Skip to main content
Top
Published in: Molecular Pain 1/2006

Open Access 01-12-2006 | Research

Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain

Authors: Steven A Prescott, Terrence J Sejnowski, Yves De Koninck

Published in: Molecular Pain | Issue 1/2006

Login to get access

Abstract

Background

Reduction of the transmembrane chloride gradient in spinal lamina I neurons contributes to the cellular hyperexcitability producing allodynia and hyperalgesia after peripheral nerve injury. The resultant decrease in anion reversal potential (i.e. shift in E anion to less negative potentials) reduces glycine/GABAA receptor-mediated hyperpolarization, but the large increase in membrane conductance caused by inhibitory input can nonetheless shunt concurrent excitatory input. Without knowing the relative contribution of hyperpolarization and shunting to inhibition's modulation of firing rate, it is difficult to predict how much net disinhibition results from reduction of E anion. We therefore used a biophysically accurate lamina I neuron model to investigate quantitatively how changes in E anion affect firing rate modulation.

Results

Simulations reveal that even a small reduction of E anion compromises inhibitory control of firing rate because reduction of E anion not only decreases glycine/GABAA receptor-mediated hyperpolarization, but can also indirectly compromise the capacity of shunting to reduce spiking. The latter effect occurs because shunting-mediated modulation of firing rate depends on a competition between two biophysical phenomena: shunting reduces depolarization, which translates into reduced spiking, but shunting also shortens the membrane time constant, which translates into faster membrane charging and increased spiking; the latter effect predominates when average depolarization is suprathreshold. Disinhibition therefore occurs as both hyperpolarization- and shunting-mediated modulation of firing rate are subverted by reduction of E anion. Small reductions may be compensated for by increased glycine/GABAA receptor-mediated input, but the system decompensates (i.e. compensation fails) as reduction of E anion exceeds a critical value. Hyperexcitability necessarily develops once disinhibition becomes incompensable. Furthermore, compensation by increased glycine/GABAA receptor-mediated input introduces instability into the system, rendering it increasingly prone to abrupt decompensation and even paradoxical excitation.

Conclusion

Reduction of E anion dramatically compromises the inhibitory control of firing rate and, if compensation fails, is likely to contribute to the allodynia and hyperalgesia associated with neuropathic pain. These data help explain the relative intractability of neuropathic pain and illustrate how it is important to choose therapies not only based on disease mechanism, but based on quantitative understanding of that mechanism.
Appendix
Available only for authorised users
Literature
1.
go back to reference Woolf CJ, Salter MW: Neuronal plasticity: increasing the gain in pain. Science 2000, 288: 1765–1769. 10.1126/science.288.5472.1765PubMed Woolf CJ, Salter MW: Neuronal plasticity: increasing the gain in pain. Science 2000, 288: 1765–1769. 10.1126/science.288.5472.1765PubMed
2.
go back to reference Woolf CJ, Mannion RJ: Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 1999, 353: 1959–1964. 10.1016/S0140-6736(99)01307-0PubMed Woolf CJ, Mannion RJ: Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 1999, 353: 1959–1964. 10.1016/S0140-6736(99)01307-0PubMed
3.
go back to reference Woolf CJ: Dissecting out mechanisms responsible for peripheral neuropathic pain: implications for diagnosis and therapy. Life Sci 2004, 74: 2605–2610. 10.1016/j.lfs.2004.01.003PubMed Woolf CJ: Dissecting out mechanisms responsible for peripheral neuropathic pain: implications for diagnosis and therapy. Life Sci 2004, 74: 2605–2610. 10.1016/j.lfs.2004.01.003PubMed
4.
go back to reference Koltzenburg M, Scadding J: Neuropathic pain. Curr Opin Neurol 2001, 14: 641–647. 10.1097/00019052-200110000-00014PubMed Koltzenburg M, Scadding J: Neuropathic pain. Curr Opin Neurol 2001, 14: 641–647. 10.1097/00019052-200110000-00014PubMed
5.
go back to reference Besson JM: The neurobiology of pain. Lancet 1999, 353: 1610–1615. 10.1016/S0140-6736(99)01313-6PubMed Besson JM: The neurobiology of pain. Lancet 1999, 353: 1610–1615. 10.1016/S0140-6736(99)01313-6PubMed
6.
go back to reference Dickenson AH: Balances between excitatory and inhibitory events in the spinal cord and chronic pain. Prog Brain Res 1996, 110: 225–231.PubMed Dickenson AH: Balances between excitatory and inhibitory events in the spinal cord and chronic pain. Prog Brain Res 1996, 110: 225–231.PubMed
7.
go back to reference Wiesenfeld-Hallin Z, Aldskogius H, Grant G, Hao JX, Hokfelt T, Xu XJ: Central inhibitory dysfunctions: mechanisms and clinical implications. Behav Brain Sci 1997, 20: 420–425. 10.1017/S0140525X97261480PubMed Wiesenfeld-Hallin Z, Aldskogius H, Grant G, Hao JX, Hokfelt T, Xu XJ: Central inhibitory dysfunctions: mechanisms and clinical implications. Behav Brain Sci 1997, 20: 420–425. 10.1017/S0140525X97261480PubMed
8.
go back to reference Sandkühler J: Neurobiology of spinal nociception: new concepts. Prog Brain Res 1996, 110: 207–224.PubMed Sandkühler J: Neurobiology of spinal nociception: new concepts. Prog Brain Res 1996, 110: 207–224.PubMed
9.
go back to reference Yaksh TL: Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 1989, 37: 111–123. 10.1016/0304-3959(89)90160-7PubMed Yaksh TL: Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 1989, 37: 111–123. 10.1016/0304-3959(89)90160-7PubMed
10.
go back to reference Sherman SE, Loomis CW: Morphine insensitive allodynia is produced by intrathecal strychnine in the lightly anesthetized rat. Pain 1994, 56: 17–29. 10.1016/0304-3959(94)90146-5PubMed Sherman SE, Loomis CW: Morphine insensitive allodynia is produced by intrathecal strychnine in the lightly anesthetized rat. Pain 1994, 56: 17–29. 10.1016/0304-3959(94)90146-5PubMed
11.
go back to reference Sivilotti L, Woolf CJ: The contribution of GABA(A) and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol 1994, 72: 169–179.PubMed Sivilotti L, Woolf CJ: The contribution of GABA(A) and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol 1994, 72: 169–179.PubMed
12.
go back to reference Sherman SE, Loomis CW: Strychnine-dependent allodynia in the urethane-anesthetized rat is segmentally distributed and prevented by intrathecal glycine and betaine. Can J Physiol Pharmacol 1995, 73: 1698–1705.PubMed Sherman SE, Loomis CW: Strychnine-dependent allodynia in the urethane-anesthetized rat is segmentally distributed and prevented by intrathecal glycine and betaine. Can J Physiol Pharmacol 1995, 73: 1698–1705.PubMed
13.
go back to reference Sherman SE, Loomis CW: Strychnine-sensitive modulation is selective for non-noxious somatosensory input in the spinal cord of the rat. Pain 1996, 66: 321–330. 10.1016/0304-3959(96)03063-1PubMed Sherman SE, Loomis CW: Strychnine-sensitive modulation is selective for non-noxious somatosensory input in the spinal cord of the rat. Pain 1996, 66: 321–330. 10.1016/0304-3959(96)03063-1PubMed
14.
go back to reference Sorkin LS, Puig S: Neuronal model of tactile allodynia produced by spinal strychnine: effects of excitatory amino acid receptor antagonists and a mu-opiate receptor agonist. Pain 1996, 68: 283–292. 10.1016/S0304-3959(96)03130-2PubMed Sorkin LS, Puig S: Neuronal model of tactile allodynia produced by spinal strychnine: effects of excitatory amino acid receptor antagonists and a mu-opiate receptor agonist. Pain 1996, 68: 283–292. 10.1016/S0304-3959(96)03130-2PubMed
15.
go back to reference Sorkin LS, Puig S, Jones DL: Spinal bicuculline produces hypersensitivity of dorsal horn neurons: effects of excitatory amino acid antagonists. Pain 1998, 77: 181–190. 10.1016/S0304-3959(98)00094-3PubMed Sorkin LS, Puig S, Jones DL: Spinal bicuculline produces hypersensitivity of dorsal horn neurons: effects of excitatory amino acid antagonists. Pain 1998, 77: 181–190. 10.1016/S0304-3959(98)00094-3PubMed
16.
go back to reference Loomis CW, Khandwala H, Osmond G, Hefferan MP: Coadministration of intrathecal strychnine and bicuculline effects synergistic allodynia in the rat: an isobolographic analysis. J Pharmacol Exp Ther 2001, 296: 756–761.PubMed Loomis CW, Khandwala H, Osmond G, Hefferan MP: Coadministration of intrathecal strychnine and bicuculline effects synergistic allodynia in the rat: an isobolographic analysis. J Pharmacol Exp Ther 2001, 296: 756–761.PubMed
17.
go back to reference Malan TP, Mata HP, Porreca F: Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Anesthesiology 2002, 96: 1161–1167. 10.1097/00000542-200205000-00020PubMed Malan TP, Mata HP, Porreca F: Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Anesthesiology 2002, 96: 1161–1167. 10.1097/00000542-200205000-00020PubMed
18.
go back to reference Ugarte SD, Homanics GE, Firestone LL, Hammond DL: Sensory thresholds and the antinociceptive effects of GABA receptor agonists in mice lacking the beta3 subunit of the GABA(A) receptor. Neuroscience 2000, 95: 795–806. 10.1016/S0306-4522(99)00481-9PubMed Ugarte SD, Homanics GE, Firestone LL, Hammond DL: Sensory thresholds and the antinociceptive effects of GABA receptor agonists in mice lacking the beta3 subunit of the GABA(A) receptor. Neuroscience 2000, 95: 795–806. 10.1016/S0306-4522(99)00481-9PubMed
19.
go back to reference Hwang JH, Yaksh TL: The effect of spinal GABA receptor agonists on tactile allodynia in a surgically-induced neuropathic pain model in the rat. Pain 1997, 70: 15–22. 10.1016/S0304-3959(96)03249-6PubMed Hwang JH, Yaksh TL: The effect of spinal GABA receptor agonists on tactile allodynia in a surgically-induced neuropathic pain model in the rat. Pain 1997, 70: 15–22. 10.1016/S0304-3959(96)03249-6PubMed
20.
go back to reference Eaton MJ, Plunkett JA, Martinez MA, Lopez T, Karmally S, Cejas P, Whittemore SR: Transplants of neuronal cells bioengineered to synthesize GABA alleviate chronic neuropathic pain. Cell Transplant 1999, 8: 87–101.PubMed Eaton MJ, Plunkett JA, Martinez MA, Lopez T, Karmally S, Cejas P, Whittemore SR: Transplants of neuronal cells bioengineered to synthesize GABA alleviate chronic neuropathic pain. Cell Transplant 1999, 8: 87–101.PubMed
21.
go back to reference Stubley LA, Martinez MA, Karmally S, Lopez T, Cejas P, Eaton MJ: Only early intervention with gamma-aminobutyric acid cell therapy is able to reverse neuropathic pain after partial nerve injury. J Neurotrauma 2001, 18: 471–477. 10.1089/089771501750171092PubMed Stubley LA, Martinez MA, Karmally S, Lopez T, Cejas P, Eaton MJ: Only early intervention with gamma-aminobutyric acid cell therapy is able to reverse neuropathic pain after partial nerve injury. J Neurotrauma 2001, 18: 471–477. 10.1089/089771501750171092PubMed
22.
go back to reference Rode F, Jensen DG, Blackburn-Munro G, Bjerrum OJ: Centrally-mediated antinociceptive actions of GABA(A) receptor agonists in the rat spared nerve injury model of neuropathic pain. Eur J Pharmacol 2005, 516: 131–138. 10.1016/j.ejphar.2005.04.034PubMed Rode F, Jensen DG, Blackburn-Munro G, Bjerrum OJ: Centrally-mediated antinociceptive actions of GABA(A) receptor agonists in the rat spared nerve injury model of neuropathic pain. Eur J Pharmacol 2005, 516: 131–138. 10.1016/j.ejphar.2005.04.034PubMed
23.
go back to reference Woolf CJ, Wall PD: Chronic peripheral nerve section diminishes the primary afferent A-fibre mediated inhibition of rat dorsal horn neurones. Brain Res 1982, 242: 77–85. 10.1016/0006-8993(82)90497-8PubMed Woolf CJ, Wall PD: Chronic peripheral nerve section diminishes the primary afferent A-fibre mediated inhibition of rat dorsal horn neurones. Brain Res 1982, 242: 77–85. 10.1016/0006-8993(82)90497-8PubMed
24.
go back to reference Castro-Lopes JM, Tavares I, Coimbra A: GABA decreases in the spinal cord dorsal horn after peripheral neurectomy. Brain Res 1993, 620: 287–291. 10.1016/0006-8993(93)90167-LPubMed Castro-Lopes JM, Tavares I, Coimbra A: GABA decreases in the spinal cord dorsal horn after peripheral neurectomy. Brain Res 1993, 620: 287–291. 10.1016/0006-8993(93)90167-LPubMed
25.
go back to reference Stiller CO, Cui JG, O'Connor WT, Brodin E, Meyerson BA, Linderoth B: Release of gamma-aminobutyric acid in the dorsal horn and suppression of tactile allodynia by spinal cord stimulation in mononeuropathic rats. Neurosurgery 1996, 39: 367–374. 10.1097/00006123-199608000-00026PubMed Stiller CO, Cui JG, O'Connor WT, Brodin E, Meyerson BA, Linderoth B: Release of gamma-aminobutyric acid in the dorsal horn and suppression of tactile allodynia by spinal cord stimulation in mononeuropathic rats. Neurosurgery 1996, 39: 367–374. 10.1097/00006123-199608000-00026PubMed
26.
go back to reference Ibuki T, Hama AT, Wang XT, Pappas GD, Sagen J: Loss of GABA-immunoreactivity in the spinal dorsal horn of rats with peripheral nerve injury and promotion of recovery by adrenal medullary grafts. Neuroscience 1997, 76: 845–858. 10.1016/S0306-4522(96)00341-7PubMed Ibuki T, Hama AT, Wang XT, Pappas GD, Sagen J: Loss of GABA-immunoreactivity in the spinal dorsal horn of rats with peripheral nerve injury and promotion of recovery by adrenal medullary grafts. Neuroscience 1997, 76: 845–858. 10.1016/S0306-4522(96)00341-7PubMed
27.
go back to reference Ralston DD, Behbehani M, Sehlhorst SC, Meng XW, Ralston HJ: Decreased GABA immunoreactivity in rat dorsal horn is correlated with pain behavior: a light and electron microscope study. Proceedings of the Eighth World Congress on Pain. Edited by: Jensen TS, Turner JA and Wiesenfeld-Hallin Z. Seattle, WA, IASP Press; 1997:547–560. Ralston DD, Behbehani M, Sehlhorst SC, Meng XW, Ralston HJ: Decreased GABA immunoreactivity in rat dorsal horn is correlated with pain behavior: a light and electron microscope study. Proceedings of the Eighth World Congress on Pain. Edited by: Jensen TS, Turner JA and Wiesenfeld-Hallin Z. Seattle, WA, IASP Press; 1997:547–560.
28.
go back to reference Eaton MJ, Plunkett JA, Karmally S, Martinez MA, Montanez K: Changes in GAD- and GABA- immunoreactivity in the spinal dorsal horn after peripheral nerve injury and promotion of recovery by lumbar transplant of immortalized serotonergic precursors. J Chem Neuroanat 1998, 16: 57–72. 10.1016/S0891-0618(98)00062-3PubMed Eaton MJ, Plunkett JA, Karmally S, Martinez MA, Montanez K: Changes in GAD- and GABA- immunoreactivity in the spinal dorsal horn after peripheral nerve injury and promotion of recovery by lumbar transplant of immortalized serotonergic precursors. J Chem Neuroanat 1998, 16: 57–72. 10.1016/S0891-0618(98)00062-3PubMed
29.
go back to reference Fukuoka T, Tokunaga A, Kondo E, Miki K, Tachibana T, Noguchi K: Change in mRNAs for neuropeptides and the GABA(A) receptor in dorsal root ganglion neurons in a rat experimental neuropathic pain model. Pain 1998, 78: 13–26. 10.1016/S0304-3959(98)00111-0PubMed Fukuoka T, Tokunaga A, Kondo E, Miki K, Tachibana T, Noguchi K: Change in mRNAs for neuropeptides and the GABA(A) receptor in dorsal root ganglion neurons in a rat experimental neuropathic pain model. Pain 1998, 78: 13–26. 10.1016/S0304-3959(98)00111-0PubMed
30.
go back to reference Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ: Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 2002, 22: 6724–6731.PubMed Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ: Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 2002, 22: 6724–6731.PubMed
31.
go back to reference Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y: Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 2003, 424: 938–942. 10.1038/nature01868PubMed Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y: Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 2003, 424: 938–942. 10.1038/nature01868PubMed
32.
go back to reference Miletic G, Draganic P, Pankratz MT, Miletic V: Muscimol prevents long-lasting potentiation of dorsal horn field potentials in rats with chronic constriction injury exhibiting decreased levels of the GABA transporter GAT-1. Pain 2003, 105: 347–353. 10.1016/S0304-3959(03)00250-1PubMed Miletic G, Draganic P, Pankratz MT, Miletic V: Muscimol prevents long-lasting potentiation of dorsal horn field potentials in rats with chronic constriction injury exhibiting decreased levels of the GABA transporter GAT-1. Pain 2003, 105: 347–353. 10.1016/S0304-3959(03)00250-1PubMed
33.
go back to reference Somers DL, Clemente FR: Dorsal horn synaptosomal content of aspartate, glutamate, glycine and GABA are differentially altered following chronic constriction injury to the rat sciatic nerve. Neurosci Lett 2002, 323: 171–174. 10.1016/S0304-3940(02)00157-XPubMed Somers DL, Clemente FR: Dorsal horn synaptosomal content of aspartate, glutamate, glycine and GABA are differentially altered following chronic constriction injury to the rat sciatic nerve. Neurosci Lett 2002, 323: 171–174. 10.1016/S0304-3940(02)00157-XPubMed
34.
go back to reference Polgar E, Hughes DI, Riddell JS, Maxwell DJ, Puskar Z, Todd AJ: Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain 2003, 104: 229–239. 10.1016/S0304-3959(03)00011-3PubMed Polgar E, Hughes DI, Riddell JS, Maxwell DJ, Puskar Z, Todd AJ: Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain 2003, 104: 229–239. 10.1016/S0304-3959(03)00011-3PubMed
35.
go back to reference Polgar E, Gray S, Riddell JS, Todd AJ: Lack of evidence for significant neuronal loss in laminae I-III of the spinal dorsal horn of the rat in the chronic constriction injury model. Pain 2004, 111: 144–150. 10.1016/j.pain.2004.06.011PubMed Polgar E, Gray S, Riddell JS, Todd AJ: Lack of evidence for significant neuronal loss in laminae I-III of the spinal dorsal horn of the rat in the chronic constriction injury model. Pain 2004, 111: 144–150. 10.1016/j.pain.2004.06.011PubMed
36.
go back to reference Polgar E, Hughes DI, Arham AZ, Todd AJ: Loss of neurons from laminas I-III of the spinal dorsal horn is not required for development of tactile allodynia in the spared nerve injury model of neuropathic pain. J Neurosci 2005, 25: 6658–6666. 10.1523/JNEUROSCI.1490-05.2005PubMed Polgar E, Hughes DI, Arham AZ, Todd AJ: Loss of neurons from laminas I-III of the spinal dorsal horn is not required for development of tactile allodynia in the spared nerve injury model of neuropathic pain. J Neurosci 2005, 25: 6658–6666. 10.1523/JNEUROSCI.1490-05.2005PubMed
37.
go back to reference Price TJ, Cervero F, De Koninck Y: Role of cation-chloride-cotransporters (CCC) in pain and hyperalgesia. Curr Top Med Chem 2005, 5: 547–555. 10.2174/1568026054367629PubMedCentralPubMed Price TJ, Cervero F, De Koninck Y: Role of cation-chloride-cotransporters (CCC) in pain and hyperalgesia. Curr Top Med Chem 2005, 5: 547–555. 10.2174/1568026054367629PubMedCentralPubMed
38.
go back to reference Staley KJ, Mody I: Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABA(A) receptor-mediated postsynaptic conductance. J Neurophysiol 1992, 68: 197–212.PubMed Staley KJ, Mody I: Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABA(A) receptor-mediated postsynaptic conductance. J Neurophysiol 1992, 68: 197–212.PubMed
39.
go back to reference Gulledge AT, Stuart GJ: Excitatory actions of GABA in the cortex. Neuron 2003, 37: 299–309. 10.1016/S0896-6273(02)01146-7PubMed Gulledge AT, Stuart GJ: Excitatory actions of GABA in the cortex. Neuron 2003, 37: 299–309. 10.1016/S0896-6273(02)01146-7PubMed
40.
go back to reference Chance FS, Abbott LF, Reyes AD: Gain modulation from background synaptic input. Neuron 2002, 35: 773–782. 10.1016/S0896-6273(02)00820-6PubMed Chance FS, Abbott LF, Reyes AD: Gain modulation from background synaptic input. Neuron 2002, 35: 773–782. 10.1016/S0896-6273(02)00820-6PubMed
41.
go back to reference Prescott SA, De Koninck Y: Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proc Natl Acad Sci USA 2003, 100: 2076–2081. 10.1073/pnas.0337591100PubMedCentralPubMed Prescott SA, De Koninck Y: Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proc Natl Acad Sci USA 2003, 100: 2076–2081. 10.1073/pnas.0337591100PubMedCentralPubMed
42.
go back to reference Coull JAM, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y: BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438: 1017–1021. 10.1038/nature04223PubMed Coull JAM, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y: BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438: 1017–1021. 10.1038/nature04223PubMed
43.
go back to reference Jensen TS, Baron R: Translation of symptoms and signs into mechanisms in neuropathic pain. Pain 2003, 102: 1–8. 10.1016/s0304-3959(03)00006-xPubMed Jensen TS, Baron R: Translation of symptoms and signs into mechanisms in neuropathic pain. Pain 2003, 102: 1–8. 10.1016/s0304-3959(03)00006-xPubMed
44.
go back to reference Trevino DL: The origin and projections of a spinal nociceptive and thermoreceptive pathway. In Sensory Functions of the Skin. Edited by: Zotterman Y. Oxford, Pergamon Press; 1976:367–376. Trevino DL: The origin and projections of a spinal nociceptive and thermoreceptive pathway. In Sensory Functions of the Skin. Edited by: Zotterman Y. Oxford, Pergamon Press; 1976:367–376.
45.
go back to reference Perl ER: Pain and nociception. In Sensory processes. Edited by: Darian-Smith I. Bethesda, American Physiological Society; 1984:915–975. Perl ER: Pain and nociception. In Sensory processes. Edited by: Darian-Smith I. Bethesda, American Physiological Society; 1984:915–975.
46.
go back to reference Craig AD: Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 2003, 26: 1–30. 10.1146/annurev.neuro.26.041002.131022PubMed Craig AD: Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 2003, 26: 1–30. 10.1146/annurev.neuro.26.041002.131022PubMed
47.
go back to reference Craig AD, Kniffki KD: Spinothalamic lumbosacral lamina I cells responsive to skin and muscle stimulation in the cat. J Physiol 1985, 365: 197–221.PubMedCentralPubMed Craig AD, Kniffki KD: Spinothalamic lumbosacral lamina I cells responsive to skin and muscle stimulation in the cat. J Physiol 1985, 365: 197–221.PubMedCentralPubMed
48.
go back to reference Bester H, Chapman V, Besson JM, Bernard JF: Physiological properties of the lamina I spinoparabrachial neurons in the rat. J Neurophysiol 2000, 83: 2239–2259.PubMed Bester H, Chapman V, Besson JM, Bernard JF: Physiological properties of the lamina I spinoparabrachial neurons in the rat. J Neurophysiol 2000, 83: 2239–2259.PubMed
49.
go back to reference Craig AD, Krout K, Andrew D: Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. J Neurophysiol 2001, 86: 1459–1480.PubMed Craig AD, Krout K, Andrew D: Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. J Neurophysiol 2001, 86: 1459–1480.PubMed
50.
go back to reference Andrew D, Craig AD: Responses of spinothalamic lamina I neurons to maintained noxious mechanical stimulation in the cat. J Neurophysiol 2002, 87: 1889–1901.PubMed Andrew D, Craig AD: Responses of spinothalamic lamina I neurons to maintained noxious mechanical stimulation in the cat. J Neurophysiol 2002, 87: 1889–1901.PubMed
51.
go back to reference Craig AD, Andrew D: Responses of spinothalamic lamina I neurons to repeated brief contact heat stimulation in the cat. J Neurophysiol 2002, 87: 1902–1914.PubMed Craig AD, Andrew D: Responses of spinothalamic lamina I neurons to repeated brief contact heat stimulation in the cat. J Neurophysiol 2002, 87: 1902–1914.PubMed
52.
go back to reference Slugg RM, Campbell JN, Meyer RA: The population response of A- and C-fiber nociceptors in monkey encodes high-intensity mechanical stimuli. J Neurosci 2004, 24: 4649–4656. 10.1523/JNEUROSCI.0701-04.2004PubMed Slugg RM, Campbell JN, Meyer RA: The population response of A- and C-fiber nociceptors in monkey encodes high-intensity mechanical stimuli. J Neurosci 2004, 24: 4649–4656. 10.1523/JNEUROSCI.0701-04.2004PubMed
53.
go back to reference Torsney C, MacDermott AB: Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 2006, 26: 1833–1843. 10.1523/JNEUROSCI.4584-05.2006PubMed Torsney C, MacDermott AB: Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 2006, 26: 1833–1843. 10.1523/JNEUROSCI.4584-05.2006PubMed
54.
go back to reference Prescott SA, De Koninck Y: Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat. J Physiol 2002, 539: 817–836. 10.1113/jphysiol.2001.013437PubMedCentralPubMed Prescott SA, De Koninck Y: Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat. J Physiol 2002, 539: 817–836. 10.1113/jphysiol.2001.013437PubMedCentralPubMed
55.
go back to reference Eccles JC: The Physiology of Synapses. Berlin, Springer-Verlag; 1964. Eccles JC: The Physiology of Synapses. Berlin, Springer-Verlag; 1964.
56.
go back to reference Borg-Graham LJ, Monier C, Fregnac Y: Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 1998, 393: 369–373. 10.1038/30735PubMed Borg-Graham LJ, Monier C, Fregnac Y: Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 1998, 393: 369–373. 10.1038/30735PubMed
57.
go back to reference Kontinen VK, Stanfa LC, Basu A, Dickenson AH: Electrophysiologic evidence for increased endogenous GABAergic but not glycinergic inhibitory tone in the rat spinal nerve ligation model of neuropathy. Anesthesiology 2001, 94: 333–339. 10.1097/00000542-200102000-00024PubMed Kontinen VK, Stanfa LC, Basu A, Dickenson AH: Electrophysiologic evidence for increased endogenous GABAergic but not glycinergic inhibitory tone in the rat spinal nerve ligation model of neuropathy. Anesthesiology 2001, 94: 333–339. 10.1097/00000542-200102000-00024PubMed
58.
go back to reference Chizh BA, Headley PM: NMDA antagonists and neuropathic pain - multiple drug targets and multiple uses. Curr Pharm Des 2005, 11: 2977–2994. 10.2174/1381612054865082PubMed Chizh BA, Headley PM: NMDA antagonists and neuropathic pain - multiple drug targets and multiple uses. Curr Pharm Des 2005, 11: 2977–2994. 10.2174/1381612054865082PubMed
59.
go back to reference Isaev D, Gerber G, Park SK, Chung JM, Randik M: Facilitation of NMDA-induced currents and Ca2+ transients in the rat substantia gelatinosa neurons after ligation of L5-L6 spinal nerves. Neuroreport 2000, 11: 4055–4061.PubMed Isaev D, Gerber G, Park SK, Chung JM, Randik M: Facilitation of NMDA-induced currents and Ca2+ transients in the rat substantia gelatinosa neurons after ligation of L5-L6 spinal nerves. Neuroreport 2000, 11: 4055–4061.PubMed
60.
go back to reference Kalso E: Sodium channel blockers in neuropathic pain. Curr Pharm Des 2005, 11: 3005–3011. 10.2174/1381612054865028PubMed Kalso E: Sodium channel blockers in neuropathic pain. Curr Pharm Des 2005, 11: 3005–3011. 10.2174/1381612054865028PubMed
61.
go back to reference Yoshimura M, North RA: Substantia gelatinosa neurones hyperpolarized in vitro by enkephalin. Nature 1983, 305: 529–530. 10.1038/305529a0PubMed Yoshimura M, North RA: Substantia gelatinosa neurones hyperpolarized in vitro by enkephalin. Nature 1983, 305: 529–530. 10.1038/305529a0PubMed
62.
go back to reference Kuhn A, Aertsen A, Rotter S: Neuronal integration of synaptic input in the fluctuation-driven regime. J Neurosci 2004, 24: 2345–2356. 10.1523/JNEUROSCI.3349-03.2004PubMed Kuhn A, Aertsen A, Rotter S: Neuronal integration of synaptic input in the fluctuation-driven regime. J Neurosci 2004, 24: 2345–2356. 10.1523/JNEUROSCI.3349-03.2004PubMed
63.
go back to reference Morita K, Tsumoto K, Aihara K: Possible effects of depolarizing GABA(A) conductance on the neuronal input-output relationship: a modeling study. J Neurophysiol 2005, 93: 3504–3523. 10.1152/jn.00988.2004PubMed Morita K, Tsumoto K, Aihara K: Possible effects of depolarizing GABA(A) conductance on the neuronal input-output relationship: a modeling study. J Neurophysiol 2005, 93: 3504–3523. 10.1152/jn.00988.2004PubMed
64.
go back to reference Pezet S, McMahon SB: Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 2006, 29: 507–538. 10.1146/annurev.neuro.29.051605.112929PubMed Pezet S, McMahon SB: Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 2006, 29: 507–538. 10.1146/annurev.neuro.29.051605.112929PubMed
65.
go back to reference Qian N, Sejnowski TJ: When is an inhibitory synapse effective? Proc Natl Acad Sci USA 1990, 87: 8145–8149. 10.1073/pnas.87.20.8145PubMedCentralPubMed Qian N, Sejnowski TJ: When is an inhibitory synapse effective? Proc Natl Acad Sci USA 1990, 87: 8145–8149. 10.1073/pnas.87.20.8145PubMedCentralPubMed
66.
go back to reference Staley KJ, Soldo BL, Proctor WR: Ionic mechanisms of neuronal excitation by inhibitory GABA(A) receptors. Science 1995, 269: 977–981.PubMed Staley KJ, Soldo BL, Proctor WR: Ionic mechanisms of neuronal excitation by inhibitory GABA(A) receptors. Science 1995, 269: 977–981.PubMed
67.
go back to reference Staley KJ, Proctor WR: Modulation of mammalian dendritic GABA(A) receptor function by the kinetics of Cl- and HCO3- transport. J Physiol 1999, 519: 693–712. 10.1111/j.1469-7793.1999.0693n.xPubMedCentralPubMed Staley KJ, Proctor WR: Modulation of mammalian dendritic GABA(A) receptor function by the kinetics of Cl- and HCO3- transport. J Physiol 1999, 519: 693–712. 10.1111/j.1469-7793.1999.0693n.xPubMedCentralPubMed
68.
go back to reference Cordero-Erausquin M, Coull JA, Boudreau D, Rolland M, De Koninck Y: Differential maturation of GABA action and anion reversal potential in spinal lamina I neurons: impact of chloride extrusion capacity. J Neurosci 2005, 25: 9613–9623. 10.1523/JNEUROSCI.1488-05.2005PubMed Cordero-Erausquin M, Coull JA, Boudreau D, Rolland M, De Koninck Y: Differential maturation of GABA action and anion reversal potential in spinal lamina I neurons: impact of chloride extrusion capacity. J Neurosci 2005, 25: 9613–9623. 10.1523/JNEUROSCI.1488-05.2005PubMed
69.
go back to reference Kaila K, Lamsa K, Smirnov S, Taira T, Voipio J: Long-lasting GABA-mediated depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a network-driven, bicarbonate-dependent K+ transient. J Neurosci 1997, 17: 7662–7672.PubMed Kaila K, Lamsa K, Smirnov S, Taira T, Voipio J: Long-lasting GABA-mediated depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a network-driven, bicarbonate-dependent K+ transient. J Neurosci 1997, 17: 7662–7672.PubMed
70.
go back to reference Jarolimek W, Lewen A, Misgeld U: A furosemide-sensitive K+-Cl- cotransporter counteracts intracellular Cl- accumulation and depletion in cultured rat midbrain neurons. J Neurosci 1999, 19: 4695–4704.PubMed Jarolimek W, Lewen A, Misgeld U: A furosemide-sensitive K+-Cl- cotransporter counteracts intracellular Cl- accumulation and depletion in cultured rat midbrain neurons. J Neurosci 1999, 19: 4695–4704.PubMed
71.
go back to reference Todd AJ: GABA and glycine in synaptic glomeruli of the rat spinal dorsal horn. Eur J Neurosci 1996, 8: 2492–2498. 10.1111/j.1460-9568.1996.tb01543.xPubMed Todd AJ: GABA and glycine in synaptic glomeruli of the rat spinal dorsal horn. Eur J Neurosci 1996, 8: 2492–2498. 10.1111/j.1460-9568.1996.tb01543.xPubMed
72.
go back to reference Chéry N, De Koninck Y: Junctional versus extrajunctional glycine and GABA(A) receptor-mediated IPSCs in identified lamina I neurons of the adult rat spinal cord. J Neurosci 1999, 19: 7342–7355.PubMed Chéry N, De Koninck Y: Junctional versus extrajunctional glycine and GABA(A) receptor-mediated IPSCs in identified lamina I neurons of the adult rat spinal cord. J Neurosci 1999, 19: 7342–7355.PubMed
73.
go back to reference Keller AF, Coull JA, Chery N, Poisbeau P, De Koninck Y: Region-specific developmental specialization of GABA-glycine cosynapses in laminas I-II of the rat spinal dorsal horn. J Neurosci 2001, 21: 7871–7880.PubMed Keller AF, Coull JA, Chery N, Poisbeau P, De Koninck Y: Region-specific developmental specialization of GABA-glycine cosynapses in laminas I-II of the rat spinal dorsal horn. J Neurosci 2001, 21: 7871–7880.PubMed
74.
go back to reference Harvey RJ, Depner UB, Wassle H, Ahmadi S, Heindl C, Reinold H, Smart TG, Harvey K, Schutz B, Abo-Salem OM, Zimmer A, Poisbeau P, Welzl H, Wolfer DP, Betz H, Zeilhofer HU, Muller U: GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 2004, 304: 884–887. 10.1126/science.1094925PubMed Harvey RJ, Depner UB, Wassle H, Ahmadi S, Heindl C, Reinold H, Smart TG, Harvey K, Schutz B, Abo-Salem OM, Zimmer A, Poisbeau P, Welzl H, Wolfer DP, Betz H, Zeilhofer HU, Muller U: GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 2004, 304: 884–887. 10.1126/science.1094925PubMed
75.
go back to reference Zeilhofer HU: The glycinergic control of spinal pain processing. Cell Mol Life Sci 2005, 62: 2027–2035. 10.1007/s00018-005-5107-2PubMed Zeilhofer HU: The glycinergic control of spinal pain processing. Cell Mol Life Sci 2005, 62: 2027–2035. 10.1007/s00018-005-5107-2PubMed
76.
go back to reference Poisbeau P, Patte-Mensah C, Keller AF, Barrot M, Breton JD, Luis-Delgado OE, Freund-Mercier MJ, Mensah-Nyagan AG, Schlichter R: Inflammatory pain upregulates spinal inhibition via endogenous neurosteroid production. J Neurosci 2005, 25: 11768–11776. 10.1523/JNEUROSCI.3841-05.2005PubMed Poisbeau P, Patte-Mensah C, Keller AF, Barrot M, Breton JD, Luis-Delgado OE, Freund-Mercier MJ, Mensah-Nyagan AG, Schlichter R: Inflammatory pain upregulates spinal inhibition via endogenous neurosteroid production. J Neurosci 2005, 25: 11768–11776. 10.1523/JNEUROSCI.3841-05.2005PubMed
77.
go back to reference Cummins TR, Dib-Hajj SD, Black JA, Waxman SG: Sodium channels and the molecular pathophysiology of pain. Prog Brain Res 2000, 129: 3–19.PubMed Cummins TR, Dib-Hajj SD, Black JA, Waxman SG: Sodium channels and the molecular pathophysiology of pain. Prog Brain Res 2000, 129: 3–19.PubMed
78.
go back to reference Julius D, Basbaum AI: Molecular mechanisms of nociception. Nature 2001, 413: 203–210. 10.1038/35093019PubMed Julius D, Basbaum AI: Molecular mechanisms of nociception. Nature 2001, 413: 203–210. 10.1038/35093019PubMed
79.
go back to reference Lewin GR, Lu Y, Park TJ: A plethora of painful molecules. Curr Opin Neurobiol 2004, 14: 443–449. 10.1016/j.conb.2004.07.009PubMed Lewin GR, Lu Y, Park TJ: A plethora of painful molecules. Curr Opin Neurobiol 2004, 14: 443–449. 10.1016/j.conb.2004.07.009PubMed
80.
go back to reference Melzack R, Wall PD: Pain mechanisms: a new theory. Science 1965, 150: 971–979. 10.1126/science.150.3699.971PubMed Melzack R, Wall PD: Pain mechanisms: a new theory. Science 1965, 150: 971–979. 10.1126/science.150.3699.971PubMed
81.
go back to reference Game CJ, Lodge D: The pharmacology of the inhibition of dorsal horn neurones by impulses in myelinated cutaneous afferents in the cat. Exp Brain Res 1975, 23: 75–84. 10.1007/BF00238730PubMed Game CJ, Lodge D: The pharmacology of the inhibition of dorsal horn neurones by impulses in myelinated cutaneous afferents in the cat. Exp Brain Res 1975, 23: 75–84. 10.1007/BF00238730PubMed
82.
go back to reference Baba H, Ji RR, Kohno T, Moore KA, Ataka T, Wakai A, Okamoto M, Woolf CJ: Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn. Mol Cell Neurosci 2003, 24: 818–830. 10.1016/S1044-7431(03)00236-7PubMed Baba H, Ji RR, Kohno T, Moore KA, Ataka T, Wakai A, Okamoto M, Woolf CJ: Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn. Mol Cell Neurosci 2003, 24: 818–830. 10.1016/S1044-7431(03)00236-7PubMed
83.
go back to reference Furue H, Katafuchi T, Yoshimura M: Sensory processing and functional reorganization of sensory transmission under pathological conditions in the spinal dorsal horn. Neurosci Res 2004, 48: 361–368. 10.1016/j.neures.2003.12.005PubMed Furue H, Katafuchi T, Yoshimura M: Sensory processing and functional reorganization of sensory transmission under pathological conditions in the spinal dorsal horn. Neurosci Res 2004, 48: 361–368. 10.1016/j.neures.2003.12.005PubMed
84.
go back to reference Seagrove LC, Suzuki R, Dickenson AH: Electrophysiological characterisations of rat lamina I dorsal horn neurones and the involvement of excitatory amino acid receptors. Pain 2004, 108: 76–87. 10.1016/j.pain.2003.12.004PubMed Seagrove LC, Suzuki R, Dickenson AH: Electrophysiological characterisations of rat lamina I dorsal horn neurones and the involvement of excitatory amino acid receptors. Pain 2004, 108: 76–87. 10.1016/j.pain.2003.12.004PubMed
85.
go back to reference Buesa I, Ortiz V, Aguilera L, Torre F, Zimmermann M, Azkue JJ: Disinhibition of spinal responses to primary afferent input by antagonism at GABA receptors in urethane-anaesthetised rats is dependent on NMDA and metabotropic glutamate receptors. Neuropharmacology 2006. Buesa I, Ortiz V, Aguilera L, Torre F, Zimmermann M, Azkue JJ: Disinhibition of spinal responses to primary afferent input by antagonism at GABA receptors in urethane-anaesthetised rats is dependent on NMDA and metabotropic glutamate receptors. Neuropharmacology 2006.
86.
go back to reference McGowan MK, Hammond DL: Intrathecal GABA(B) antagonists attenuate the antinociception produced by microinjection of L-glutamate into the ventromedial medulla of the rat. Brain Res 1993, 607: 39–46. 10.1016/0006-8993(93)91487-DPubMed McGowan MK, Hammond DL: Intrathecal GABA(B) antagonists attenuate the antinociception produced by microinjection of L-glutamate into the ventromedial medulla of the rat. Brain Res 1993, 607: 39–46. 10.1016/0006-8993(93)91487-DPubMed
87.
go back to reference Antal M, Petko M, Polgar E, Heizmann CW, Storm-Mathisen J: Direct evidence of an extensive GABAergic innervation of the spinal dorsal horn by fibres descending from the rostral ventromedial medulla. Neuroscience 1996, 73: 509–518. 10.1016/0306-4522(96)00063-2PubMed Antal M, Petko M, Polgar E, Heizmann CW, Storm-Mathisen J: Direct evidence of an extensive GABAergic innervation of the spinal dorsal horn by fibres descending from the rostral ventromedial medulla. Neuroscience 1996, 73: 509–518. 10.1016/0306-4522(96)00063-2PubMed
88.
go back to reference Lin Q, Peng YB, Willis WD: Inhibition of primate spinothalamic tract neurons by spinal glycine and GABA is reduced during central sensitization. J Neurophysiol 1996, 76: 1005–1014.PubMed Lin Q, Peng YB, Willis WD: Inhibition of primate spinothalamic tract neurons by spinal glycine and GABA is reduced during central sensitization. J Neurophysiol 1996, 76: 1005–1014.PubMed
89.
go back to reference Peng YB, Lin Q, Willis WD: Effects of GABA and glycine receptor antagonists on the activity and PAG-induced inhibition of rat dorsal horn neurons. Brain Res 1996, 736: 189–201. 10.1016/0006-8993(96)00668-3PubMed Peng YB, Lin Q, Willis WD: Effects of GABA and glycine receptor antagonists on the activity and PAG-induced inhibition of rat dorsal horn neurons. Brain Res 1996, 736: 189–201. 10.1016/0006-8993(96)00668-3PubMed
90.
go back to reference Hao JX, Xu XJ, Aldskogius H, Seiger A, Wiesenfeld-Hallin Z: Allodynia-like effects in rat after ischaemic spinal cord injury photochemically induced by laser irradiation. Pain 1991, 45: 175–185. 10.1016/0304-3959(91)90186-2PubMed Hao JX, Xu XJ, Aldskogius H, Seiger A, Wiesenfeld-Hallin Z: Allodynia-like effects in rat after ischaemic spinal cord injury photochemically induced by laser irradiation. Pain 1991, 45: 175–185. 10.1016/0304-3959(91)90186-2PubMed
91.
go back to reference Xu XJ, Hao JX, Aldskogius H, Seiger A, Wiesenfeld-Hallin Z: Chronic pain-related syndrome in rats after ischemic spinal cord lesion: a possible animal model for pain in patients with spinal cord injury. Pain 1992, 48: 279–290. 10.1016/0304-3959(92)90070-RPubMed Xu XJ, Hao JX, Aldskogius H, Seiger A, Wiesenfeld-Hallin Z: Chronic pain-related syndrome in rats after ischemic spinal cord lesion: a possible animal model for pain in patients with spinal cord injury. Pain 1992, 48: 279–290. 10.1016/0304-3959(92)90070-RPubMed
92.
go back to reference Woolf CJ, Bennett GJ, Doherty M, Dubner R, Kidd B, Koltzenburg M, Lipton R, Loeser JD, Payne R, Torebjork E: Towards a mechanism-based classification of pain? Pain 1998, 77: 227–229. 10.1016/S0304-3959(98)00099-2PubMed Woolf CJ, Bennett GJ, Doherty M, Dubner R, Kidd B, Koltzenburg M, Lipton R, Loeser JD, Payne R, Torebjork E: Towards a mechanism-based classification of pain? Pain 1998, 77: 227–229. 10.1016/S0304-3959(98)00099-2PubMed
93.
go back to reference Block BM, Hurley RW, Raja SN: Mechanism-based therapies for pain. Drug News Perspect 2004, 17: 172–186. 10.1358/dnp.2004.17.3.829015PubMed Block BM, Hurley RW, Raja SN: Mechanism-based therapies for pain. Drug News Perspect 2004, 17: 172–186. 10.1358/dnp.2004.17.3.829015PubMed
94.
go back to reference Smith PA: Neuropathic pain: drug targets for current and future interventions. Drug News Perspect 2004, 17: 5–17. 10.1358/dnp.2004.17.1.829021PubMed Smith PA: Neuropathic pain: drug targets for current and future interventions. Drug News Perspect 2004, 17: 5–17. 10.1358/dnp.2004.17.1.829021PubMed
95.
go back to reference Woolf CJ: Pain: moving from symptom control toward mechanism-specific pharmacologic management. Ann Intern Med 2004, 140: 441–451.PubMed Woolf CJ: Pain: moving from symptom control toward mechanism-specific pharmacologic management. Ann Intern Med 2004, 140: 441–451.PubMed
96.
go back to reference Harden RN: Chronic neuropathic pain. Mechanisms, diagnosis, and treatment. Neurologist 2005, 11: 111–122. 10.1097/01.nrl.0000155180.60057.8ePubMed Harden RN: Chronic neuropathic pain. Mechanisms, diagnosis, and treatment. Neurologist 2005, 11: 111–122. 10.1097/01.nrl.0000155180.60057.8ePubMed
97.
go back to reference Hines ML, Carnevale NT: The NEURON simulation environment. Neural Comput 1997, 9: 1179–1209. 10.1162/neco.1997.9.6.1179PubMed Hines ML, Carnevale NT: The NEURON simulation environment. Neural Comput 1997, 9: 1179–1209. 10.1162/neco.1997.9.6.1179PubMed
98.
go back to reference Mainen ZF, Joerges J, Huguenard JR, Sejnowski TJ: A model of spike initiation in neocortical pyramidal neurons. Neuron 1995, 15: 1427–1439. 10.1016/0896-6273(95)90020-9PubMed Mainen ZF, Joerges J, Huguenard JR, Sejnowski TJ: A model of spike initiation in neocortical pyramidal neurons. Neuron 1995, 15: 1427–1439. 10.1016/0896-6273(95)90020-9PubMed
99.
go back to reference Traub RD, Miles R: Neuronal Networks of the Hippocampus. Cambridge,U.K., Cambridge; 1991. Traub RD, Miles R: Neuronal Networks of the Hippocampus. Cambridge,U.K., Cambridge; 1991.
100.
go back to reference Prescott SA, De Koninck Y: Integration time in a subset of spinal lamina I neurons is lengthened by sodium and calcium currents acting synergistically to prolong subthreshold depolarization. J Neurosci 2005, 25: 4743–4754. 10.1523/JNEUROSCI.0356-05.2005PubMed Prescott SA, De Koninck Y: Integration time in a subset of spinal lamina I neurons is lengthened by sodium and calcium currents acting synergistically to prolong subthreshold depolarization. J Neurosci 2005, 25: 4743–4754. 10.1523/JNEUROSCI.0356-05.2005PubMed
101.
go back to reference Mainen ZF, Sejnowski TJ: Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 1996, 382: 363–366. 10.1038/382363a0PubMed Mainen ZF, Sejnowski TJ: Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 1996, 382: 363–366. 10.1038/382363a0PubMed
102.
go back to reference Dahlhaus A, Ruscheweyh R, Sandkuhler J: Synaptic input of rat spinal lamina I projection and unidentified neurones in vitro. J Physiol 2005, 566: 355–368. 10.1113/jphysiol.2005.088567PubMedCentralPubMed Dahlhaus A, Ruscheweyh R, Sandkuhler J: Synaptic input of rat spinal lamina I projection and unidentified neurones in vitro. J Physiol 2005, 566: 355–368. 10.1113/jphysiol.2005.088567PubMedCentralPubMed
103.
go back to reference Jahr CE, Stevens CF: A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci 1990, 10: 1830–1837.PubMed Jahr CE, Stevens CF: A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci 1990, 10: 1830–1837.PubMed
104.
go back to reference Jahr CE, Stevens CF: Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 1990, 10: 3178–3182.PubMed Jahr CE, Stevens CF: Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 1990, 10: 3178–3182.PubMed
105.
go back to reference Destexhe A, Mainen ZF, Sejnowski TJ: Kinetic models of synaptic transmission. In Methods in Neuronal Modeling. Volume 1. 2nd edition. Edited by: Koch C and Segev I. Cambridge, MA, MIT; 1998:1–25. Destexhe A, Mainen ZF, Sejnowski TJ: Kinetic models of synaptic transmission. In Methods in Neuronal Modeling. Volume 1. 2nd edition. Edited by: Koch C and Segev I. Cambridge, MA, MIT; 1998:1–25.
106.
go back to reference Furue H, Narikawa K, Kumamoto E, Yoshimura M: Responsiveness of rat substantia gelatinosa neurones to mechanical but not thermal stimuli revealed by in vivo patch-clamp recording. J Physiol 1999, 521 Pt 2: 529–535. 10.1111/j.1469-7793.1999.00529.xPubMed Furue H, Narikawa K, Kumamoto E, Yoshimura M: Responsiveness of rat substantia gelatinosa neurones to mechanical but not thermal stimuli revealed by in vivo patch-clamp recording. J Physiol 1999, 521 Pt 2: 529–535. 10.1111/j.1469-7793.1999.00529.xPubMed
Metadata
Title
Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain
Authors
Steven A Prescott
Terrence J Sejnowski
Yves De Koninck
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2006
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-2-32

Other articles of this Issue 1/2006

Molecular Pain 1/2006 Go to the issue