Skip to main content
Top
Published in: Diagnostic Pathology 1/2011

Open Access 01-12-2011 | Research

A supervised visual model for finding regions of interest in basal cell carcinoma images

Authors: Ricardo Gutiérrez, Francisco Gómez, Lucía Roa-Peña, Eduardo Romero

Published in: Diagnostic Pathology | Issue 1/2011

Login to get access

Abstract

This paper introduces a supervised learning method for finding diagnostic regions of interest in histopathological images. The method is based on the cognitive process of visual selection of relevant regions that arises during a pathologist's image examination. The proposed strategy emulates the interaction of the visual cortex areas V 1, V 2 and V 4, being the V 1 cortex responsible for assigning local levels of relevance to visual inputs while the V 2 cortex gathers together these small regions according to some weights modulated by the V 4 cortex, which stores some learned rules. This novel strategy can be considered as a complex mix of "bottom-up" and "top-down" mechanisms, integrated by calculating a unique index inside each region. The method was evaluated on a set of 338 images in which an expert pathologist had drawn the Regions of Interest. The proposed method outperforms two state-of-the-art methods devised to determine Regions of Interest (RoIs) in natural images. The quality gain with respect to an adaptated Itti's model which found RoIs was 3.6 dB in average, while with respect to the Achanta's proposal was 4.9 dB.
Appendix
Available only for authorised users
Literature
1.
go back to reference Doyle S, Monaco J, Madabhushi A, Lindholm S, Tomaszewski J: Evaluation of effects of JPEG2000 compression on a computer-aided detection system for prostate cancer on digitized histopathology. IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2010, 1313-1316.CrossRef Doyle S, Monaco J, Madabhushi A, Lindholm S, Tomaszewski J: Evaluation of effects of JPEG2000 compression on a computer-aided detection system for prostate cancer on digitized histopathology. IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2010, 1313-1316.CrossRef
2.
go back to reference Catalyürek Ü, Beynon MD, Chang C, Kurc T, Sussman A, Saltz J: The Virtual Microscope. IEEE Trans. Inf. Technol. Biomed. 2003, 7 (4): 230-248.CrossRefPubMed Catalyürek Ü, Beynon MD, Chang C, Kurc T, Sussman A, Saltz J: The Virtual Microscope. IEEE Trans. Inf. Technol. Biomed. 2003, 7 (4): 230-248.CrossRefPubMed
3.
go back to reference Kayser K, Görtler J, Goldmann T, Vollmer E, Hufnagl P, Kayser G: Image standards in Tissue-Based Diagnosis (Diagnostic Surgical Pathology). Diagnostic Pathology. 2008, 3 (17): Kayser K, Görtler J, Goldmann T, Vollmer E, Hufnagl P, Kayser G: Image standards in Tissue-Based Diagnosis (Diagnostic Surgical Pathology). Diagnostic Pathology. 2008, 3 (17):
4.
go back to reference Kayser K, Radziszowski D, Bzdyl P, Sommer R, Kayser G: Towards an automated virtual slide screening: theoretical considerations and practical experiences of automated tissue-based virtual diagnosis to be implemented in the internet. Diagnostic Pathology. 2006, 1 (10): Kayser K, Radziszowski D, Bzdyl P, Sommer R, Kayser G: Towards an automated virtual slide screening: theoretical considerations and practical experiences of automated tissue-based virtual diagnosis to be implemented in the internet. Diagnostic Pathology. 2006, 1 (10):
5.
go back to reference Anastassopoulos G, Skodras A: JPEG 2000 ROI coding in medical imaging applications. Proc. 2nd IASTED Int. Conf. on Visualisation, Imaging and Image Processing (VIIP2002). 2002, 783-788. Anastassopoulos G, Skodras A: JPEG 2000 ROI coding in medical imaging applications. Proc. 2nd IASTED Int. Conf. on Visualisation, Imaging and Image Processing (VIIP2002). 2002, 783-788.
6.
go back to reference Evered A, Dudding N: Accuracy and perceptions of virtual microscopy compared with glass slide microscopy in cervical cytology. Cytopathology. 2010, 22 (2): 82-87.CrossRefPubMed Evered A, Dudding N: Accuracy and perceptions of virtual microscopy compared with glass slide microscopy in cervical cytology. Cytopathology. 2010, 22 (2): 82-87.CrossRefPubMed
7.
go back to reference Tsuchihashi Y, Takamatsu T, Hashimoto Y, Takashima T, Nakano K, Fujita S: Use of virtual slide system for quick frozen intra-operative telepathology diagnosis in Kyoto, Japan. Diagnostic Pathology. 2008, 3 (Suppl 1): S6-10.1186/1746-1596-3-S1-S6.PubMedCentralCrossRefPubMed Tsuchihashi Y, Takamatsu T, Hashimoto Y, Takashima T, Nakano K, Fujita S: Use of virtual slide system for quick frozen intra-operative telepathology diagnosis in Kyoto, Japan. Diagnostic Pathology. 2008, 3 (Suppl 1): S6-10.1186/1746-1596-3-S1-S6.PubMedCentralCrossRefPubMed
8.
go back to reference Gokturk SB, Tomasi C, Girod B, Beaulieu C: Medical imagecompression based on region of interest, with application to colon CT images. Proc. 23rd Annual Int. Conf. IEEE Engineering in Medicine and Biology Society. 2001, 3: 2453-2456. Gokturk SB, Tomasi C, Girod B, Beaulieu C: Medical imagecompression based on region of interest, with application to colon CT images. Proc. 23rd Annual Int. Conf. IEEE Engineering in Medicine and Biology Society. 2001, 3: 2453-2456.
9.
go back to reference Oczeretko E, Borowska M, Kitlas A, Borusiewicz A, Sobolewska-Siemieniuk M: Fractal Analysis of Medical Images in the Irregular Regions of Interest. 8th IEEE International Conference on BioInformatics and BioEngineering. 2008, 1-6. Oczeretko E, Borowska M, Kitlas A, Borusiewicz A, Sobolewska-Siemieniuk M: Fractal Analysis of Medical Images in the Irregular Regions of Interest. 8th IEEE International Conference on BioInformatics and BioEngineering. 2008, 1-6.
10.
go back to reference Iregui M, Gómez F, Romero E: Strategies for efficient virtual microscopy in pathological samples using JPEG2000. Micron. 2007, 38 (7): 700-713. 10.1016/j.micron.2007.04.008.CrossRefPubMed Iregui M, Gómez F, Romero E: Strategies for efficient virtual microscopy in pathological samples using JPEG2000. Micron. 2007, 38 (7): 700-713. 10.1016/j.micron.2007.04.008.CrossRefPubMed
11.
go back to reference Crowley SJ, GJ N, CP F: Development of visual diagnostic expertise in pathology an information processing study. Journal of the American Medical Informatics Association. 2003, 10: 30-51. 10.1197/jamia.M1123.CrossRef Crowley SJ, GJ N, CP F: Development of visual diagnostic expertise in pathology an information processing study. Journal of the American Medical Informatics Association. 2003, 10: 30-51. 10.1197/jamia.M1123.CrossRef
12.
go back to reference Krupinski E, Tillack A, Richter L, Henderson J, Bhattacharyya A, Scott K, Graham A, Descour M, Davis J, Weinstein R: Eyemovement study and human performance using telepathology virtual slides implications for medical education and differences with experience. Human Pathology. 2006, 37 (12): 1543-1556. 10.1016/j.humpath.2006.08.024.CrossRefPubMed Krupinski E, Tillack A, Richter L, Henderson J, Bhattacharyya A, Scott K, Graham A, Descour M, Davis J, Weinstein R: Eyemovement study and human performance using telepathology virtual slides implications for medical education and differences with experience. Human Pathology. 2006, 37 (12): 1543-1556. 10.1016/j.humpath.2006.08.024.CrossRefPubMed
13.
go back to reference Erasmus J, Gladish G, Broemeling L, Sabloff B, MT Truong RH, Munden R: Interobserver and Intraobserver Variability in Measurement of Non Small Cell Carcinoma Lung Lesions: Implications for Assessment of Tumor Response. Journal of Clinical Oncology. 2003, 21: 2574-2582. 10.1200/JCO.2003.01.144.CrossRefPubMed Erasmus J, Gladish G, Broemeling L, Sabloff B, MT Truong RH, Munden R: Interobserver and Intraobserver Variability in Measurement of Non Small Cell Carcinoma Lung Lesions: Implications for Assessment of Tumor Response. Journal of Clinical Oncology. 2003, 21: 2574-2582. 10.1200/JCO.2003.01.144.CrossRefPubMed
14.
go back to reference Tosun A, Kandemir M, Cenk S, Gunduz-Demir C: Object-oriented texture analysis for the unsupervised segmentation of biopsy images for cancer detection. Pattern Recogn. 2009, 42 (10): 1104-1112. 10.1016/j.patcog.2008.07.007.CrossRef Tosun A, Kandemir M, Cenk S, Gunduz-Demir C: Object-oriented texture analysis for the unsupervised segmentation of biopsy images for cancer detection. Pattern Recogn. 2009, 42 (10): 1104-1112. 10.1016/j.patcog.2008.07.007.CrossRef
15.
go back to reference Corch S, Deco G: Large Scale Neural Model for Visual Attention: Integration of Experimental Single-cell and fMRI data. 2002, Oxford University Press, cerebral cortex, 12 (4): 339-348. Corch S, Deco G: Large Scale Neural Model for Visual Attention: Integration of Experimental Single-cell and fMRI data. 2002, Oxford University Press, cerebral cortex, 12 (4): 339-348.
16.
go back to reference Karras D, Karkanis S, Maroulis D: Efficient Image Compression of Medical Images Using the Wavelet Transform and Fuzzy c-means Clustering on Regions of Interest. euromicro. 2000, 02: 469-473. Karras D, Karkanis S, Maroulis D: Efficient Image Compression of Medical Images Using the Wavelet Transform and Fuzzy c-means Clustering on Regions of Interest. euromicro. 2000, 02: 469-473.
17.
go back to reference Zheng L: Automated feature extraction and content-base retrieval of pathology microscopic images using K-means clustering and code run-length probability distribution. PhD thesis. 2005, Pittsburgh University Zheng L: Automated feature extraction and content-base retrieval of pathology microscopic images using K-means clustering and code run-length probability distribution. PhD thesis. 2005, Pittsburgh University
18.
go back to reference Itti L, Koch C, Niebur E: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on patern analysis and machine intelligence. 1998, 20: 1254-1259. 10.1109/34.730558.CrossRef Itti L, Koch C, Niebur E: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on patern analysis and machine intelligence. 1998, 20: 1254-1259. 10.1109/34.730558.CrossRef
19.
go back to reference Desimone R, Duncan J: Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscience. 1995, 18: 193-222. 10.1146/annurev.ne.18.030195.001205.CrossRefPubMed Desimone R, Duncan J: Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscience. 1995, 18: 193-222. 10.1146/annurev.ne.18.030195.001205.CrossRefPubMed
20.
go back to reference Pena G, Andrade-Filho J: How does a pathologist make a diagnosis?. Arch Pathol Lab Med. 2009, 133: 124-132.PubMed Pena G, Andrade-Filho J: How does a pathologist make a diagnosis?. Arch Pathol Lab Med. 2009, 133: 124-132.PubMed
21.
go back to reference Willemse F: A colored view on quantitative pahotlogy, aspects of true color image analysis in routine pahotlogy. PhD thesis. 1996, Rijkuniversiteit Gronigen Willemse F: A colored view on quantitative pahotlogy, aspects of true color image analysis in routine pahotlogy. PhD thesis. 1996, Rijkuniversiteit Gronigen
22.
go back to reference Watanabe H, Ogita T: Transcoding by Automatic ROI Extraction from JPEG2000 Bitstream. Proceedings of Picture Coding Symposium 2003. 2003, 1: 4-7. Watanabe H, Ogita T: Transcoding by Automatic ROI Extraction from JPEG2000 Bitstream. Proceedings of Picture Coding Symposium 2003. 2003, 1: 4-7.
23.
go back to reference Lessmann B, Nattkemper T, Hans VH, Degenhard A: A method for linking computed image features to histological semantics in neuropathology. Journal of Biomedical Informatics. 2007, 40 (6): 631-641. 10.1016/j.jbi.2007.06.007.CrossRefPubMed Lessmann B, Nattkemper T, Hans VH, Degenhard A: A method for linking computed image features to histological semantics in neuropathology. Journal of Biomedical Informatics. 2007, 40 (6): 631-641. 10.1016/j.jbi.2007.06.007.CrossRefPubMed
24.
go back to reference Demir C, Yener B: Automated cancer diagnosis based on histopathological images: a systematic survey. Tech. rep. Rensselaer Polytechnic Institute, Department of Computer Science, TR-05-09. 2005 Demir C, Yener B: Automated cancer diagnosis based on histopathological images: a systematic survey. Tech. rep. Rensselaer Polytechnic Institute, Department of Computer Science, TR-05-09. 2005
25.
go back to reference Fernandez-Gonzalez R, Deschamps T, Idica A, Malladi R, de Solorzano CO: Automatic segmentation of histological structures in mammary gland tissue sections. Journal of Biomedical Optics. 2004, 9 (3): 444-453. 10.1117/1.1699011.CrossRefPubMed Fernandez-Gonzalez R, Deschamps T, Idica A, Malladi R, de Solorzano CO: Automatic segmentation of histological structures in mammary gland tissue sections. Journal of Biomedical Optics. 2004, 9 (3): 444-453. 10.1117/1.1699011.CrossRefPubMed
26.
go back to reference Díaz G, González F, Romero E: A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images. J of Biomedical Informatics. 2009, 42 (2): 296-307.CrossRefPubMed Díaz G, González F, Romero E: A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images. J of Biomedical Informatics. 2009, 42 (2): 296-307.CrossRefPubMed
27.
go back to reference Karacali B, Tozeren A: Automated detection of regions of interest for tissue microarray experiments: an image texture analysis. BMC Medical Imaging. 2007, 7: 2-10.1186/1471-2342-7-2.PubMedCentralCrossRefPubMed Karacali B, Tozeren A: Automated detection of regions of interest for tissue microarray experiments: an image texture analysis. BMC Medical Imaging. 2007, 7: 2-10.1186/1471-2342-7-2.PubMedCentralCrossRefPubMed
28.
go back to reference Treisman A, Gelade G: A feature-integration theory of attention. Cognitive Psychology. 1980, 12: 97-136. 10.1016/0010-0285(80)90005-5.CrossRefPubMed Treisman A, Gelade G: A feature-integration theory of attention. Cognitive Psychology. 1980, 12: 97-136. 10.1016/0010-0285(80)90005-5.CrossRefPubMed
29.
go back to reference Itti L, Koch C: Computational Modelling of Visual Attention. Nature Reviews Neuroscience. 2001, 2 (3): 194-203. 10.1038/35058500.CrossRefPubMed Itti L, Koch C: Computational Modelling of Visual Attention. Nature Reviews Neuroscience. 2001, 2 (3): 194-203. 10.1038/35058500.CrossRefPubMed
30.
go back to reference Achanta R, Hemami S, Estrada F, Süsstrunk S: Frequency-tuned Salient Region Detection. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). 2009 Achanta R, Hemami S, Estrada F, Süsstrunk S: Frequency-tuned Salient Region Detection. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). 2009
31.
go back to reference Fan X, Huang H, Liang D, Qi C: A hybrid parallel projection approach to object-based image restoration. Pattern Recognition Letters. 2006, 27 (10): 1045-1053. 10.1016/j.patrec.2005.12.010.CrossRef Fan X, Huang H, Liang D, Qi C: A hybrid parallel projection approach to object-based image restoration. Pattern Recognition Letters. 2006, 27 (10): 1045-1053. 10.1016/j.patrec.2005.12.010.CrossRef
32.
go back to reference Crowley RS, Naus GJ, Friedman CP: Development of Visual diagnostic expertise in pathology. Proceedings of AMIA symposium. 2001, 125-129. Crowley RS, Naus GJ, Friedman CP: Development of Visual diagnostic expertise in pathology. Proceedings of AMIA symposium. 2001, 125-129.
33.
go back to reference Pani J, Chariker J, Fell R: Toward a theory of qualitative visual reasoning in microanatomy. 18th International Workshop on Qualitative Reasoning. Edited by: de Kleer J, Forbus KD. 2004, 233-238. Pani J, Chariker J, Fell R: Toward a theory of qualitative visual reasoning in microanatomy. 18th International Workshop on Qualitative Reasoning. Edited by: de Kleer J, Forbus KD. 2004, 233-238.
34.
go back to reference Kayser K, Metze K, Radziszowski D, Amir-Hoshang S, Goldmann T, Kosjerina Z, Mireskandari M, Kayser G: Texture and object related automated information analysis in histological still images of various organs. Analytical & Quantitative Cytology & Histology. 2008, 6: 323-35. Kayser K, Metze K, Radziszowski D, Amir-Hoshang S, Goldmann T, Kosjerina Z, Mireskandari M, Kayser G: Texture and object related automated information analysis in histological still images of various organs. Analytical & Quantitative Cytology & Histology. 2008, 6: 323-35.
35.
go back to reference Lee TS: Computations in the early visual cortex. Journal of Physiology - Paris. 2003, 97: 121-139. 10.1016/j.jphysparis.2003.09.015.CrossRef Lee TS: Computations in the early visual cortex. Journal of Physiology - Paris. 2003, 97: 121-139. 10.1016/j.jphysparis.2003.09.015.CrossRef
36.
go back to reference Wandell BA, Brewer AA, Dougherty RF: Visual field map clusters in human cortex. Philosofical transactions of the royal society B. 2005, 360: 693-707. 10.1098/rstb.2005.1628.CrossRef Wandell BA, Brewer AA, Dougherty RF: Visual field map clusters in human cortex. Philosofical transactions of the royal society B. 2005, 360: 693-707. 10.1098/rstb.2005.1628.CrossRef
37.
go back to reference Felzenszwalb PF, Huttenlocher DP: Efficient Graph-Based Image Segmentation. International Journal of Computer Vision. 2004, 59 (2): 167-181. 10.1023/B:VISI.0000022288.19776.77.CrossRef Felzenszwalb PF, Huttenlocher DP: Efficient Graph-Based Image Segmentation. International Journal of Computer Vision. 2004, 59 (2): 167-181. 10.1023/B:VISI.0000022288.19776.77.CrossRef
38.
go back to reference Wertheimer M: Laws of organization in perceptual forms (partial translation). 1938, Harcourt, Brace and Company. A Sourcebook of Gestalt Psychology, 71-88. Wertheimer M: Laws of organization in perceptual forms (partial translation). 1938, Harcourt, Brace and Company. A Sourcebook of Gestalt Psychology, 71-88.
39.
go back to reference Mezaris V, Kompatsiaris I, Strintzis M: Still Image Segmentation Tools for Object-based Multimedia Applications. International Journal of Pattern Recognition and Artificial Intelligence. 2004, 18: 701-725. 10.1142/S0218001404003393.CrossRef Mezaris V, Kompatsiaris I, Strintzis M: Still Image Segmentation Tools for Object-based Multimedia Applications. International Journal of Pattern Recognition and Artificial Intelligence. 2004, 18: 701-725. 10.1142/S0218001404003393.CrossRef
40.
go back to reference Villegas P, Marichal X: Perceptually-weighted evaluation criteria for segmentation masks in video sequences. IEEE Transactions on Image Processing. 2004, 13 (8): 1092-1103. 10.1109/TIP.2004.828433.CrossRefPubMed Villegas P, Marichal X: Perceptually-weighted evaluation criteria for segmentation masks in video sequences. IEEE Transactions on Image Processing. 2004, 13 (8): 1092-1103. 10.1109/TIP.2004.828433.CrossRefPubMed
41.
go back to reference Lewis R, Torczon V: Pattern Search Methods for Linearly Constrained Minimization. SIAM J on Optimization. 1999, 10 (3): 917-941. 10.1137/S1052623497331373.CrossRef Lewis R, Torczon V: Pattern Search Methods for Linearly Constrained Minimization. SIAM J on Optimization. 1999, 10 (3): 917-941. 10.1137/S1052623497331373.CrossRef
42.
go back to reference Koch C, Ullman S: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology. 1985, 4 (4): 219-227.PubMed Koch C, Ullman S: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology. 1985, 4 (4): 219-227.PubMed
43.
go back to reference Zhang B, Zheng Y, Zhang Q: Extracting Regions of Interest Based on Phase Spectrum and Morphological Approach. 2009 ISECS International Colloquium on Computing, Communication, Control, and Management. 2009 Zhang B, Zheng Y, Zhang Q: Extracting Regions of Interest Based on Phase Spectrum and Morphological Approach. 2009 ISECS International Colloquium on Computing, Communication, Control, and Management. 2009
44.
go back to reference Bussolati G: Dissecting the pathologists brain: mental processes that lead to pathological diagnoses. Virchows Arch. 2006, 448 (6): 739-743. 10.1007/s00428-006-0164-y.CrossRefPubMed Bussolati G: Dissecting the pathologists brain: mental processes that lead to pathological diagnoses. Virchows Arch. 2006, 448 (6): 739-743. 10.1007/s00428-006-0164-y.CrossRefPubMed
45.
go back to reference Tsuchihashi Y, Mazaki T, Nakasato K, Morishima M, Nagata H, Tofukuji I, Shirakata H, Naito K, Akasaka Y: The basic diagnostic approaches used in robotic still-image telepathology. Journal of Telemedicine and Telecare. 1999, 5 (S1): 115-117. 10.1258/1357633991932801.CrossRef Tsuchihashi Y, Mazaki T, Nakasato K, Morishima M, Nagata H, Tofukuji I, Shirakata H, Naito K, Akasaka Y: The basic diagnostic approaches used in robotic still-image telepathology. Journal of Telemedicine and Telecare. 1999, 5 (S1): 115-117. 10.1258/1357633991932801.CrossRef
46.
go back to reference Boer A: Visual Perception and Consciousness in Dermatopathology: Mechanisms of Figure-Ground Segregation Account for Errors in Diagnosis. The American Journal of Dermatopathology. 2009, 31: 13-21. 10.1097/DAD.0b013e318047bb40.CrossRefPubMed Boer A: Visual Perception and Consciousness in Dermatopathology: Mechanisms of Figure-Ground Segregation Account for Errors in Diagnosis. The American Journal of Dermatopathology. 2009, 31: 13-21. 10.1097/DAD.0b013e318047bb40.CrossRefPubMed
47.
go back to reference Thielscher A, Neuman H: Neural Mechanisms of cortico-cortical interaction in texture boundary detection: A Modeling approach. Neuroscience. 2003, 122: 921-939. 10.1016/j.neuroscience.2003.08.050.CrossRefPubMed Thielscher A, Neuman H: Neural Mechanisms of cortico-cortical interaction in texture boundary detection: A Modeling approach. Neuroscience. 2003, 122: 921-939. 10.1016/j.neuroscience.2003.08.050.CrossRefPubMed
48.
go back to reference Oger M, Belhomme P, Klossa J, Michels J, Elmoataz A: Automated region of interest retrieval and classification using spectral analysis. Diagnostic Pathology. 2008, 3 (Suppl 1): S17-10.1186/1746-1596-3-S1-S17.PubMedCentralCrossRefPubMed Oger M, Belhomme P, Klossa J, Michels J, Elmoataz A: Automated region of interest retrieval and classification using spectral analysis. Diagnostic Pathology. 2008, 3 (Suppl 1): S17-10.1186/1746-1596-3-S1-S17.PubMedCentralCrossRefPubMed
49.
go back to reference Aldavert D, Ramisa A, de Mántaras RL, Toledo R: Real-time Object Segmentation Using a Bag of Features Approach. Artificial Intelligence Research and Development. 2010, 321-329. Aldavert D, Ramisa A, de Mántaras RL, Toledo R: Real-time Object Segmentation Using a Bag of Features Approach. Artificial Intelligence Research and Development. 2010, 321-329.
50.
go back to reference Cao L, Fei-Fei L: Spatially coherent latent topic model for concurrent object segmentation and classification. Proceedings of IEEE Intern. Conf. in Computer Vision (ICCV). 2007 Cao L, Fei-Fei L: Spatially coherent latent topic model for concurrent object segmentation and classification. Proceedings of IEEE Intern. Conf. in Computer Vision (ICCV). 2007
51.
go back to reference Russell B, Freeman W, Efros A, Sivic J, Zisserman A: Using Multiple Segmentations to Discover Objects and their Extent in Image Collections. Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, Volume 2. 2006, 2: 1605-1614. Russell B, Freeman W, Efros A, Sivic J, Zisserman A: Using Multiple Segmentations to Discover Objects and their Extent in Image Collections. Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, Volume 2. 2006, 2: 1605-1614.
Metadata
Title
A supervised visual model for finding regions of interest in basal cell carcinoma images
Authors
Ricardo Gutiérrez
Francisco Gómez
Lucía Roa-Peña
Eduardo Romero
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2011
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/1746-1596-6-26

Other articles of this Issue 1/2011

Diagnostic Pathology 1/2011 Go to the issue