Skip to main content
Top
Published in: Molecular Pain 1/2013

Open Access 01-12-2013 | Research

Transcriptional mechanisms underlying sensitization of peripheral sensory neurons by Granulocyte-/Granulocyte-macrophage colony stimulating factors

Authors: Kiran Kumar Bali, Varun Venkataramani, Venkata P Satagopam, Pooja Gupta, Reinhard Schneider, Rohini Kuner

Published in: Molecular Pain | Issue 1/2013

Login to get access

Abstract

Background

Cancer-associated pain is a major cause of poor quality of life in cancer patients and is frequently resistant to conventional therapy. Recent studies indicate that some hematopoietic growth factors, namely granulocyte macrophage colony stimulating factor (GMCSF) and granulocyte colony stimulating factor (GCSF), are abundantly released in the tumor microenvironment and play a key role in regulating tumor-nerve interactions and tumor-associated pain by activating receptors on dorsal root ganglion (DRG) neurons. Moreover, these hematopoietic factors have been highly implicated in postsurgical pain, inflammatory pain and osteoarthritic pain. However, the molecular mechanisms via which G-/GMCSF bring about nociceptive sensitization and elicit pain are not known.

Results

In order to elucidate G-/GMCSF mediated transcriptional changes in the sensory neurons, we performed a comprehensive, genome-wide analysis of changes in the transcriptome of DRG neurons brought about by exposure to GMCSF or GCSF. We present complete information on regulated genes and validated profiling analyses and report novel regulatory networks and interaction maps revealed by detailed bioinformatics analyses. Amongst these, we validate calpain 2, matrix metalloproteinase 9 (MMP9) and a RhoGTPase Rac1 as well as Tumor necrosis factor alpha (TNFα) as transcriptional targets of G-/GMCSF and demonstrate the importance of MMP9 and Rac1 in GMCSF-induced nociceptor sensitization.

Conclusion

With integrative approach of bioinformatics, in vivo pharmacology and behavioral analyses, our results not only indicate that transcriptional control by G-/GMCSF signaling regulates a variety of established pain modulators, but also uncover a large number of novel targets, paving the way for translational analyses in the context of pain disorders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jimenez-Andrade JM, Mantyh WG, Bloom AP, Ferng AS, Geffre CP, Mantyh PW: Bone cancer pain. Ann N Y Acad Sci 2010, 1198: 173–181. 10.1111/j.1749-6632.2009.05429.xCrossRefPubMed Jimenez-Andrade JM, Mantyh WG, Bloom AP, Ferng AS, Geffre CP, Mantyh PW: Bone cancer pain. Ann N Y Acad Sci 2010, 1198: 173–181. 10.1111/j.1749-6632.2009.05429.xCrossRefPubMed
2.
go back to reference Davar G: Endothelin-1 and metastatic cancer pain. Pain Med 2001, 2: 24–27. 10.1046/j.1526-4637.2001.002001024.xCrossRefPubMed Davar G: Endothelin-1 and metastatic cancer pain. Pain Med 2001, 2: 24–27. 10.1046/j.1526-4637.2001.002001024.xCrossRefPubMed
4.
go back to reference Stosser S, Agarwal N, Tappe-Theodor A, Yanagisawa M, Kuner R: Dissecting the functional significance of endothelin A receptors in peripheral nociceptors in vivo via conditional gene deletion. Pain 2009, 148: 206–214.CrossRefPubMed Stosser S, Agarwal N, Tappe-Theodor A, Yanagisawa M, Kuner R: Dissecting the functional significance of endothelin A receptors in peripheral nociceptors in vivo via conditional gene deletion. Pain 2009, 148: 206–214.CrossRefPubMed
5.
go back to reference Mantyh PW: Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci 2006, 7: 797–809.CrossRefPubMed Mantyh PW: Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci 2006, 7: 797–809.CrossRefPubMed
6.
go back to reference Stosser S, Schweizerhof M, Kuner R: Hematopoietic colony-stimulating factors: new players in tumor-nerve interactions. J Mol Med (Berl) 2011, 89: 321–329. 10.1007/s00109-010-0697-zCrossRef Stosser S, Schweizerhof M, Kuner R: Hematopoietic colony-stimulating factors: new players in tumor-nerve interactions. J Mol Med (Berl) 2011, 89: 321–329. 10.1007/s00109-010-0697-zCrossRef
7.
go back to reference Hamilton JA: Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 2008, 8: 533–544. 10.1038/nri2356CrossRefPubMed Hamilton JA: Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 2008, 8: 533–544. 10.1038/nri2356CrossRefPubMed
8.
go back to reference Schweizerhof M, Stosser S, Kurejova M, Njoo C, Gangadharan V, Agarwal N, Schmelz M, Bali KK, Michalski CW, Brugger S, et al.: Hematopoietic colony-stimulating factors mediate tumor-nerve interactions and bone cancer pain. Nat Med 2009, 15: 802–807. 10.1038/nm.1976CrossRefPubMed Schweizerhof M, Stosser S, Kurejova M, Njoo C, Gangadharan V, Agarwal N, Schmelz M, Bali KK, Michalski CW, Brugger S, et al.: Hematopoietic colony-stimulating factors mediate tumor-nerve interactions and bone cancer pain. Nat Med 2009, 15: 802–807. 10.1038/nm.1976CrossRefPubMed
9.
go back to reference Cook AD, Pobjoy J, Sarros S, Steidl S, Durr M, Lacey DC, Hamilton JA: Granulocyte-macrophage colony-stimulating factor is a key mediator in inflammatory and arthritic pain. Ann Rheum Dis 2013, 72: 265–270. 10.1136/annrheumdis-2012-201703CrossRefPubMed Cook AD, Pobjoy J, Sarros S, Steidl S, Durr M, Lacey DC, Hamilton JA: Granulocyte-macrophage colony-stimulating factor is a key mediator in inflammatory and arthritic pain. Ann Rheum Dis 2013, 72: 265–270. 10.1136/annrheumdis-2012-201703CrossRefPubMed
10.
go back to reference Cook AD, Pobjoy J, Steidl S, Durr M, Braine EL, Turner AL, Lacey DC, Hamilton JA: Granulocyte-macrophage colony-stimulating factor is a key mediator in experimental osteoarthritis pain and disease development. Arthritis Res Ther 2012, 14: R199. 10.1186/ar4037PubMedCentralCrossRefPubMed Cook AD, Pobjoy J, Steidl S, Durr M, Braine EL, Turner AL, Lacey DC, Hamilton JA: Granulocyte-macrophage colony-stimulating factor is a key mediator in experimental osteoarthritis pain and disease development. Arthritis Res Ther 2012, 14: R199. 10.1186/ar4037PubMedCentralCrossRefPubMed
11.
go back to reference Leah E: Experimental arthritis: GM-CSF mediates pain and disease in a mouse model of osteoarthritis. Nat Rev Rheumatol 2012, 8: 634.CrossRefPubMed Leah E: Experimental arthritis: GM-CSF mediates pain and disease in a mouse model of osteoarthritis. Nat Rev Rheumatol 2012, 8: 634.CrossRefPubMed
12.
go back to reference Onuora S: Pain: granulocyte-macrophage colony-stimulating factor required for inflammatory and arthritic pain. Nat Rev Rheumatol 2012, 8: 499. 10.1038/nrrheum.2012.139CrossRefPubMed Onuora S: Pain: granulocyte-macrophage colony-stimulating factor required for inflammatory and arthritic pain. Nat Rev Rheumatol 2012, 8: 499. 10.1038/nrrheum.2012.139CrossRefPubMed
13.
go back to reference Rawlings JS, Rosler KM, Harrison DA: The JAK/STAT signaling pathway. J Cell Sci 2004, 117: 1281–1283. 10.1242/jcs.00963CrossRefPubMed Rawlings JS, Rosler KM, Harrison DA: The JAK/STAT signaling pathway. J Cell Sci 2004, 117: 1281–1283. 10.1242/jcs.00963CrossRefPubMed
14.
go back to reference Boyd TD, Bennett SP, Mori T, Governatori N, Runfeldt M, Norden M, Padmanabhan J, Neame P, Wefes I, Sanchez-Ramos J, et al.: GM-CSF upregulated in rheumatoid arthritis reverses cognitive impairment and amyloidosis in Alzheimer mice. J Alzheimers Dis 2010, 21: 507–518.PubMed Boyd TD, Bennett SP, Mori T, Governatori N, Runfeldt M, Norden M, Padmanabhan J, Neame P, Wefes I, Sanchez-Ramos J, et al.: GM-CSF upregulated in rheumatoid arthritis reverses cognitive impairment and amyloidosis in Alzheimer mice. J Alzheimers Dis 2010, 21: 507–518.PubMed
15.
go back to reference Cornish AL, Campbell IK, McKenzie BS, Chatfield S, Wicks IP: G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis. Nat Rev Rheumatol 2009, 5: 554–559. 10.1038/nrrheum.2009.178CrossRefPubMed Cornish AL, Campbell IK, McKenzie BS, Chatfield S, Wicks IP: G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis. Nat Rev Rheumatol 2009, 5: 554–559. 10.1038/nrrheum.2009.178CrossRefPubMed
16.
go back to reference Chudin E, Kruglyak S, Baker SC, Oeser S, Barker D, McDaniel TK: A model of technical variation of microarray signals. J Comput Biol 2006, 13: 996–1003. 10.1089/cmb.2006.13.996CrossRefPubMed Chudin E, Kruglyak S, Baker SC, Oeser S, Barker D, McDaniel TK: A model of technical variation of microarray signals. J Comput Biol 2006, 13: 996–1003. 10.1089/cmb.2006.13.996CrossRefPubMed
17.
go back to reference Fu WJ, Hu J, Spencer T, Carroll R, Wu G: Statistical models in assessing fold change of gene expression in real-time RT-PCR experiments. Comput Biol Chem 2006, 30: 21–26. 10.1016/j.compbiolchem.2005.10.005CrossRefPubMed Fu WJ, Hu J, Spencer T, Carroll R, Wu G: Statistical models in assessing fold change of gene expression in real-time RT-PCR experiments. Comput Biol Chem 2006, 30: 21–26. 10.1016/j.compbiolchem.2005.10.005CrossRefPubMed
18.
go back to reference Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19: 185–193. 10.1093/bioinformatics/19.2.185CrossRefPubMed Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19: 185–193. 10.1093/bioinformatics/19.2.185CrossRefPubMed
19.
go back to reference Simonetti M, Hagenston AM, Vardeh D, Freitag HE, Mauceri D, Lu J, Satagopam VP, Schneider R, Costigan M, Bading H, Kuner R: Nuclear calcium signaling in spinal neurons drives a genomic program required for persistent inflammatory pain. Neuron 2013, 77: 43–57. 10.1016/j.neuron.2012.10.037PubMedCentralCrossRefPubMed Simonetti M, Hagenston AM, Vardeh D, Freitag HE, Mauceri D, Lu J, Satagopam VP, Schneider R, Costigan M, Bading H, Kuner R: Nuclear calcium signaling in spinal neurons drives a genomic program required for persistent inflammatory pain. Neuron 2013, 77: 43–57. 10.1016/j.neuron.2012.10.037PubMedCentralCrossRefPubMed
20.
go back to reference Quick ML, Mukherjee S, Rudick CN, Done JD, Schaeffer AJ, Thumbikat P: CCL2 and CCL3 are essential mediators of pelvic pain in experimental autoimmune prostatitis. Am J Physiol Regul Integr Comp Physiol 2012, 303: R580-R589. 10.1152/ajpregu.00240.2012PubMedCentralCrossRefPubMed Quick ML, Mukherjee S, Rudick CN, Done JD, Schaeffer AJ, Thumbikat P: CCL2 and CCL3 are essential mediators of pelvic pain in experimental autoimmune prostatitis. Am J Physiol Regul Integr Comp Physiol 2012, 303: R580-R589. 10.1152/ajpregu.00240.2012PubMedCentralCrossRefPubMed
21.
go back to reference Zhang N, Rogers TJ, Caterina M, Oppenheim JJ: Proinflammatory chemokines, such as C-C chemokine ligand 3, desensitize mu-opioid receptors on dorsal root ganglia neurons. J Immunol 2004, 173: 594–599.CrossRefPubMed Zhang N, Rogers TJ, Caterina M, Oppenheim JJ: Proinflammatory chemokines, such as C-C chemokine ligand 3, desensitize mu-opioid receptors on dorsal root ganglia neurons. J Immunol 2004, 173: 594–599.CrossRefPubMed
22.
go back to reference Julius D, Basbaum AI: Molecular mechanisms of nociception. Nature 2001, 413: 203–210. 10.1038/35093019CrossRefPubMed Julius D, Basbaum AI: Molecular mechanisms of nociception. Nature 2001, 413: 203–210. 10.1038/35093019CrossRefPubMed
23.
go back to reference Tulleuda A, Cokic B, Callejo G, Saiani B, Serra J, Gasull X: TRESK channel contribution to nociceptive sensory neurons excitability: modulation by nerve injury. Mol Pain 2011, 7: 30. 10.1186/1744-8069-7-30PubMedCentralCrossRefPubMed Tulleuda A, Cokic B, Callejo G, Saiani B, Serra J, Gasull X: TRESK channel contribution to nociceptive sensory neurons excitability: modulation by nerve injury. Mol Pain 2011, 7: 30. 10.1186/1744-8069-7-30PubMedCentralCrossRefPubMed
24.
go back to reference Dong H, O’Brien RJ, Fung ET, Lanahan AA, Worley PF, Huganir RL: GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 1997, 386: 279–284. 10.1038/386279a0CrossRefPubMed Dong H, O’Brien RJ, Fung ET, Lanahan AA, Worley PF, Huganir RL: GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 1997, 386: 279–284. 10.1038/386279a0CrossRefPubMed
25.
go back to reference Tao YX: Dorsal horn alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking in inflammatory pain. Anesthesiology 2010, 112: 1259–1265. 10.1097/ALN.0b013e3181d3e1edPubMedCentralCrossRefPubMed Tao YX: Dorsal horn alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking in inflammatory pain. Anesthesiology 2010, 112: 1259–1265. 10.1097/ALN.0b013e3181d3e1edPubMedCentralCrossRefPubMed
26.
go back to reference Liou JT, Yuan HB, Mao CC, Lai YS, Day YJ: Absence of C-C motif chemokine ligand 5 in mice leads to decreased local macrophage recruitment and behavioral hypersensitivity in a murine neuropathic pain model. Pain 2012, 153: 1283–1291. 10.1016/j.pain.2012.03.008CrossRefPubMed Liou JT, Yuan HB, Mao CC, Lai YS, Day YJ: Absence of C-C motif chemokine ligand 5 in mice leads to decreased local macrophage recruitment and behavioral hypersensitivity in a murine neuropathic pain model. Pain 2012, 153: 1283–1291. 10.1016/j.pain.2012.03.008CrossRefPubMed
27.
go back to reference Catrina AI, Lampa J, Ernestam S, af Klint E, Bratt J, Klareskog L, Ulfgren AK: Anti-tumour necrosis factor (TNF)-alpha therapy (etanercept) down-regulates serum matrix metalloproteinase (MMP)-3 and MMP-1 in rheumatoid arthritis. Rheumatology (Oxford) 2002, 41: 484–489. 10.1093/rheumatology/41.5.484CrossRef Catrina AI, Lampa J, Ernestam S, af Klint E, Bratt J, Klareskog L, Ulfgren AK: Anti-tumour necrosis factor (TNF)-alpha therapy (etanercept) down-regulates serum matrix metalloproteinase (MMP)-3 and MMP-1 in rheumatoid arthritis. Rheumatology (Oxford) 2002, 41: 484–489. 10.1093/rheumatology/41.5.484CrossRef
28.
go back to reference Green MJ, Gough AK, Devlin J, Smith J, Astin P, Taylor D, Emery P: Serum MMP-3 and MMP-1 and progression of joint damage in early rheumatoid arthritis. Rheumatology (Oxford) 2003, 42: 83–88. 10.1093/rheumatology/keg037CrossRef Green MJ, Gough AK, Devlin J, Smith J, Astin P, Taylor D, Emery P: Serum MMP-3 and MMP-1 and progression of joint damage in early rheumatoid arthritis. Rheumatology (Oxford) 2003, 42: 83–88. 10.1093/rheumatology/keg037CrossRef
29.
go back to reference Ekins S, Nikolsky Y, Bugrim A, Kirillov E, Nikolskaya T: Pathway mapping tools for analysis of high content data. Methods Mol Biol 2007, 356: 319–350.PubMed Ekins S, Nikolsky Y, Bugrim A, Kirillov E, Nikolskaya T: Pathway mapping tools for analysis of high content data. Methods Mol Biol 2007, 356: 319–350.PubMed
30.
go back to reference Lee KM, Kang BS, Lee HL, Son SJ, Hwang SH, Kim DS, Park JS, Cho HJ: Spinal NF-kB activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity. Eur J Neurosci 2004, 19: 3375–3381. 10.1111/j.0953-816X.2004.03441.xCrossRefPubMed Lee KM, Kang BS, Lee HL, Son SJ, Hwang SH, Kim DS, Park JS, Cho HJ: Spinal NF-kB activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity. Eur J Neurosci 2004, 19: 3375–3381. 10.1111/j.0953-816X.2004.03441.xCrossRefPubMed
31.
go back to reference Tan AM, Stamboulian S, Chang YW, Zhao P, Hains AB, Waxman SG, Hains BC: Neuropathic pain memory is maintained by Rac1-regulated dendritic spine remodeling after spinal cord injury. J Neurosci 2008, 28: 13173–13183. 10.1523/JNEUROSCI.3142-08.2008CrossRefPubMed Tan AM, Stamboulian S, Chang YW, Zhao P, Hains AB, Waxman SG, Hains BC: Neuropathic pain memory is maintained by Rac1-regulated dendritic spine remodeling after spinal cord injury. J Neurosci 2008, 28: 13173–13183. 10.1523/JNEUROSCI.3142-08.2008CrossRefPubMed
32.
go back to reference Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y: Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 2004, 101: 7618–7623. 10.1073/pnas.0307512101PubMedCentralCrossRefPubMed Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y: Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 2004, 101: 7618–7623. 10.1073/pnas.0307512101PubMedCentralCrossRefPubMed
33.
go back to reference Chattopadhyay S, Myers RR, Janes J, Shubayev V: Cytokine regulation of MMP-9 in peripheral glia: implications for pathological processes and pain in injured nerve. Brain Behav Immun 2007, 21: 561–568. 10.1016/j.bbi.2006.10.015PubMedCentralCrossRefPubMed Chattopadhyay S, Myers RR, Janes J, Shubayev V: Cytokine regulation of MMP-9 in peripheral glia: implications for pathological processes and pain in injured nerve. Brain Behav Immun 2007, 21: 561–568. 10.1016/j.bbi.2006.10.015PubMedCentralCrossRefPubMed
34.
go back to reference Ji RR, Xu ZZ, Wang X, Lo EH: Matrix metalloprotease regulation of neuropathic pain. Trends Pharmacol Sci 2009, 30: 336–340. 10.1016/j.tips.2009.04.002PubMedCentralCrossRefPubMed Ji RR, Xu ZZ, Wang X, Lo EH: Matrix metalloprotease regulation of neuropathic pain. Trends Pharmacol Sci 2009, 30: 336–340. 10.1016/j.tips.2009.04.002PubMedCentralCrossRefPubMed
35.
go back to reference Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, Gao YJ, Roy K, Corfas G, Lo EH, Ji RR: Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med 2008, 14: 331–336. 10.1038/nm1723PubMedCentralCrossRefPubMed Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, Gao YJ, Roy K, Corfas G, Lo EH, Ji RR: Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med 2008, 14: 331–336. 10.1038/nm1723PubMedCentralCrossRefPubMed
36.
go back to reference Kular L, Rivat C, Lelongt B, Calmel C, Laurent M, Pohl M, Kitabgi P, Melik-Parsadaniantz S, Martinerie C: NOV/CCN3 attenuates inflammatory pain through regulation of matrix metalloproteinases-2 and −9. J Neuroinflammation 2012, 9: 36. 10.1186/1742-2094-9-36PubMedCentralCrossRefPubMed Kular L, Rivat C, Lelongt B, Calmel C, Laurent M, Pohl M, Kitabgi P, Melik-Parsadaniantz S, Martinerie C: NOV/CCN3 attenuates inflammatory pain through regulation of matrix metalloproteinases-2 and −9. J Neuroinflammation 2012, 9: 36. 10.1186/1742-2094-9-36PubMedCentralCrossRefPubMed
37.
go back to reference Kunz S, Niederberger E, Ehnert C, Coste O, Pfenninger A, Kruip J, Wendrich TM, Schmidtko A, Tegeder I, Geisslinger G: The calpain inhibitor MDL 28170 prevents inflammation-induced neurofilament light chain breakdown in the spinal cord and reduces thermal hyperalgesia. Pain 2004, 110: 409–418. 10.1016/j.pain.2004.04.031CrossRefPubMed Kunz S, Niederberger E, Ehnert C, Coste O, Pfenninger A, Kruip J, Wendrich TM, Schmidtko A, Tegeder I, Geisslinger G: The calpain inhibitor MDL 28170 prevents inflammation-induced neurofilament light chain breakdown in the spinal cord and reduces thermal hyperalgesia. Pain 2004, 110: 409–418. 10.1016/j.pain.2004.04.031CrossRefPubMed
38.
go back to reference Xie W, Uchida H, Nagai J, Ueda M, Chun J, Ueda H: Calpain-mediated down-regulation of myelin-associated glycoprotein in lysophosphatidic acid-induced neuropathic pain. J Neurochem 2010, 113: 1002–1011. 10.1111/j.1471-4159.2010.06664.xPubMedCentralCrossRefPubMed Xie W, Uchida H, Nagai J, Ueda M, Chun J, Ueda H: Calpain-mediated down-regulation of myelin-associated glycoprotein in lysophosphatidic acid-induced neuropathic pain. J Neurochem 2010, 113: 1002–1011. 10.1111/j.1471-4159.2010.06664.xPubMedCentralCrossRefPubMed
39.
go back to reference Abram SE, Yi J, Fuchs A, Hogan QH: Permeability of injured and intact peripheral nerves and dorsal root ganglia. Anesthesiology 2006, 105: 146–153. 10.1097/00000542-200607000-00024CrossRefPubMed Abram SE, Yi J, Fuchs A, Hogan QH: Permeability of injured and intact peripheral nerves and dorsal root ganglia. Anesthesiology 2006, 105: 146–153. 10.1097/00000542-200607000-00024CrossRefPubMed
40.
go back to reference Dogrul A, Gul H, Yesilyurt O, Ulas UH, Yildiz O: Systemic and spinal administration of etanercept, a tumor necrosis factor alpha inhibitor, blocks tactile allodynia in diabetic mice. Acta Diabetol 2011, 48: 135–142. 10.1007/s00592-010-0237-xCrossRefPubMed Dogrul A, Gul H, Yesilyurt O, Ulas UH, Yildiz O: Systemic and spinal administration of etanercept, a tumor necrosis factor alpha inhibitor, blocks tactile allodynia in diabetic mice. Acta Diabetol 2011, 48: 135–142. 10.1007/s00592-010-0237-xCrossRefPubMed
41.
go back to reference Shubayev VI, Myers RR: Anterograde TNF alpha transport from rat dorsal root ganglion to spinal cord and injured sciatic nerve. Neurosci Lett 2002, 320: 99–101. 10.1016/S0304-3940(02)00010-1CrossRefPubMed Shubayev VI, Myers RR: Anterograde TNF alpha transport from rat dorsal root ganglion to spinal cord and injured sciatic nerve. Neurosci Lett 2002, 320: 99–101. 10.1016/S0304-3940(02)00010-1CrossRefPubMed
42.
go back to reference Constantin CE, Mair N, Sailer CA, Andratsch M, Xu ZZ, Blumer MJ, Scherbakov N, Davis JB, Bluethmann H, Ji RR, Kress M: Endogenous tumor necrosis factor alpha (TNFalpha) requires TNF receptor type 2 to generate heat hyperalgesia in a mouse cancer model. J Neurosci 2008, 28: 5072–5081. 10.1523/JNEUROSCI.4476-07.2008CrossRefPubMed Constantin CE, Mair N, Sailer CA, Andratsch M, Xu ZZ, Blumer MJ, Scherbakov N, Davis JB, Bluethmann H, Ji RR, Kress M: Endogenous tumor necrosis factor alpha (TNFalpha) requires TNF receptor type 2 to generate heat hyperalgesia in a mouse cancer model. J Neurosci 2008, 28: 5072–5081. 10.1523/JNEUROSCI.4476-07.2008CrossRefPubMed
43.
go back to reference Sandborn WJ, Hanauer SB, Katz S, Safdi M, Wolf DG, Baerg RD, Tremaine WJ, Johnson T, Diehl NN, Zinsmeister AR: Etanercept for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 2001, 121: 1088–1094. 10.1053/gast.2001.28674CrossRefPubMed Sandborn WJ, Hanauer SB, Katz S, Safdi M, Wolf DG, Baerg RD, Tremaine WJ, Johnson T, Diehl NN, Zinsmeister AR: Etanercept for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 2001, 121: 1088–1094. 10.1053/gast.2001.28674CrossRefPubMed
44.
go back to reference Lovell DJ, Giannini EH, Reiff A, Cawkwell GD, Silverman ED, Nocton JJ, Stein LD, Gedalia A, Ilowite NT, Wallace CA, et al.: Etanercept in children with polyarticular juvenile rheumatoid arthritis. Pediatric Rheumatology Collaborative Study Group. N Engl J Med 2000, 342: 763–769. 10.1056/NEJM200003163421103CrossRefPubMed Lovell DJ, Giannini EH, Reiff A, Cawkwell GD, Silverman ED, Nocton JJ, Stein LD, Gedalia A, Ilowite NT, Wallace CA, et al.: Etanercept in children with polyarticular juvenile rheumatoid arthritis. Pediatric Rheumatology Collaborative Study Group. N Engl J Med 2000, 342: 763–769. 10.1056/NEJM200003163421103CrossRefPubMed
45.
go back to reference Cuellar JM, Montesano PX, Carstens E: Role of TNF-alpha in sensitization of nociceptive dorsal horn neurons induced by application of nucleus pulposus to L5 dorsal root ganglion in rats. Pain 2004, 110: 578–587. 10.1016/j.pain.2004.03.029CrossRefPubMed Cuellar JM, Montesano PX, Carstens E: Role of TNF-alpha in sensitization of nociceptive dorsal horn neurons induced by application of nucleus pulposus to L5 dorsal root ganglion in rats. Pain 2004, 110: 578–587. 10.1016/j.pain.2004.03.029CrossRefPubMed
46.
go back to reference Czeschik JC, Hagenacker T, Schafers M, Busselberg D: TNF-alpha differentially modulates ion channels of nociceptive neurons. Neurosci Lett 2008, 434: 293–298. 10.1016/j.neulet.2008.01.070CrossRefPubMed Czeschik JC, Hagenacker T, Schafers M, Busselberg D: TNF-alpha differentially modulates ion channels of nociceptive neurons. Neurosci Lett 2008, 434: 293–298. 10.1016/j.neulet.2008.01.070CrossRefPubMed
47.
go back to reference Erschbamer MK, Hofstetter CP, Olson L: RhoA, RhoB, RhoC, Rac1, Cdc42, and Tc10 mRNA levels in spinal cord, sensory ganglia, and corticospinal tract neurons and long-lasting specific changes following spinal cord injury. J Comp Neurol 2005, 484: 224–233. 10.1002/cne.20471CrossRefPubMed Erschbamer MK, Hofstetter CP, Olson L: RhoA, RhoB, RhoC, Rac1, Cdc42, and Tc10 mRNA levels in spinal cord, sensory ganglia, and corticospinal tract neurons and long-lasting specific changes following spinal cord injury. J Comp Neurol 2005, 484: 224–233. 10.1002/cne.20471CrossRefPubMed
48.
go back to reference Nakayama AY, Harms MB, Luo L: Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 2000, 20: 5329–5338.PubMed Nakayama AY, Harms MB, Luo L: Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 2000, 20: 5329–5338.PubMed
49.
go back to reference Tashiro A, Minden A, Yuste R: Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb Cortex 2000, 10: 927–938. 10.1093/cercor/10.10.927CrossRefPubMed Tashiro A, Minden A, Yuste R: Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb Cortex 2000, 10: 927–938. 10.1093/cercor/10.10.927CrossRefPubMed
50.
go back to reference Tashiro A, Yuste R: Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol Cell Neurosci 2004, 26: 429–440. 10.1016/j.mcn.2004.04.001CrossRefPubMed Tashiro A, Yuste R: Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol Cell Neurosci 2004, 26: 429–440. 10.1016/j.mcn.2004.04.001CrossRefPubMed
51.
go back to reference Woessner JF Jr: The family of matrix metalloproteinases. Ann N Y Acad Sci 1994, 732: 11–21. 10.1111/j.1749-6632.1994.tb24720.xCrossRefPubMed Woessner JF Jr: The family of matrix metalloproteinases. Ann N Y Acad Sci 1994, 732: 11–21. 10.1111/j.1749-6632.1994.tb24720.xCrossRefPubMed
52.
go back to reference Rosenberg GA: Matrix metalloproteinases in neuroinflammation. Glia 2002, 39: 279–291. 10.1002/glia.10108CrossRefPubMed Rosenberg GA: Matrix metalloproteinases in neuroinflammation. Glia 2002, 39: 279–291. 10.1002/glia.10108CrossRefPubMed
53.
go back to reference Parks WC, Wilson CL, Lopez-Boado YS: Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004, 4: 617–629. 10.1038/nri1418CrossRefPubMed Parks WC, Wilson CL, Lopez-Boado YS: Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004, 4: 617–629. 10.1038/nri1418CrossRefPubMed
54.
go back to reference Yong VW: Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 2005, 6: 931–944. 10.1038/nrn1807CrossRefPubMed Yong VW: Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 2005, 6: 931–944. 10.1038/nrn1807CrossRefPubMed
55.
go back to reference Demestre M, Wells GM, Miller KM, Smith KJ, Hughes RA, Gearing AJ, Gregson NA: Characterisation of matrix metalloproteinases and the effects of a broad-spectrum inhibitor (BB-1101) in peripheral nerve regeneration. Neuroscience 2004, 124: 767–779. 10.1016/j.neuroscience.2003.12.037CrossRefPubMed Demestre M, Wells GM, Miller KM, Smith KJ, Hughes RA, Gearing AJ, Gregson NA: Characterisation of matrix metalloproteinases and the effects of a broad-spectrum inhibitor (BB-1101) in peripheral nerve regeneration. Neuroscience 2004, 124: 767–779. 10.1016/j.neuroscience.2003.12.037CrossRefPubMed
56.
go back to reference Leppert D, Ford J, Stabler G, Grygar C, Lienert C, Huber S, Miller KM, Hauser SL, Kappos L: Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis. Brain 1998, 121(Pt 12):2327–2334.CrossRefPubMed Leppert D, Ford J, Stabler G, Grygar C, Lienert C, Huber S, Miller KM, Hauser SL, Kappos L: Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis. Brain 1998, 121(Pt 12):2327–2334.CrossRefPubMed
57.
go back to reference Li G, Iyengar R: Calpain as an effector of the Gq signaling pathway for inhibition of Wnt/beta -catenin-regulated cell proliferation. Proc Natl Acad Sci USA 2002, 99: 13254–13259. 10.1073/pnas.202355799PubMedCentralCrossRefPubMed Li G, Iyengar R: Calpain as an effector of the Gq signaling pathway for inhibition of Wnt/beta -catenin-regulated cell proliferation. Proc Natl Acad Sci USA 2002, 99: 13254–13259. 10.1073/pnas.202355799PubMedCentralCrossRefPubMed
58.
go back to reference Neumar RW, Xu YA, Gada H, Guttmann RP, Siman R: Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. J Biol Chem 2003, 278: 14162–14167. 10.1074/jbc.M212255200CrossRefPubMed Neumar RW, Xu YA, Gada H, Guttmann RP, Siman R: Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. J Biol Chem 2003, 278: 14162–14167. 10.1074/jbc.M212255200CrossRefPubMed
59.
go back to reference Saito Y, Saido TC, Sano K, Kawashima S: The calpain-calpastatin system is regulated differently during human neuroblastoma cell differentiation to Schwannian and neuronal cells. FEBS Lett 1994, 353: 327–331. 10.1016/0014-5793(94)01075-7CrossRefPubMed Saito Y, Saido TC, Sano K, Kawashima S: The calpain-calpastatin system is regulated differently during human neuroblastoma cell differentiation to Schwannian and neuronal cells. FEBS Lett 1994, 353: 327–331. 10.1016/0014-5793(94)01075-7CrossRefPubMed
60.
go back to reference Vanderklish PW, Krushel LA, Holst BH, Gally JA, Crossin KL, Edelman GM: Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer. Proc Natl Acad Sci USA 2000, 97: 2253–2258. 10.1073/pnas.040565597PubMedCentralCrossRefPubMed Vanderklish PW, Krushel LA, Holst BH, Gally JA, Crossin KL, Edelman GM: Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer. Proc Natl Acad Sci USA 2000, 97: 2253–2258. 10.1073/pnas.040565597PubMedCentralCrossRefPubMed
61.
go back to reference Chera B, Schaecher KE, Rocchini A, Imam SZ, Ray SK, Ali SF, Banik NL: Calpain upregulation and neuron death in spinal cord of MPTP-induced parkinsonism in mice. Ann N Y Acad Sci 2002, 965: 274–280.CrossRefPubMed Chera B, Schaecher KE, Rocchini A, Imam SZ, Ray SK, Ali SF, Banik NL: Calpain upregulation and neuron death in spinal cord of MPTP-induced parkinsonism in mice. Ann N Y Acad Sci 2002, 965: 274–280.CrossRefPubMed
62.
go back to reference Baliova M, Betz H, Jursky F: Calpain-mediated proteolytic cleavage of the neuronal glycine transporter, GlyT2. J Neurochem 2004, 88: 227–232.CrossRefPubMed Baliova M, Betz H, Jursky F: Calpain-mediated proteolytic cleavage of the neuronal glycine transporter, GlyT2. J Neurochem 2004, 88: 227–232.CrossRefPubMed
63.
go back to reference Chan SL, Mattson MP: Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res 1999, 58: 167–190. 10.1002/(SICI)1097-4547(19991001)58:1<167::AID-JNR16>3.0.CO;2-KCrossRefPubMed Chan SL, Mattson MP: Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res 1999, 58: 167–190. 10.1002/(SICI)1097-4547(19991001)58:1<167::AID-JNR16>3.0.CO;2-KCrossRefPubMed
64.
go back to reference Banik NL, Matzelle D, Gantt-Wilford G, Hogan EL: Role of calpain and its inhibitors in tissue degeneration and neuroprotection in spinal cord injury. Ann N Y Acad Sci 1997, 825: 120–127. 10.1111/j.1749-6632.1997.tb48421.xCrossRefPubMed Banik NL, Matzelle D, Gantt-Wilford G, Hogan EL: Role of calpain and its inhibitors in tissue degeneration and neuroprotection in spinal cord injury. Ann N Y Acad Sci 1997, 825: 120–127. 10.1111/j.1749-6632.1997.tb48421.xCrossRefPubMed
65.
go back to reference Kampfl A, Posmantur RM, Zhao X, Schmutzhard E, Clifton GL, Hayes RL: Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy: implications for pathology and therapy: a review and update. J Neurotrauma 1997, 14: 121–134. 10.1089/neu.1997.14.121CrossRefPubMed Kampfl A, Posmantur RM, Zhao X, Schmutzhard E, Clifton GL, Hayes RL: Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy: implications for pathology and therapy: a review and update. J Neurotrauma 1997, 14: 121–134. 10.1089/neu.1997.14.121CrossRefPubMed
66.
go back to reference Shields DC, Banik NL: Putative role of calpain in the pathophysiology of experimental optic neuritis. Exp Eye Res 1998, 67: 403–410. 10.1006/exer.1998.0537CrossRefPubMed Shields DC, Banik NL: Putative role of calpain in the pathophysiology of experimental optic neuritis. Exp Eye Res 1998, 67: 403–410. 10.1006/exer.1998.0537CrossRefPubMed
68.
go back to reference Zheng W, Ouyang H, Zheng X, Liu S, Mata M, Fink DJ, Hao S: Glial TNFalpha in the spinal cord regulates neuropathic pain induced by HIV gp120 application in rats. Mol Pain 2011, 7: 40. 10.1186/1744-8069-7-40PubMedCentralCrossRefPubMed Zheng W, Ouyang H, Zheng X, Liu S, Mata M, Fink DJ, Hao S: Glial TNFalpha in the spinal cord regulates neuropathic pain induced by HIV gp120 application in rats. Mol Pain 2011, 7: 40. 10.1186/1744-8069-7-40PubMedCentralCrossRefPubMed
69.
go back to reference Niederberger E, Geisslinger G: The IKK-NF-kappaB pathway: a source for novel molecular drug targets in pain therapy? FASEB J 2008, 22: 3432–3442. 10.1096/fj.08-109355CrossRefPubMed Niederberger E, Geisslinger G: The IKK-NF-kappaB pathway: a source for novel molecular drug targets in pain therapy? FASEB J 2008, 22: 3432–3442. 10.1096/fj.08-109355CrossRefPubMed
70.
go back to reference Fernyhough P, Smith DR, Schapansky J, Van Der Ploeg R, Gardiner NJ, Tweed CW, Kontos A, Freeman L, Purves-Tyson TD, Glazner GW: Activation of nuclear factor-kappaB via endogenous tumor necrosis factor alpha regulates survival of axotomized adult sensory neurons. J Neurosci 2005, 25: 1682–1690. 10.1523/JNEUROSCI.3127-04.2005CrossRefPubMed Fernyhough P, Smith DR, Schapansky J, Van Der Ploeg R, Gardiner NJ, Tweed CW, Kontos A, Freeman L, Purves-Tyson TD, Glazner GW: Activation of nuclear factor-kappaB via endogenous tumor necrosis factor alpha regulates survival of axotomized adult sensory neurons. J Neurosci 2005, 25: 1682–1690. 10.1523/JNEUROSCI.3127-04.2005CrossRefPubMed
71.
go back to reference Pollock G, Pennypacker KR, Memet S, Israel A, Saporta S: Activation of NF-kappaB in the mouse spinal cord following sciatic nerve transection. Exp Brain Res 2005, 165: 470–477. 10.1007/s00221-005-2318-6CrossRefPubMed Pollock G, Pennypacker KR, Memet S, Israel A, Saporta S: Activation of NF-kappaB in the mouse spinal cord following sciatic nerve transection. Exp Brain Res 2005, 165: 470–477. 10.1007/s00221-005-2318-6CrossRefPubMed
72.
go back to reference Kanngiesser M, Haussler A, Myrczek T, Kusener N, Lim HY, Geisslinger G, Niederberger E, Tegeder I: Inhibitor kappa B kinase beta dependent cytokine upregulation in nociceptive neurons contributes to nociceptive hypersensitivity after sciatic nerve injury. J Pain 2012, 13: 485–497. 10.1016/j.jpain.2012.02.010CrossRefPubMed Kanngiesser M, Haussler A, Myrczek T, Kusener N, Lim HY, Geisslinger G, Niederberger E, Tegeder I: Inhibitor kappa B kinase beta dependent cytokine upregulation in nociceptive neurons contributes to nociceptive hypersensitivity after sciatic nerve injury. J Pain 2012, 13: 485–497. 10.1016/j.jpain.2012.02.010CrossRefPubMed
73.
go back to reference Degterev A, Boyce M, Yuan J: A decade of caspases. Oncogene 2003, 22: 8543–8567. 10.1038/sj.onc.1207107CrossRefPubMed Degterev A, Boyce M, Yuan J: A decade of caspases. Oncogene 2003, 22: 8543–8567. 10.1038/sj.onc.1207107CrossRefPubMed
74.
go back to reference Ferri KF, Kroemer G: Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001, 3: E255-E263. 10.1038/ncb1101-e255CrossRefPubMed Ferri KF, Kroemer G: Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001, 3: E255-E263. 10.1038/ncb1101-e255CrossRefPubMed
75.
go back to reference Moore JD, Rothwell NJ, Gibson RM: Involvement of caspases and calpains in cerebrocortical neuronal cell death is stimulus-dependent. Br J Pharmacol 2002, 135: 1069–1077. 10.1038/sj.bjp.0704538PubMedCentralCrossRefPubMed Moore JD, Rothwell NJ, Gibson RM: Involvement of caspases and calpains in cerebrocortical neuronal cell death is stimulus-dependent. Br J Pharmacol 2002, 135: 1069–1077. 10.1038/sj.bjp.0704538PubMedCentralCrossRefPubMed
76.
go back to reference Sugimoto T, Bennett GJ, Kajander KC: Transsynaptic degeneration in the superficial dorsal horn after sciatic nerve injury: effects of a chronic constriction injury, transection, and strychnine. Pain 1990, 42: 205–213. 10.1016/0304-3959(90)91164-ECrossRefPubMed Sugimoto T, Bennett GJ, Kajander KC: Transsynaptic degeneration in the superficial dorsal horn after sciatic nerve injury: effects of a chronic constriction injury, transection, and strychnine. Pain 1990, 42: 205–213. 10.1016/0304-3959(90)91164-ECrossRefPubMed
77.
go back to reference Whiteside GT, Munglani R: Cell death in the superficial dorsal horn in a model of neuropathic pain. J Neurosci Res 2001, 64: 168–173. 10.1002/jnr.1062CrossRefPubMed Whiteside GT, Munglani R: Cell death in the superficial dorsal horn in a model of neuropathic pain. J Neurosci Res 2001, 64: 168–173. 10.1002/jnr.1062CrossRefPubMed
78.
go back to reference Scholz J, Broom DC, Youn DH, Mills CD, Kohno T, Suter MR, Moore KA, Decosterd I, Coggeshall RE, Woolf CJ: Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci 2005, 25: 7317–7323. 10.1523/JNEUROSCI.1526-05.2005CrossRefPubMed Scholz J, Broom DC, Youn DH, Mills CD, Kohno T, Suter MR, Moore KA, Decosterd I, Coggeshall RE, Woolf CJ: Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci 2005, 25: 7317–7323. 10.1523/JNEUROSCI.1526-05.2005CrossRefPubMed
79.
go back to reference Joseph EK, Levine JD: Caspase signalling in neuropathic and inflammatory pain in the rat. Eur J Neurosci 2004, 20: 2896–2902. 10.1111/j.1460-9568.2004.03750.xCrossRefPubMed Joseph EK, Levine JD: Caspase signalling in neuropathic and inflammatory pain in the rat. Eur J Neurosci 2004, 20: 2896–2902. 10.1111/j.1460-9568.2004.03750.xCrossRefPubMed
Metadata
Title
Transcriptional mechanisms underlying sensitization of peripheral sensory neurons by Granulocyte-/Granulocyte-macrophage colony stimulating factors
Authors
Kiran Kumar Bali
Varun Venkataramani
Venkata P Satagopam
Pooja Gupta
Reinhard Schneider
Rohini Kuner
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2013
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-9-48

Other articles of this Issue 1/2013

Molecular Pain 1/2013 Go to the issue