusions

The results tend to support that freezing/thawing cycles can affect intradiscal pressure measurement with significant inter-specimen variability. The use of the same specimen as its own control during in vitro biomechanical testing could be recommended.
Literature
1.
go back to reference Nachemson A: Measurement of intradiscal pressure. Acta Orthop Scand. 1959, 28: 269-289. 10.3109/17453675908988632.CrossRefPubMed Nachemson A: Measurement of intradiscal pressure. Acta Orthop Scand. 1959, 28: 269-289. 10.3109/17453675908988632.CrossRefPubMed
2.
go back to reference Linde F, Sorensen HC: The effect of different storage methods on the mechanical properties of trabecular bone. J Biomech. 1993, 26: 1249-1252. 10.1016/0021-9290(93)90072-M.CrossRefPubMed Linde F, Sorensen HC: The effect of different storage methods on the mechanical properties of trabecular bone. J Biomech. 1993, 26: 1249-1252. 10.1016/0021-9290(93)90072-M.CrossRefPubMed
3.
go back to reference Woo SL, Orlando CA, Camp JF, Akeson WH: Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech. 1986, 19: 399-404. 10.1016/0021-9290(86)90016-3.CrossRefPubMed Woo SL, Orlando CA, Camp JF, Akeson WH: Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech. 1986, 19: 399-404. 10.1016/0021-9290(86)90016-3.CrossRefPubMed
4.
go back to reference Van Ee CA, Chasse AL, Myers BS: Quantifying skeletal muscle properties in cadaveric test specimens: effects of mechanical loading, postmortem time, and freezer storage. J Biomech Eng. 2000, 122: 9-14.CrossRefPubMed Van Ee CA, Chasse AL, Myers BS: Quantifying skeletal muscle properties in cadaveric test specimens: effects of mechanical loading, postmortem time, and freezer storage. J Biomech Eng. 2000, 122: 9-14.CrossRefPubMed
5.
go back to reference Tan JS, Uppuganti S: Cumulative multiple freeze-thaw cycles and testing does not affect subsequent within-day variation in intervertebral flexibility of human cadaveric lumbosacral spine. Spine (Phila Pa 1976). 2012, 37: E1238-1242. 10.1097/BRS.0b013e31826111a3.CrossRef Tan JS, Uppuganti S: Cumulative multiple freeze-thaw cycles and testing does not affect subsequent within-day variation in intervertebral flexibility of human cadaveric lumbosacral spine. Spine (Phila Pa 1976). 2012, 37: E1238-1242. 10.1097/BRS.0b013e31826111a3.CrossRef
6.
go back to reference Holm S, Ekstrom L, Kaigle Holm A, Hansson T: Intradiscal pressure in the degenerated porcine intervertebral disc. Vet Comp Orthop Traumatol. 2007, 20: 29-33.PubMed Holm S, Ekstrom L, Kaigle Holm A, Hansson T: Intradiscal pressure in the degenerated porcine intervertebral disc. Vet Comp Orthop Traumatol. 2007, 20: 29-33.PubMed
7.
go back to reference Jaelle Tremblay, Jean-Marc Mac-Thiong, Vladimir Brailovski, Yvan Petit: Factors affecting intradiscal pressure measurement during in vitro biomechanical tests. Scoliosis. 2015, 10 (Suppl 1): O19-CrossRef Jaelle Tremblay, Jean-Marc Mac-Thiong, Vladimir Brailovski, Yvan Petit: Factors affecting intradiscal pressure measurement during in vitro biomechanical tests. Scoliosis. 2015, 10 (Suppl 1): O19-CrossRef
Metadata
Title
Factors affecting intradiscal pressure measurement during in vitro biomechanical tests
Authors
Jaëlle Tremblay
Vladimir Brailovski
Jean-Marc Mac-Thiong
Yvan Petit
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Scoliosis and Spinal Disorders / Issue Special Issue 2/2015
Electronic ISSN: 2397-1789
DOI
https://doi.org/10.1186/1748-7161-10-S2-S1

Other articles of this Special Issue 2/2015

Scoliosis and Spinal Disorders 2/2015 Go to the issue