Skip to main content
Top
Published in: Molecular Pain 1/2008

Open Access 01-12-2008 | Review

Molecular and cellular limits to somatosensory specificity

Authors: Carlos Belmonte, Félix Viana

Published in: Molecular Pain | Issue 1/2008

Login to get access

Abstract

Animals detect environmental changes through sensory neural mechanisms that enable them to differentiate the quality, intensity and temporal characteristics of stimuli. The 'doctrine of specific nervous energies' postulates that the different sensory modalities experienced by humans result of the activation of specific nervous pathways. Identification of functional classes of sensory receptors provided scientific support to the concept that somatosensory modalities (touch, pain, temperature, kinesthesis) are subserved by separate populations of sensory receptor neurons specialized in detecting innocuous and injurious stimuli of different quality (mechanical forces, temperature, chemical compounds). The identification of receptor proteins activated by different physicochemical stimuli, in particular ion channels of the Transient Receptor Potential (TRP) superfamily, has put forward the concept that specificity of peripheral sensory receptor neurons is determined by their expression of a particular "molecular sensor" that confers to each functional type its selectivity to respond with a discharge of nerve impulses to stimuli of a given quality. Nonetheless, recent experimental data suggest that the various molecular sensors proposed as specific transducer molecules for stimuli of different quality are not as neatly associated with the distinct functional types of sensory receptors as originally proposed. First, many ion channel molecules initially associated to the transduction of only one particular form of energy are also activated by stimuli of different quality, implying a limited degree of specificity in their transducing capacities. Second, molecular sensors associated with a stimulus quality and hence to a sensory receptor type and ultimately to a sensory modality may be concomitantly expressed in sensory receptor neurons functionally defined as specific for another stimulus quality. Finally, activation of voltage gated channels involved primarily in nerve impulse generation can also influence the gating of transducing channels, dramatically modifying their activation profile. Thus, we propose that the capacity exhibited by the different functional types of somatosensory receptor neurons to preferentially detect and encode specific stimuli into a discharge of nerve impulses, appears to result of a characteristic combinatorial expression of different ion channels in each neuronal type that finally determines their transduction and impulse firing properties. Transduction channels don't operate in isolation and their cellular context should also be taken into consideration to fully understand their function. Moreover, the inhomogeneous distribution of transduction and voltage-gated channels at soma, axonal branches and peripheral endings of primary sensory neurons influences the characteristics of the propagated impulse discharge that encodes the properties of the stimulus. Alteration of this concerted operation of ion channels in pathological conditions may underlie the changes in excitability accompanying peripheral sensory neuron injuries.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fain GL: Sensory Transduction. Volume 1. Sunderland, MA, USA, Sinauer Associates Inc; 2003:1–340. Fain GL: Sensory Transduction. Volume 1. Sunderland, MA, USA, Sinauer Associates Inc; 2003:1–340.
2.
go back to reference Lumpkin EA, Caterina MJ: Mechanisms of sensory transduction in the skin. Nature 2007, 445(7130):858–865. 10.1038/nature05662PubMedCrossRef Lumpkin EA, Caterina MJ: Mechanisms of sensory transduction in the skin. Nature 2007, 445(7130):858–865. 10.1038/nature05662PubMedCrossRef
3.
go back to reference Julius D, Basbaum AI: Molecular mechanisms of nociception. Nature 2001, 413(6852):203–210. 10.1038/35093019PubMedCrossRef Julius D, Basbaum AI: Molecular mechanisms of nociception. Nature 2001, 413(6852):203–210. 10.1038/35093019PubMedCrossRef
4.
go back to reference Norrsell U, Finger S, Lajonchere C: Cutaneous sensory spots and the "law of specific nerve energies": history and development of ideas. Brain Res Bull 1999, 48(5):457–465. 10.1016/S0361-9230(98)00067-7PubMedCrossRef Norrsell U, Finger S, Lajonchere C: Cutaneous sensory spots and the "law of specific nerve energies": history and development of ideas. Brain Res Bull 1999, 48(5):457–465. 10.1016/S0361-9230(98)00067-7PubMedCrossRef
5.
go back to reference Goldscheider A: Physiologie der Hautsinnesnerven. Leipzig, Johann Ambrosius Barth; 1898:1–432. Goldscheider A: Physiologie der Hautsinnesnerven. Leipzig, Johann Ambrosius Barth; 1898:1–432.
6.
go back to reference Von Frey M: Untersuchungen über die Sinnesfunktionen der menschlichen Haut: Druckempfindung un Schmerz. Hirzel, S. Sensory Transduction. Leipzig 1896. Von Frey M: Untersuchungen über die Sinnesfunktionen der menschlichen Haut: Druckempfindung un Schmerz. Hirzel, S. Sensory Transduction. Leipzig 1896.
7.
go back to reference Weddell G, Pallie W, Palmer E: Studies on the innervation of skin. I. The origin, course and number of sensory nerves supplying the rabbit ear. J Anat 1955, 89(2):162–174.PubMedCentralPubMed Weddell G, Pallie W, Palmer E: Studies on the innervation of skin. I. The origin, course and number of sensory nerves supplying the rabbit ear. J Anat 1955, 89(2):162–174.PubMedCentralPubMed
8.
go back to reference Adrian ED: The basis of sensation. In Sensory Transduction. London, Christophers; 1928:1–122. Adrian ED: The basis of sensation. In Sensory Transduction. London, Christophers; 1928:1–122.
10.
go back to reference Mountcastle VB: Physiology of sensory receptors: introduction to sensory processes. In Mountcastle, V. B. Medical Physiology. St. Louis, Mosby; 1968:1345–1371. Mountcastle VB: Physiology of sensory receptors: introduction to sensory processes. In Mountcastle, V. B. Medical Physiology. St. Louis, Mosby; 1968:1345–1371.
11.
go back to reference Perl ER: Cutaneous polymodal receptors: characteristics and plasticity. Prog Brain Res 1996, 113: 21–37.PubMedCrossRef Perl ER: Cutaneous polymodal receptors: characteristics and plasticity. Prog Brain Res 1996, 113: 21–37.PubMedCrossRef
12.
go back to reference Schaible HG, Schmidt RF: Responses of fine medial articular nerve afferents to passive movements of knee joints. Journal of Neurophysiology 1983, 49(5):1118–1126.PubMed Schaible HG, Schmidt RF: Responses of fine medial articular nerve afferents to passive movements of knee joints. Journal of Neurophysiology 1983, 49(5):1118–1126.PubMed
13.
go back to reference Shepherd GM: Sensory transduction: entering the mainstream of membrane signaling. Cell 1991, 67(5):845–851. 10.1016/0092-8674(91)90358-6PubMedCrossRef Shepherd GM: Sensory transduction: entering the mainstream of membrane signaling. Cell 1991, 67(5):845–851. 10.1016/0092-8674(91)90358-6PubMedCrossRef
14.
go back to reference Belmonte C, Gallar J, Pozo MA, Rebollo I: Excitation by irritant chemical substances of sensory afferent units in the cat's cornea. J Physiol 1991, 437: 709–725.PubMedCentralPubMedCrossRef Belmonte C, Gallar J, Pozo MA, Rebollo I: Excitation by irritant chemical substances of sensory afferent units in the cat's cornea. J Physiol 1991, 437: 709–725.PubMedCentralPubMedCrossRef
15.
go back to reference Cesare P, McNaughton P: A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc Natl Acad Sci USA 1996, 93(26):15435–15439. 10.1073/pnas.93.26.15435PubMedCentralPubMedCrossRef Cesare P, McNaughton P: A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc Natl Acad Sci USA 1996, 93(26):15435–15439. 10.1073/pnas.93.26.15435PubMedCentralPubMedCrossRef
16.
go back to reference Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D: The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389(6653):816–824. 10.1038/39807PubMedCrossRef Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D: The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389(6653):816–824. 10.1038/39807PubMedCrossRef
17.
go back to reference Montell C: The TRP superfamily of cation channels. Sci STKE 2005, 2005(272):re3. 10.1126/stke.2722005re3PubMed Montell C: The TRP superfamily of cation channels. Sci STKE 2005, 2005(272):re3. 10.1126/stke.2722005re3PubMed
18.
go back to reference Jordt SE, Julius D: Molecular basis for species-specific sensitivity to "hot" chili peppers. Cell 2002, 108(3):421–430. 10.1016/S0092-8674(02)00637-2PubMedCrossRef Jordt SE, Julius D: Molecular basis for species-specific sensitivity to "hot" chili peppers. Cell 2002, 108(3):421–430. 10.1016/S0092-8674(02)00637-2PubMedCrossRef
19.
go back to reference Szolcsanyi J: Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides 2004, 38(6):377–384. 10.1016/j.npep.2004.07.005PubMedCrossRef Szolcsanyi J: Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides 2004, 38(6):377–384. 10.1016/j.npep.2004.07.005PubMedCrossRef
20.
go back to reference Szolcsanyi J: A pharmacological approach to elucidation of the role of different nerve fibres and receptor endings in mediation of pain. J Physiol (Paris) 1977, 73(3):251–259. Szolcsanyi J: A pharmacological approach to elucidation of the role of different nerve fibres and receptor endings in mediation of pain. J Physiol (Paris) 1977, 73(3):251–259.
21.
go back to reference Tominaga M, Tominaga T: Structure and function of TRPV1. Pflugers Arch 2005. Tominaga M, Tominaga T: Structure and function of TRPV1. Pflugers Arch 2005.
22.
go back to reference Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D: The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998, 21(3):531–543. 10.1016/S0896-6273(00)80564-4PubMedCrossRef Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D: The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998, 21(3):531–543. 10.1016/S0896-6273(00)80564-4PubMedCrossRef
23.
go back to reference Planells-Cases R, Garcia-Sanz N, Morenilla-Palao C, Ferrer-Montiel A: Functional aspects and mechanisms of TRPV1 involvement in neurogenic inflammation that leads to thermal hyperalgesia. Pflugers Arch 2005, 451(1):151–159. 10.1007/s00424-005-1423-5PubMedCrossRef Planells-Cases R, Garcia-Sanz N, Morenilla-Palao C, Ferrer-Montiel A: Functional aspects and mechanisms of TRPV1 involvement in neurogenic inflammation that leads to thermal hyperalgesia. Pflugers Arch 2005, 451(1):151–159. 10.1007/s00424-005-1423-5PubMedCrossRef
24.
go back to reference Di M V, Blumberg PM, Szallasi A: Endovanilloid signaling in pain. Curr Opin Neurobiol 2002, 12(4):372–379. 10.1016/S0959-4388(02)00340-9CrossRef Di M V, Blumberg PM, Szallasi A: Endovanilloid signaling in pain. Curr Opin Neurobiol 2002, 12(4):372–379. 10.1016/S0959-4388(02)00340-9CrossRef
25.
go back to reference Zhang X, Huang J, McNaughton PA: NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J 2005, 24(24):4211–4223. 10.1038/sj.emboj.7600893PubMedCentralPubMedCrossRef Zhang X, Huang J, McNaughton PA: NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J 2005, 24(24):4211–4223. 10.1038/sj.emboj.7600893PubMedCentralPubMedCrossRef
26.
go back to reference Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di M V, Julius D, Hogestatt ED: Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 1999, 400(6743):452–457. 10.1038/22761PubMedCrossRef Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di M V, Julius D, Hogestatt ED: Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 1999, 400(6743):452–457. 10.1038/22761PubMedCrossRef
27.
go back to reference Bhave G, Gereau RW: Posttranslational mechanisms of peripheral sensitization. J Neurobiol 2004, 61(1):88–106. 10.1002/neu.20083PubMedCrossRef Bhave G, Gereau RW: Posttranslational mechanisms of peripheral sensitization. J Neurobiol 2004, 61(1):88–106. 10.1002/neu.20083PubMedCrossRef
28.
go back to reference Szallasi A, Cortright DN, Blum CA, Eid SR: The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 2007, 6(5):357–372. 10.1038/nrd2280PubMedCrossRef Szallasi A, Cortright DN, Blum CA, Eid SR: The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 2007, 6(5):357–372. 10.1038/nrd2280PubMedCrossRef
29.
go back to reference Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D: A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 1999, 398(6726):436–441. 10.1038/18906PubMedCrossRef Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D: A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 1999, 398(6726):436–441. 10.1038/18906PubMedCrossRef
30.
go back to reference Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M: Heat-evoked activation of the ion channel, TRPV4. J Neurosci 2002, 22(15):6408–6414.PubMed Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M: Heat-evoked activation of the ion channel, TRPV4. J Neurosci 2002, 22(15):6408–6414.PubMed
31.
go back to reference McKemy DD, Neuhausser WM, Julius D: Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002, 416(6876):52–58. 10.1038/nature719PubMedCrossRef McKemy DD, Neuhausser WM, Julius D: Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002, 416(6876):52–58. 10.1038/nature719PubMedCrossRef
32.
go back to reference Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A: ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 2003, 112(6):819–829. 10.1016/S0092-8674(03)00158-2PubMedCrossRef Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A: ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 2003, 112(6):819–829. 10.1016/S0092-8674(03)00158-2PubMedCrossRef
33.
go back to reference Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A: A TRP channel that senses cold stimuli and menthol. Cell 2002, 108(5):705–715. 10.1016/S0092-8674(02)00652-9PubMedCrossRef Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A: A TRP channel that senses cold stimuli and menthol. Cell 2002, 108(5):705–715. 10.1016/S0092-8674(02)00652-9PubMedCrossRef
34.
go back to reference Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE: TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 2002, 418(6894):181–186. 10.1038/nature00882PubMedCrossRef Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE: TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 2002, 418(6894):181–186. 10.1038/nature00882PubMedCrossRef
35.
go back to reference Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L, Egerton J, Charles KJ, Smart D, Randall AD, Anand P, Davis JB: TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 2002, 418(6894):186–190. 10.1038/nature00894PubMedCrossRef Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L, Egerton J, Charles KJ, Smart D, Randall AD, Anand P, Davis JB: TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 2002, 418(6894):186–190. 10.1038/nature00894PubMedCrossRef
36.
go back to reference Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B: Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 2002, 277(49):47044–47051. 10.1074/jbc.M208277200PubMedCrossRef Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B: Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 2002, 277(49):47044–47051. 10.1074/jbc.M208277200PubMedCrossRef
37.
go back to reference Benham CD, Gunthorpe MJ, Davis JB: TRPV channels as temperature sensors. Cell Calcium 2003, 33(5–6):479–487. 10.1016/S0143-4160(03)00063-0PubMedCrossRef Benham CD, Gunthorpe MJ, Davis JB: TRPV channels as temperature sensors. Cell Calcium 2003, 33(5–6):479–487. 10.1016/S0143-4160(03)00063-0PubMedCrossRef
38.
go back to reference Jordt SE, McKemy DD, Julius D: Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr Opin Neurobiol 2003, 13(4):487–492. 10.1016/S0959-4388(03)00101-6PubMedCrossRef Jordt SE, McKemy DD, Julius D: Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr Opin Neurobiol 2003, 13(4):487–492. 10.1016/S0959-4388(03)00101-6PubMedCrossRef
40.
go back to reference Patapoutian A, Peier AM, Story GM, Viswanath V: ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 2003, 4(7):529–539. 10.1038/nrn1141PubMedCrossRef Patapoutian A, Peier AM, Story GM, Viswanath V: ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 2003, 4(7):529–539. 10.1038/nrn1141PubMedCrossRef
41.
go back to reference Reid G: ThermoTRP channels and cold sensing: what are they really up to? Pflugers Arch 2005, 451(1):250–263. 10.1007/s00424-005-1437-zPubMedCrossRef Reid G: ThermoTRP channels and cold sensing: what are they really up to? Pflugers Arch 2005, 451(1):250–263. 10.1007/s00424-005-1437-zPubMedCrossRef
42.
43.
go back to reference Caterina MJ: Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am J Physiol Regul Integr Comp Physiol 2007, 292(1):R64-R76.PubMedCrossRef Caterina MJ: Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am J Physiol Regul Integr Comp Physiol 2007, 292(1):R64-R76.PubMedCrossRef
44.
go back to reference Dhaka A, Viswanath V, Patapoutian A: Trp ion channels and temperature sensation. Annu Rev Neurosci 2006, 29: 135–161. 10.1146/annurev.neuro.29.051605.112958PubMedCrossRef Dhaka A, Viswanath V, Patapoutian A: Trp ion channels and temperature sensation. Annu Rev Neurosci 2006, 29: 135–161. 10.1146/annurev.neuro.29.051605.112958PubMedCrossRef
45.
go back to reference Reid G, Babes A, Pluteanu F: A cold- and menthol-activated current in rat dorsal root ganglion neurones: properties and role in cold transduction. J Physiol 2002, 545(Pt 2):595–614. 10.1113/jphysiol.2002.024331PubMedCentralPubMedCrossRef Reid G, Babes A, Pluteanu F: A cold- and menthol-activated current in rat dorsal root ganglion neurones: properties and role in cold transduction. J Physiol 2002, 545(Pt 2):595–614. 10.1113/jphysiol.2002.024331PubMedCentralPubMedCrossRef
46.
go back to reference Okazawa M, Takao K, Hori A, Shiraki T, Matsumura K, Kobayashi S: Ionic basis of cold receptors acting as thermostats. J Neurosci 2002, 22(10):3994–4001.PubMed Okazawa M, Takao K, Hori A, Shiraki T, Matsumura K, Kobayashi S: Ionic basis of cold receptors acting as thermostats. J Neurosci 2002, 22(10):3994–4001.PubMed
47.
go back to reference Madrid R, Donovan-Rodriguez T, Meseguer V, Acosta MC, Belmonte C, Viana F: Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals. J Neurosci 2006, 26(48):12512–12525. 10.1523/JNEUROSCI.3752-06.2006PubMedCrossRef Madrid R, Donovan-Rodriguez T, Meseguer V, Acosta MC, Belmonte C, Viana F: Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals. J Neurosci 2006, 26(48):12512–12525. 10.1523/JNEUROSCI.3752-06.2006PubMedCrossRef
48.
go back to reference Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A: TRPM8 Is Required for Cold Sensation in Mice. Neuron 2007, 54(3):371–378. 10.1016/j.neuron.2007.02.024PubMedCrossRef Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A: TRPM8 Is Required for Cold Sensation in Mice. Neuron 2007, 54(3):371–378. 10.1016/j.neuron.2007.02.024PubMedCrossRef
49.
go back to reference Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D: The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007, 448(7150):204–208. 10.1038/nature05910PubMedCrossRef Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D: The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007, 448(7150):204–208. 10.1038/nature05910PubMedCrossRef
50.
go back to reference Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D'Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N: Attenuated Cold Sensitivity in TRPM8 Null Mice. Neuron 2007, 54(3):379–386. 10.1016/j.neuron.2007.04.017PubMedCrossRef Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D'Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N: Attenuated Cold Sensitivity in TRPM8 Null Mice. Neuron 2007, 54(3):379–386. 10.1016/j.neuron.2007.04.017PubMedCrossRef
51.
go back to reference Lewin GR, Moshourab R: Mechanosensation and pain. J Neurobiol 2004, 61(1):30–44. 10.1002/neu.20078PubMedCrossRef Lewin GR, Moshourab R: Mechanosensation and pain. J Neurobiol 2004, 61(1):30–44. 10.1002/neu.20078PubMedCrossRef
52.
go back to reference Lin SY, Corey DP: TRP channels in mechanosensation. Curr Opin Neurobiol 2005, 15(3):350–357. 10.1016/j.conb.2005.05.012PubMedCrossRef Lin SY, Corey DP: TRP channels in mechanosensation. Curr Opin Neurobiol 2005, 15(3):350–357. 10.1016/j.conb.2005.05.012PubMedCrossRef
53.
go back to reference Kellenberger S, Schild L: Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 2002, 82(3):735–767.PubMedCrossRef Kellenberger S, Schild L: Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 2002, 82(3):735–767.PubMedCrossRef
54.
go back to reference Kim D: Physiology and pharmacology of two-pore domain potassium channels. Curr Pharm Des 2005, 11(21):2717–2736. 10.2174/1381612054546824PubMedCrossRef Kim D: Physiology and pharmacology of two-pore domain potassium channels. Curr Pharm Des 2005, 11(21):2717–2736. 10.2174/1381612054546824PubMedCrossRef
55.
go back to reference Lesage F, Lazdunski M: Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 2000, 279(5):F793-F801.PubMed Lesage F, Lazdunski M: Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 2000, 279(5):F793-F801.PubMed
56.
go back to reference Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford AP: Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 2000, 407(6807):1011–1015. 10.1038/35039519PubMedCrossRef Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford AP: Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 2000, 407(6807):1011–1015. 10.1038/35039519PubMedCrossRef
57.
go back to reference Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD: OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2000, 2(10):695–702. 10.1038/35036318PubMedCrossRef Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD: OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2000, 2(10):695–702. 10.1038/35036318PubMedCrossRef
58.
go back to reference Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S: Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 2000, 103(3):525–535. 10.1016/S0092-8674(00)00143-4PubMedCentralPubMedCrossRef Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S: Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 2000, 103(3):525–535. 10.1016/S0092-8674(00)00143-4PubMedCentralPubMedCrossRef
59.
go back to reference Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ, Wang E, Ruiz G, De Groat WC, Apodaca G, Watkins S, Caterina MJ: Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 2002, 5(9):856–860. 10.1038/nn902PubMedCrossRef Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ, Wang E, Ruiz G, De Groat WC, Apodaca G, Watkins S, Caterina MJ: Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 2002, 5(9):856–860. 10.1038/nn902PubMedCrossRef
60.
go back to reference Sharif NR, Witty MF, Seguela P, Bourque CW: An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat Neurosci 2006, 9(1):93–98. 10.1038/nn1614CrossRef Sharif NR, Witty MF, Seguela P, Bourque CW: An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat Neurosci 2006, 9(1):93–98. 10.1038/nn1614CrossRef
61.
go back to reference Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y: TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 2003, 93(9):829–838. 10.1161/01.RES.0000097263.10220.0CPubMedCrossRef Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y: TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 2003, 93(9):829–838. 10.1161/01.RES.0000097263.10220.0CPubMedCrossRef
62.
go back to reference Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I: Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol 1999, 1(3):165–170. 10.1038/11086PubMedCrossRef Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I: Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol 1999, 1(3):165–170. 10.1038/11086PubMedCrossRef
63.
go back to reference Neeper MP, Liu Y, Hutchinson TL, Wang Y, Flores CM, Qin N: Activation Properties of Heterologously Expressed Mammalian TRPV2: EVIDENCE FOR SPECIES DEPENDENCE. J Biol Chem 2007, 282(21):15894–15902. 10.1074/jbc.M608287200PubMedCrossRef Neeper MP, Liu Y, Hutchinson TL, Wang Y, Flores CM, Qin N: Activation Properties of Heterologously Expressed Mammalian TRPV2: EVIDENCE FOR SPECIES DEPENDENCE. J Biol Chem 2007, 282(21):15894–15902. 10.1074/jbc.M608287200PubMedCrossRef
64.
go back to reference Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian A: A heat-sensitive TRP channel expressed in keratinocytes. Science 2002, 296(5575):2046–2049. 10.1126/science.1073140PubMedCrossRef Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian A: A heat-sensitive TRP channel expressed in keratinocytes. Science 2002, 296(5575):2046–2049. 10.1126/science.1073140PubMedCrossRef
65.
go back to reference Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A: Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 2005, 307(5714):1468–1472. 10.1126/science.1108609PubMedCrossRef Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A: Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 2005, 307(5714):1468–1472. 10.1126/science.1108609PubMedCrossRef
66.
go back to reference Xu H, Delling M, Jun JC, Clapham DE: Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 2006, 9(5):628–635. 10.1038/nn1692PubMedCrossRef Xu H, Delling M, Jun JC, Clapham DE: Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 2006, 9(5):628–635. 10.1038/nn1692PubMedCrossRef
67.
go back to reference Hu HZ, Xiao R, Wang C, Gao N, Colton CK, Wood JD, Zhu MX: Potentiation of TRPV3 channel function by unsaturated fatty acids. J Cell Physiol 2006, 208(1):201–212. 10.1002/jcp.20648PubMedCentralPubMedCrossRef Hu HZ, Xiao R, Wang C, Gao N, Colton CK, Wood JD, Zhu MX: Potentiation of TRPV3 channel function by unsaturated fatty acids. J Cell Physiol 2006, 208(1):201–212. 10.1002/jcp.20648PubMedCentralPubMedCrossRef
68.
go back to reference O'Neil RG, Heller S: The mechanosensitive nature of TRPV channels. Pflugers Arch 2005, 451(1):193–203. 10.1007/s00424-005-1424-4PubMedCrossRef O'Neil RG, Heller S: The mechanosensitive nature of TRPV channels. Pflugers Arch 2005, 451(1):193–203. 10.1007/s00424-005-1424-4PubMedCrossRef
69.
go back to reference Chung MK, Lee H, Caterina MJ: Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J Biol Chem 2003, 278(34):32037–32046. 10.1074/jbc.M303251200PubMedCrossRef Chung MK, Lee H, Caterina MJ: Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J Biol Chem 2003, 278(34):32037–32046. 10.1074/jbc.M303251200PubMedCrossRef
70.
go back to reference Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B: Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 2003, 424(6947):434–438. 10.1038/nature01807PubMedCrossRef Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B: Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 2003, 424(6947):434–438. 10.1038/nature01807PubMedCrossRef
71.
go back to reference Gao X, Wu L, O'Neil RG: Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 2003, 278(29):27129–27137. 10.1074/jbc.M302517200PubMedCrossRef Gao X, Wu L, O'Neil RG: Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 2003, 278(29):27129–27137. 10.1074/jbc.M302517200PubMedCrossRef
72.
go back to reference Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B: Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 2004, 101(1):396–401. 10.1073/pnas.0303329101PubMedCentralPubMedCrossRef Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B: Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 2004, 101(1):396–401. 10.1073/pnas.0303329101PubMedCentralPubMedCrossRef
73.
go back to reference Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A: Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 2004, 41(6):849–857. 10.1016/S0896-6273(04)00150-3PubMedCrossRef Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A: Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 2004, 41(6):849–857. 10.1016/S0896-6273(04)00150-3PubMedCrossRef
74.
go back to reference Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A: The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 2005, 15(10):929–934. 10.1016/j.cub.2005.04.018PubMedCrossRef Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A: The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 2005, 15(10):929–934. 10.1016/j.cub.2005.04.018PubMedCrossRef
75.
go back to reference Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D: Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 2004, 427(6971):260–265. 10.1038/nature02282PubMedCrossRef Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D: Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 2004, 427(6971):260–265. 10.1038/nature02282PubMedCrossRef
76.
go back to reference Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Hogestatt ED, Julius D, Jordt SE, Zygmunt PM: Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci USA 2005, 102(34):12248–12252. 10.1073/pnas.0505356102PubMedCentralPubMedCrossRef Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Hogestatt ED, Julius D, Jordt SE, Zygmunt PM: Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci USA 2005, 102(34):12248–12252. 10.1073/pnas.0505356102PubMedCentralPubMedCrossRef
77.
go back to reference Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A: Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 2007, 445(7127):541–545. 10.1038/nature05544PubMedCrossRef Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A: Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 2007, 445(7127):541–545. 10.1038/nature05544PubMedCrossRef
78.
go back to reference Hinman A, Chuang HH, Bautista DM, Julius D: TRP channel activation by reversible covalent modification. Proc Natl Acad Sci USA 2006, 103(51):19564–19568. 10.1073/pnas.0609598103PubMedCentralPubMedCrossRef Hinman A, Chuang HH, Bautista DM, Julius D: TRP channel activation by reversible covalent modification. Proc Natl Acad Sci USA 2006, 103(51):19564–19568. 10.1073/pnas.0609598103PubMedCentralPubMedCrossRef
79.
go back to reference Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Geleoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS: TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 2004, 432(7018):723–730. 10.1038/nature03066PubMedCrossRef Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Geleoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS: TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 2004, 432(7018):723–730. 10.1038/nature03066PubMedCrossRef
80.
go back to reference Nagata K, Duggan A, Kumar G, Garcia-Anoveros J: Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 2005, 25(16):4052–4061. 10.1523/JNEUROSCI.0013-05.2005PubMedCrossRef Nagata K, Duggan A, Kumar G, Garcia-Anoveros J: Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 2005, 25(16):4052–4061. 10.1523/JNEUROSCI.0013-05.2005PubMedCrossRef
81.
go back to reference Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D: TRPA1 Mediates the Inflammatory Actions of Environmental Irritants and Proalgesic Agents. Cell 2006, 124(6):1269–1282. 10.1016/j.cell.2006.02.023PubMedCrossRef Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D: TRPA1 Mediates the Inflammatory Actions of Environmental Irritants and Proalgesic Agents. Cell 2006, 124(6):1269–1282. 10.1016/j.cell.2006.02.023PubMedCrossRef
82.
go back to reference Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP: TRPA1 Contributes to Cold, Mechanical, and Chemical Nociception but Is Not Essential for Hair-Cell Transduction. Neuron 2006, 50(2):277–289. 10.1016/j.neuron.2006.03.042PubMedCrossRef Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP: TRPA1 Contributes to Cold, Mechanical, and Chemical Nociception but Is Not Essential for Hair-Cell Transduction. Neuron 2006, 50(2):277–289. 10.1016/j.neuron.2006.03.042PubMedCrossRef
83.
go back to reference Abeele FV, Zholos A, Bidaux G, Shuba Y, Thebault S, Beck B, Flourakis M, Panchin Y, Skryma R, Prevarskaya N: Ca(2+)-independent phospholipase A(2)-dependent gating of TRPM8 by lysophospholipids. J Biol Chem 2006, 281(52):40174–40182. 10.1074/jbc.M605779200CrossRef Abeele FV, Zholos A, Bidaux G, Shuba Y, Thebault S, Beck B, Flourakis M, Panchin Y, Skryma R, Prevarskaya N: Ca(2+)-independent phospholipase A(2)-dependent gating of TRPM8 by lysophospholipids. J Biol Chem 2006, 281(52):40174–40182. 10.1074/jbc.M605779200CrossRef
84.
go back to reference Andersson DA, Nash M, Bevan S: Modulation of the cold-activated channel TRPM8 by lysophospholipids and polyunsaturated fatty acids. J Neurosci 2007, 27(12):3347–3355. 10.1523/JNEUROSCI.4846-06.2007PubMedCentralPubMedCrossRef Andersson DA, Nash M, Bevan S: Modulation of the cold-activated channel TRPM8 by lysophospholipids and polyunsaturated fatty acids. J Neurosci 2007, 27(12):3347–3355. 10.1523/JNEUROSCI.4846-06.2007PubMedCentralPubMedCrossRef
85.
go back to reference Kahn-Kirby AH, Bargmann CI: TRP channels in C. elegans. Annu Rev Physiol 2006, 68: 719–736. 10.1146/annurev.physiol.68.040204.100715PubMedCrossRef Kahn-Kirby AH, Bargmann CI: TRP channels in C. elegans. Annu Rev Physiol 2006, 68: 719–736. 10.1146/annurev.physiol.68.040204.100715PubMedCrossRef
86.
go back to reference Sokolchik I, Tanabe T, Baldi PF, Sze JY: Polymodal sensory function of the Caenorhabditis elegans OCR-2 channel arises from distinct intrinsic determinants within the protein and is selectively conserved in mammalian TRPV proteins. J Neurosci 2005, 25(4):1015–1023. 10.1523/JNEUROSCI.3107-04.2005PubMedCrossRef Sokolchik I, Tanabe T, Baldi PF, Sze JY: Polymodal sensory function of the Caenorhabditis elegans OCR-2 channel arises from distinct intrinsic determinants within the protein and is selectively conserved in mammalian TRPV proteins. J Neurosci 2005, 25(4):1015–1023. 10.1523/JNEUROSCI.3107-04.2005PubMedCrossRef
87.
go back to reference Alloui A, Zimmermann K, Mamet J, Duprat F, Noel J, Chemin J, Guy N, Blondeau N, Voilley N, Rubat-Coudert C, Borsotto M, Romey G, Heurteaux C, Reeh P, Eschalier A, Lazdunski M: TREK-1, a K(+) channel involved in polymodal pain perception. EMBO J 2006. Alloui A, Zimmermann K, Mamet J, Duprat F, Noel J, Chemin J, Guy N, Blondeau N, Voilley N, Rubat-Coudert C, Borsotto M, Romey G, Heurteaux C, Reeh P, Eschalier A, Lazdunski M: TREK-1, a K(+) channel involved in polymodal pain perception. EMBO J 2006.
88.
go back to reference Kim D: Fatty acid-sensitive two-pore domain K+ channels. Trends Pharmacol Sci 2003, 24(12):648–654. 10.1016/j.tips.2003.10.008PubMedCrossRef Kim D: Fatty acid-sensitive two-pore domain K+ channels. Trends Pharmacol Sci 2003, 24(12):648–654. 10.1016/j.tips.2003.10.008PubMedCrossRef
89.
go back to reference Maingret F, Lauritzen I, Patel AJ, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honore E: TREK-1 is a heat-activated background K(+) channel. EMBO J 2000, 19(11):2483–2491. 10.1093/emboj/19.11.2483PubMedCentralPubMedCrossRef Maingret F, Lauritzen I, Patel AJ, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honore E: TREK-1 is a heat-activated background K(+) channel. EMBO J 2000, 19(11):2483–2491. 10.1093/emboj/19.11.2483PubMedCentralPubMedCrossRef
90.
go back to reference Talley EM, Sirois JE, Lei Q, Bayliss DA: Two-pore-Domain (KCNK) potassium channels: dynamic roles in neuronal function. Neuroscientist 2003, 9(1):46–56. 10.1177/1073858402239590PubMedCrossRef Talley EM, Sirois JE, Lei Q, Bayliss DA: Two-pore-Domain (KCNK) potassium channels: dynamic roles in neuronal function. Neuroscientist 2003, 9(1):46–56. 10.1177/1073858402239590PubMedCrossRef
91.
go back to reference Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D: Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288(5464):306–313. 10.1126/science.288.5464.306PubMedCrossRef Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D: Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288(5464):306–313. 10.1126/science.288.5464.306PubMedCrossRef
92.
go back to reference Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA: Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000, 405(6783):183–187. 10.1038/35012076PubMedCrossRef Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA: Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000, 405(6783):183–187. 10.1038/35012076PubMedCrossRef
93.
go back to reference Steiner AA, Turek VF, Almeida MC, Burmeister JJ, Oliveira DL, Roberts JL, Bannon AW, Norman MH, Louis JC, Treanor JJ, Gavva NR, Romanovsky AA: Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors. J Neurosci 2007, 27(28):7459–7468. 10.1523/JNEUROSCI.1483-07.2007PubMedCrossRef Steiner AA, Turek VF, Almeida MC, Burmeister JJ, Oliveira DL, Roberts JL, Bannon AW, Norman MH, Louis JC, Treanor JJ, Gavva NR, Romanovsky AA: Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors. J Neurosci 2007, 27(28):7459–7468. 10.1523/JNEUROSCI.1483-07.2007PubMedCrossRef
94.
go back to reference Iida T, Shimizu I, Nealen ML, Campbell A, Caterina M: Attenuated fever response in mice lacking TRPV1. Neurosci Lett 2005, 378(1):28–33. 10.1016/j.neulet.2004.12.007PubMedCrossRef Iida T, Shimizu I, Nealen ML, Campbell A, Caterina M: Attenuated fever response in mice lacking TRPV1. Neurosci Lett 2005, 378(1):28–33. 10.1016/j.neulet.2004.12.007PubMedCrossRef
95.
go back to reference Jones RC III, Xu L, Gebhart GF: The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 2005, 25(47):10981–10989. 10.1523/JNEUROSCI.0703-05.2005PubMedCrossRef Jones RC III, Xu L, Gebhart GF: The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 2005, 25(47):10981–10989. 10.1523/JNEUROSCI.0703-05.2005PubMedCrossRef
96.
go back to reference Rong W, Hillsley K, Davis JB, Hicks G, Winchester WJ, Grundy D: Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. J Physiol 2004, 560(Pt 3):867–881. 10.1113/jphysiol.2004.071746PubMedCentralPubMedCrossRef Rong W, Hillsley K, Davis JB, Hicks G, Winchester WJ, Grundy D: Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. J Physiol 2004, 560(Pt 3):867–881. 10.1113/jphysiol.2004.071746PubMedCentralPubMedCrossRef
97.
go back to reference Alessandri-Haber N, Dina OA, Yeh JJ, Parada CA, Reichling DB, Levine JD: Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 2004, 24(18):4444–4452. 10.1523/JNEUROSCI.0242-04.2004PubMedCrossRef Alessandri-Haber N, Dina OA, Yeh JJ, Parada CA, Reichling DB, Levine JD: Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 2004, 24(18):4444–4452. 10.1523/JNEUROSCI.0242-04.2004PubMedCrossRef
98.
go back to reference Ramsey IS, Delling M, Clapham DE: An introduction to trp channels. Annu Rev Physiol 2006, 68: 619–647. 10.1146/annurev.physiol.68.040204.100431PubMedCrossRef Ramsey IS, Delling M, Clapham DE: An introduction to trp channels. Annu Rev Physiol 2006, 68: 619–647. 10.1146/annurev.physiol.68.040204.100431PubMedCrossRef
99.
go back to reference Liedtke W: Transient receptor potential vanilloid channels functioning in transduction of osmotic stimuli. J Endocrinol 2006, 191(3):515–523. 10.1677/joe.1.07000PubMedCrossRef Liedtke W: Transient receptor potential vanilloid channels functioning in transduction of osmotic stimuli. J Endocrinol 2006, 191(3):515–523. 10.1677/joe.1.07000PubMedCrossRef
100.
go back to reference Petrus MJ, Peier AM, Bandell M, Hwang SW, Huynh T, Olney N, Jegla T, Patapoutian A: A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Molecular Pain 2007., 3(40): Petrus MJ, Peier AM, Bandell M, Hwang SW, Huynh T, Olney N, Jegla T, Patapoutian A: A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Molecular Pain 2007., 3(40):
101.
go back to reference Sutherland SP, Benson CJ, Adelman JP, McCleskey EW: Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci USA 2001, 98(2):711–716. 10.1073/pnas.011404498PubMedCentralPubMedCrossRef Sutherland SP, Benson CJ, Adelman JP, McCleskey EW: Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci USA 2001, 98(2):711–716. 10.1073/pnas.011404498PubMedCentralPubMedCrossRef
102.
go back to reference Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S: Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest 2002, 110(8):1185–1190.PubMedCentralPubMedCrossRef Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S: Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest 2002, 110(8):1185–1190.PubMedCentralPubMedCrossRef
103.
go back to reference Babes A, Zorzon D, Reid G: Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor. Eur J Neurosci 2004, 20(9):2276–2282. 10.1111/j.1460-9568.2004.03695.xPubMedCrossRef Babes A, Zorzon D, Reid G: Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor. Eur J Neurosci 2004, 20(9):2276–2282. 10.1111/j.1460-9568.2004.03695.xPubMedCrossRef
104.
go back to reference Viana F, de la Pena E, Belmonte C: Specificity of cold thermotransduction is determined by differential ionic channel expression. Nat Neurosci 2002, 5(3):254–260. 10.1038/nn809PubMedCrossRef Viana F, de la Pena E, Belmonte C: Specificity of cold thermotransduction is determined by differential ionic channel expression. Nat Neurosci 2002, 5(3):254–260. 10.1038/nn809PubMedCrossRef
105.
go back to reference Xing H, Ling J, Chen M, Gu JG: Chemical and Cold Sensitivity of Two Distinct Populations of TRPM8-Expressing Somatosensory Neurons. Journal of Neurophysiology 2006, 95(2):1221–1230. 10.1152/jn.01035.2005PubMedCrossRef Xing H, Ling J, Chen M, Gu JG: Chemical and Cold Sensitivity of Two Distinct Populations of TRPM8-Expressing Somatosensory Neurons. Journal of Neurophysiology 2006, 95(2):1221–1230. 10.1152/jn.01035.2005PubMedCrossRef
106.
go back to reference Xing H, Chen M, Ling J, Tan W, Gu JG: TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci 2007, 27(50):13680–13690. 10.1523/JNEUROSCI.2203-07.2007PubMedCrossRef Xing H, Chen M, Ling J, Tan W, Gu JG: TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci 2007, 27(50):13680–13690. 10.1523/JNEUROSCI.2203-07.2007PubMedCrossRef
107.
go back to reference Okazawa M, Inoue W, Hori A, Hosokawa H, Matsumura K, Kobayashi S: Noxious heat receptors present in cold-sensory cells in rats. Neurosci Lett 2004, 359(1–2):33–36. 10.1016/j.neulet.2004.01.074PubMedCrossRef Okazawa M, Inoue W, Hori A, Hosokawa H, Matsumura K, Kobayashi S: Noxious heat receptors present in cold-sensory cells in rats. Neurosci Lett 2004, 359(1–2):33–36. 10.1016/j.neulet.2004.01.074PubMedCrossRef
108.
go back to reference Acosta MC, Madrid R, Luna C, Valero M, Belmonte C, Viana F: Activation by heat and capsaicin of peripheral nerve endings and soma of cold primary sensory neurons. Program No.862.8.2005 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2005.Online 2005. Acosta MC, Madrid R, Luna C, Valero M, Belmonte C, Viana F: Activation by heat and capsaicin of peripheral nerve endings and soma of cold primary sensory neurons. Program No.862.8.2005 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2005.Online 2005.
109.
go back to reference Green BG: Temperature perception and nociception. J Neurobiol 2004, 61(1):13–29. 10.1002/neu.20081PubMedCrossRef Green BG: Temperature perception and nociception. J Neurobiol 2004, 61(1):13–29. 10.1002/neu.20081PubMedCrossRef
111.
go back to reference Booth CS, Hahn JF: Thermal and mechanical stimulation of type II receptors and field receptors in cat. Exp Neurol 1974, 44(1):49–59. 10.1016/0014-4886(74)90045-4PubMedCrossRef Booth CS, Hahn JF: Thermal and mechanical stimulation of type II receptors and field receptors in cat. Exp Neurol 1974, 44(1):49–59. 10.1016/0014-4886(74)90045-4PubMedCrossRef
112.
go back to reference Duclaux R, Kenshalo DR: The temperature sensitivity of the type I slowly adapting mechanoreceptors in cats and monkeys. J Physiol 1972, 224(3):647–664.PubMedCentralPubMedCrossRef Duclaux R, Kenshalo DR: The temperature sensitivity of the type I slowly adapting mechanoreceptors in cats and monkeys. J Physiol 1972, 224(3):647–664.PubMedCentralPubMedCrossRef
113.
go back to reference Iggo A: Cutaneous thermoreceptors in primates and sub-primates. J Physiol (Lond) 1969, 200(2):403–430.CrossRef Iggo A: Cutaneous thermoreceptors in primates and sub-primates. J Physiol (Lond) 1969, 200(2):403–430.CrossRef
114.
go back to reference Cahusac PM, Noyce R: A pharmacological study of slowly adapting mechanoreceptors responsive to cold thermal stimulation. Neuroscience 2007, 148(2):489–500. 10.1016/j.neuroscience.2007.06.018PubMedCrossRef Cahusac PM, Noyce R: A pharmacological study of slowly adapting mechanoreceptors responsive to cold thermal stimulation. Neuroscience 2007, 148(2):489–500. 10.1016/j.neuroscience.2007.06.018PubMedCrossRef
115.
go back to reference Woodbury CJ, Zwick M, Wang S, Lawson JJ, Caterina MJ, Koltzenburg M, Albers KM, Koerber HR, Davis BM: Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J Neurosci 2004, 24(28):6410–6415. 10.1523/JNEUROSCI.1421-04.2004PubMedCrossRef Woodbury CJ, Zwick M, Wang S, Lawson JJ, Caterina MJ, Koltzenburg M, Albers KM, Koerber HR, Davis BM: Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J Neurosci 2004, 24(28):6410–6415. 10.1523/JNEUROSCI.1421-04.2004PubMedCrossRef
116.
go back to reference Liapi A, Wood JN: Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex. Eur J Neurosci 2005, 22(4):825–834. 10.1111/j.1460-9568.2005.04270.xPubMedCrossRef Liapi A, Wood JN: Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex. Eur J Neurosci 2005, 22(4):825–834. 10.1111/j.1460-9568.2005.04270.xPubMedCrossRef
117.
go back to reference Rutter AR, Ma QP, Leveridge M, Bonnert TP: Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia. Neuroreport 2005, 16(16):1735–1739. 10.1097/01.wnr.0000185958.03841.0fPubMedCrossRef Rutter AR, Ma QP, Leveridge M, Bonnert TP: Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia. Neuroreport 2005, 16(16):1735–1739. 10.1097/01.wnr.0000185958.03841.0fPubMedCrossRef
118.
go back to reference Almasi R, Petho G, Bolcskei K, Szolcsanyi J: Effect of resiniferatoxin on the noxious heat threshold temperature in the rat: a novel heat allodynia model sensitive to analgesics. Br J Pharmacol 2003, 139(1):49–58. 10.1038/sj.bjp.0705234PubMedCentralPubMedCrossRef Almasi R, Petho G, Bolcskei K, Szolcsanyi J: Effect of resiniferatoxin on the noxious heat threshold temperature in the rat: a novel heat allodynia model sensitive to analgesics. Br J Pharmacol 2003, 139(1):49–58. 10.1038/sj.bjp.0705234PubMedCentralPubMedCrossRef
119.
go back to reference Mogil JS, Miermeister F, Seifert F, Strasburg K, Zimmermann K, Reinold H, Austin JS, Bernardini N, Chesler EJ, Hofmann HA, Hordo C, Messlinger K, Nemmani KV, Rankin AL, Ritchie J, Siegling A, Smith SB, Sotocinal S, Vater A, Lehto SG, Klussmann S, Quirion R, Michaelis M, Devor M, Reeh PW: Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene. Proc Natl Acad Sci USA 2005, 102(36):12938–12943. 10.1073/pnas.0503264102PubMedCentralPubMedCrossRef Mogil JS, Miermeister F, Seifert F, Strasburg K, Zimmermann K, Reinold H, Austin JS, Bernardini N, Chesler EJ, Hofmann HA, Hordo C, Messlinger K, Nemmani KV, Rankin AL, Ritchie J, Siegling A, Smith SB, Sotocinal S, Vater A, Lehto SG, Klussmann S, Quirion R, Michaelis M, Devor M, Reeh PW: Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene. Proc Natl Acad Sci USA 2005, 102(36):12938–12943. 10.1073/pnas.0503264102PubMedCentralPubMedCrossRef
120.
go back to reference Reeh PW, Kress M: Molecular physiology of proton transduction in nociceptors. Curr Opin Pharmacol 2001, 1(1):45–51. 10.1016/S1471-4892(01)00014-5PubMedCrossRef Reeh PW, Kress M: Molecular physiology of proton transduction in nociceptors. Curr Opin Pharmacol 2001, 1(1):45–51. 10.1016/S1471-4892(01)00014-5PubMedCrossRef
121.
go back to reference Krishtal O: The ASICs: signaling molecules? Modulators? Trends Neurosci 2003, 26(9):477–483. 10.1016/S0166-2236(03)00210-8PubMedCrossRef Krishtal O: The ASICs: signaling molecules? Modulators? Trends Neurosci 2003, 26(9):477–483. 10.1016/S0166-2236(03)00210-8PubMedCrossRef
122.
go back to reference Cooper BY, Johnson RD, Rau KK: Characterization and function of TWIK-related acid sensing K+ channels in a rat nociceptive cell. Neuroscience 2004, 129(1):209–224. 10.1016/j.neuroscience.2004.06.066PubMedCrossRef Cooper BY, Johnson RD, Rau KK: Characterization and function of TWIK-related acid sensing K+ channels in a rat nociceptive cell. Neuroscience 2004, 129(1):209–224. 10.1016/j.neuroscience.2004.06.066PubMedCrossRef
123.
go back to reference Jiang N, Rau KK, Johnson RD, Cooper BY: Proton sensitivity Ca2+ permeability and molecular basis of Acid-sensing ion channels expressed in glabrous and hairy skin afferents. Journal of Neurophysiology 2006, 95(4):2466–2478. 10.1152/jn.00861.2005PubMedCrossRef Jiang N, Rau KK, Johnson RD, Cooper BY: Proton sensitivity Ca2+ permeability and molecular basis of Acid-sensing ion channels expressed in glabrous and hairy skin afferents. Journal of Neurophysiology 2006, 95(4):2466–2478. 10.1152/jn.00861.2005PubMedCrossRef
124.
go back to reference Leffler A, Monter B, Koltzenburg M: The role of the capsaicin receptor TRPV1 and acid-sensing ion channels (ASICS) in proton sensitivity of subpopulations of primary nociceptive neurons in rats and mice. Neuroscience 2006, 139(2):699–709. 10.1016/j.neuroscience.2005.12.020PubMedCrossRef Leffler A, Monter B, Koltzenburg M: The role of the capsaicin receptor TRPV1 and acid-sensing ion channels (ASICS) in proton sensitivity of subpopulations of primary nociceptive neurons in rats and mice. Neuroscience 2006, 139(2):699–709. 10.1016/j.neuroscience.2005.12.020PubMedCrossRef
125.
go back to reference Ugawa S, Ueda T, Yamamura H, Shimada S: In situ hybridization evidence for the coexistence of ASIC and TRPV1 within rat single sensory neurons. Brain Res Mol Brain Res 2005, 136(1–2):125–133. 10.1016/j.molbrainres.2005.01.010PubMedCrossRef Ugawa S, Ueda T, Yamamura H, Shimada S: In situ hybridization evidence for the coexistence of ASIC and TRPV1 within rat single sensory neurons. Brain Res Mol Brain Res 2005, 136(1–2):125–133. 10.1016/j.molbrainres.2005.01.010PubMedCrossRef
126.
go back to reference Reid G, Flonta ML: Physiology. Cold current in thermoreceptive neurons. Nature 2001, 413(6855):480. 10.1038/35097164PubMedCrossRef Reid G, Flonta ML: Physiology. Cold current in thermoreceptive neurons. Nature 2001, 413(6855):480. 10.1038/35097164PubMedCrossRef
127.
go back to reference Reid G, Flonta M: Cold transduction by inhibition of a background potassium conductance in rat primary sensory neurones. Neurosci Lett 2001, 297(3):171–174. 10.1016/S0304-3940(00)01694-3PubMedCrossRef Reid G, Flonta M: Cold transduction by inhibition of a background potassium conductance in rat primary sensory neurones. Neurosci Lett 2001, 297(3):171–174. 10.1016/S0304-3940(00)01694-3PubMedCrossRef
128.
go back to reference Kang D, Choe C, Kim D: Thermosensitivity of the two-pore domain K+ channels TREK-2 and TRAAK. J Physiol 2005, 564(Pt 1):103–116. 10.1113/jphysiol.2004.081059PubMedCentralPubMedCrossRef Kang D, Choe C, Kim D: Thermosensitivity of the two-pore domain K+ channels TREK-2 and TRAAK. J Physiol 2005, 564(Pt 1):103–116. 10.1113/jphysiol.2004.081059PubMedCentralPubMedCrossRef
129.
go back to reference Dhaka A, Earley TJ, Watson J, Patapoutian A: Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J Neurosci 2008, 28(3):566–575. 10.1523/JNEUROSCI.3976-07.2008PubMedCrossRef Dhaka A, Earley TJ, Watson J, Patapoutian A: Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J Neurosci 2008, 28(3):566–575. 10.1523/JNEUROSCI.3976-07.2008PubMedCrossRef
130.
go back to reference Hjerling-Leffler J, Alqatari M, Ernfors P, Koltzenburg M: Emergence of functional sensory subtypes as defined by transient receptor potential channel expression. J Neurosci 2007, 27(10):2435–2443. 10.1523/JNEUROSCI.5614-06.2007PubMedCrossRef Hjerling-Leffler J, Alqatari M, Ernfors P, Koltzenburg M: Emergence of functional sensory subtypes as defined by transient receptor potential channel expression. J Neurosci 2007, 27(10):2435–2443. 10.1523/JNEUROSCI.5614-06.2007PubMedCrossRef
131.
go back to reference Weber EH: E.H. Weber on the Tactile Senses. Edited by: Ross HE, Murray AH. Psychology Press; 1896:1–260. Weber EH: E.H. Weber on the Tactile Senses. Edited by: Ross HE, Murray AH. Psychology Press; 1896:1–260.
132.
go back to reference Dodt E, Zotterman Y: The discharge of specific cold fibres at high temperatures; the paradoxical cold. Acta Physiol Scand 1952, 26(4):358–365.PubMedCrossRef Dodt E, Zotterman Y: The discharge of specific cold fibres at high temperatures; the paradoxical cold. Acta Physiol Scand 1952, 26(4):358–365.PubMedCrossRef
133.
go back to reference Craig AD, Reiman EM, Evans A, Bushnell MC: Functional imaging of an illusion of pain. Nature 1996, 384(6606):258–260. 10.1038/384258a0PubMedCrossRef Craig AD, Reiman EM, Evans A, Bushnell MC: Functional imaging of an illusion of pain. Nature 1996, 384(6606):258–260. 10.1038/384258a0PubMedCrossRef
134.
go back to reference Weil A, Moore SE, Waite NJ, Randall A, Gunthorpe MJ: Conservation of functional and pharmacological properties in the distantly related temperature sensors TRPV1 and TRPM8. Mol Pharmacol 2005. Weil A, Moore SE, Waite NJ, Randall A, Gunthorpe MJ: Conservation of functional and pharmacological properties in the distantly related temperature sensors TRPV1 and TRPM8. Mol Pharmacol 2005.
135.
go back to reference Gunthorpe MJ, Harries MH, Prinjha RK, Davis JB, Randall A: Voltage- and time-dependent properties of the recombinant rat vanilloid receptor (rVR1). J Physiol 2000, 525(Pt 3):747–759. 10.1111/j.1469-7793.2000.t01-1-00747.xPubMedCentralPubMedCrossRef Gunthorpe MJ, Harries MH, Prinjha RK, Davis JB, Randall A: Voltage- and time-dependent properties of the recombinant rat vanilloid receptor (rVR1). J Physiol 2000, 525(Pt 3):747–759. 10.1111/j.1469-7793.2000.t01-1-00747.xPubMedCentralPubMedCrossRef
136.
go back to reference Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T: Gating of TRP channels: a voltage connection? J Physiol 2005, 567(Pt 1):35–44. 10.1113/jphysiol.2005.088377PubMedCentralPubMedCrossRef Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T: Gating of TRP channels: a voltage connection? J Physiol 2005, 567(Pt 1):35–44. 10.1113/jphysiol.2005.088377PubMedCentralPubMedCrossRef
137.
go back to reference Voets T, Owsianik G, Janssens A, Talavera K, Nilius B: TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 2007, 3(3):174–182. 10.1038/nchembio862PubMedCrossRef Voets T, Owsianik G, Janssens A, Talavera K, Nilius B: TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 2007, 3(3):174–182. 10.1038/nchembio862PubMedCrossRef
138.
go back to reference Brauchi S, Orio P, Latorre R: Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci USA 2004, 101(43):15494–15499. 10.1073/pnas.0406773101PubMedCentralPubMedCrossRef Brauchi S, Orio P, Latorre R: Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci USA 2004, 101(43):15494–15499. 10.1073/pnas.0406773101PubMedCentralPubMedCrossRef
139.
go back to reference Matta JA, Ahern GP: Voltage is a partial activator of rat thermosensitive TRP channels. J Physiol 2007, 585(Pt 2):469–482. 10.1113/jphysiol.2007.144287PubMedCentralPubMedCrossRef Matta JA, Ahern GP: Voltage is a partial activator of rat thermosensitive TRP channels. J Physiol 2007, 585(Pt 2):469–482. 10.1113/jphysiol.2007.144287PubMedCentralPubMedCrossRef
140.
go back to reference Latorre R, Brauchi S, Orta G, Zaelzer C, Vargas G: ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium 2007, 42(4–5):427–438. 10.1016/j.ceca.2007.04.004PubMedCrossRef Latorre R, Brauchi S, Orta G, Zaelzer C, Vargas G: ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium 2007, 42(4–5):427–438. 10.1016/j.ceca.2007.04.004PubMedCrossRef
141.
go back to reference Roza C, Belmonte C, Viana F: Cold sensitivity in axotomized fibers of experimental neuromas in mice. Pain 2006, 120(1–2):24–35. 10.1016/j.pain.2005.10.006PubMedCrossRef Roza C, Belmonte C, Viana F: Cold sensitivity in axotomized fibers of experimental neuromas in mice. Pain 2006, 120(1–2):24–35. 10.1016/j.pain.2005.10.006PubMedCrossRef
142.
go back to reference Waxman SG, Dib-Hajj S: Erythermalgia: molecular basis for an inherited pain syndrome. Trends Mol Med 2005, 11(12):555–562. 10.1016/j.molmed.2005.10.004PubMedCrossRef Waxman SG, Dib-Hajj S: Erythermalgia: molecular basis for an inherited pain syndrome. Trends Mol Med 2005, 11(12):555–562. 10.1016/j.molmed.2005.10.004PubMedCrossRef
143.
go back to reference Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA, Waxman SG: A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc Natl Acad Sci USA 2006, 103(21):8245–8250. 10.1073/pnas.0602813103PubMedCentralPubMedCrossRef Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA, Waxman SG: A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc Natl Acad Sci USA 2006, 103(21):8245–8250. 10.1073/pnas.0602813103PubMedCentralPubMedCrossRef
144.
go back to reference Carr RW, Pianova S, Brock JA: The effects of polarizing current on nerve terminal impulses recorded from polymodal and cold receptors in the guinea-pig cornea. J Gen Physiol 2002, 120(3):395–405. 10.1085/jgp.20028628PubMedCentralPubMedCrossRef Carr RW, Pianova S, Brock JA: The effects of polarizing current on nerve terminal impulses recorded from polymodal and cold receptors in the guinea-pig cornea. J Gen Physiol 2002, 120(3):395–405. 10.1085/jgp.20028628PubMedCentralPubMedCrossRef
145.
go back to reference Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi J, Nau C, Wood JN, Reeh PW: Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 2007, 447(7146):856–859. 10.1038/nature05880CrossRef Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi J, Nau C, Wood JN, Reeh PW: Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 2007, 447(7146):856–859. 10.1038/nature05880CrossRef
146.
go back to reference de la Pena E, Malkia A, Cabedo H, Belmonte C, Viana F: The contribution of TRPM8 channels to cold sensing in mammalian neurones. J Physiol 2005, 567(Pt 2):415–426. 10.1113/jphysiol.2005.086546PubMedCentralPubMedCrossRef de la Pena E, Malkia A, Cabedo H, Belmonte C, Viana F: The contribution of TRPM8 channels to cold sensing in mammalian neurones. J Physiol 2005, 567(Pt 2):415–426. 10.1113/jphysiol.2005.086546PubMedCentralPubMedCrossRef
147.
go back to reference Malkia A, Madrid R, Meseguer V, de la PE, Valero M, Belmonte C, Viana F: Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors. J Physiol 2007, 581(Pt 1):155–174. 10.1113/jphysiol.2006.123059PubMedCentralPubMedCrossRef Malkia A, Madrid R, Meseguer V, de la PE, Valero M, Belmonte C, Viana F: Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors. J Physiol 2007, 581(Pt 1):155–174. 10.1113/jphysiol.2006.123059PubMedCentralPubMedCrossRef
148.
go back to reference Hensel H: Neural processes in thermoregulation. Physiol Rev 1973, 53(4):948–1017.PubMed Hensel H: Neural processes in thermoregulation. Physiol Rev 1973, 53(4):948–1017.PubMed
149.
go back to reference Brauchi S, Orta G, Salazar M, Rosenmann E, Latorre R: A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci 2006, 26(18):4835–4840. 10.1523/JNEUROSCI.5080-05.2006PubMedCrossRef Brauchi S, Orta G, Salazar M, Rosenmann E, Latorre R: A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci 2006, 26(18):4835–4840. 10.1523/JNEUROSCI.5080-05.2006PubMedCrossRef
150.
go back to reference Rohacs T, Lopes CM, Michailidis I, Logothetis DE: PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 2005, 8(5):626–634. 10.1038/nn1451PubMedCrossRef Rohacs T, Lopes CM, Michailidis I, Logothetis DE: PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 2005, 8(5):626–634. 10.1038/nn1451PubMedCrossRef
151.
go back to reference Liu BY, Qin F: Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. Journal of Neuroscience 2005, 25(7):1674–1681. 10.1523/JNEUROSCI.3632-04.2005PubMedCrossRef Liu BY, Qin F: Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. Journal of Neuroscience 2005, 25(7):1674–1681. 10.1523/JNEUROSCI.3632-04.2005PubMedCrossRef
152.
go back to reference Liedtke W, Tobin DM, Bargmann CI, Friedman JM: Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc Natl Acad Sci USA 2003, 100(Suppl 2):14531–14536. 10.1073/pnas.2235619100PubMedCentralPubMedCrossRef Liedtke W, Tobin DM, Bargmann CI, Friedman JM: Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc Natl Acad Sci USA 2003, 100(Suppl 2):14531–14536. 10.1073/pnas.2235619100PubMedCentralPubMedCrossRef
153.
go back to reference Craig AD: Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 2003, 26: 1–30. 10.1146/annurev.neuro.26.041002.131022PubMedCrossRef Craig AD: Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 2003, 26: 1–30. 10.1146/annurev.neuro.26.041002.131022PubMedCrossRef
Metadata
Title
Molecular and cellular limits to somatosensory specificity
Authors
Carlos Belmonte
Félix Viana
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2008
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-4-14

Other articles of this Issue 1/2008

Molecular Pain 1/2008 Go to the issue