Skip to main content
Top
Published in: Molecular Pain 1/2006

Open Access 01-12-2006 | Short report

Loss of spinal substance P pain transmission under the condition of LPA1 receptor-mediated neuropathic pain

Authors: Makoto Inoue, Asuka Yamaguchi, Megumi Kawakami, Jerold Chun, Hiroshi Ueda

Published in: Molecular Pain | Issue 1/2006

Login to get access

Abstract

Among various machineries occurring in the experimental neuropathic pain model, there exists the loss of pain transmission through C-fiber neurons as well as the hypersensitivity through A-fibers. The current study reveals that molecular machineries underlying the latter hypersensitivity are derived from the events through LPA1 receptor and its downstream RhoA-activation following peripheral nerve injury. The loss of C-fiber responses, which are mediated by spinal substance P (SP) pain transmission was observed with the nociceptive flexor responses by intraplantar injection of SP in nerve-injured mice. The immunohistochemistry revealed that SP signal in the dorsal horn was markedly reduced in such mice. All these changes were completely abolished in LPA1 -/- mice or by the pretreatment with BoNT/C3, a RhoA inhibitor. In addition, the loss of C-fiber responses and the down-regulation of spinal SP signal induced by single intrathecal LPA injection were also abolished in such treatments. All these results suggest that the loss of pain transmission through polymodal C-fiber neurons is also mediated by the LPA1 activation following nerve injury.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dubner R: Neuronal plasticity in the spinal cord medullary dorsal horn: a possible role in central pain mechanisms. In: Pain and central nervous system disease (Casey KL ed), Raven Press New York 1991, 143–155. Dubner R: Neuronal plasticity in the spinal cord medullary dorsal horn: a possible role in central pain mechanisms. In: Pain and central nervous system disease (Casey KL ed), Raven Press New York 1991, 143–155.
2.
go back to reference Woolf CJ, Shortland P, Coggeshall RE: Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 1992,355(6355):75–78. 10.1038/355075a0PubMedCrossRef Woolf CJ, Shortland P, Coggeshall RE: Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 1992,355(6355):75–78. 10.1038/355075a0PubMedCrossRef
3.
go back to reference Woolf CJ, Mannion RJ: Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 1999,353(9168):1959–1964. 10.1016/S0140-6736(99)01307-0PubMedCrossRef Woolf CJ, Mannion RJ: Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 1999,353(9168):1959–1964. 10.1016/S0140-6736(99)01307-0PubMedCrossRef
4.
go back to reference Doubell TP, R.J. M, C.J. W: The dorsal horn: state-dependent sensory processing, plasticity and the generation of pain. In: Textbook of Pain Fourth Edition PD Wall and R Melzack (Eds), Churchill Livingstone London 1999, 165–181. Doubell TP, R.J. M, C.J. W: The dorsal horn: state-dependent sensory processing, plasticity and the generation of pain. In: Textbook of Pain Fourth Edition PD Wall and R Melzack (Eds), Churchill Livingstone London 1999, 165–181.
5.
go back to reference Woolf CJ, Salter MW: Neuronal plasticity: increasing the gain in pain. Science 2000,288(5472):1765–1769. 10.1126/science.288.5472.1765PubMedCrossRef Woolf CJ, Salter MW: Neuronal plasticity: increasing the gain in pain. Science 2000,288(5472):1765–1769. 10.1126/science.288.5472.1765PubMedCrossRef
6.
go back to reference Ueda H: Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms. Pharmacol Ther 2006,109(1–2):57–77. 10.1016/j.pharmthera.2005.06.003PubMedCrossRef Ueda H: Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms. Pharmacol Ther 2006,109(1–2):57–77. 10.1016/j.pharmthera.2005.06.003PubMedCrossRef
7.
go back to reference Ueda H, Rashid MH: Molecular mechanism of neuropathic pain. Drug News Perspect 2003,16(9):605–613. 10.1358/dnp.2003.16.9.829343PubMedCrossRef Ueda H, Rashid MH: Molecular mechanism of neuropathic pain. Drug News Perspect 2003,16(9):605–613. 10.1358/dnp.2003.16.9.829343PubMedCrossRef
8.
go back to reference Castro-Lopes JM, Coimbra A, Grant G, Arvidsson J: Ultrastructural changes of the central scalloped (C1) primary afferent endings of synaptic glomeruli in the substantia gelatinosa Rolandi of the rat after peripheral neurotomy. J Neurocytol 1990,19(3):329–337. 10.1007/BF01188402PubMedCrossRef Castro-Lopes JM, Coimbra A, Grant G, Arvidsson J: Ultrastructural changes of the central scalloped (C1) primary afferent endings of synaptic glomeruli in the substantia gelatinosa Rolandi of the rat after peripheral neurotomy. J Neurocytol 1990,19(3):329–337. 10.1007/BF01188402PubMedCrossRef
9.
go back to reference Eichholtz T, Jalink K, Fahrenfort I, Moolenaar WH: The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem J 1993, 291 ( Pt 3): 677–680. Eichholtz T, Jalink K, Fahrenfort I, Moolenaar WH: The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem J 1993, 291 ( Pt 3): 677–680.
10.
go back to reference Fukushima N, Ishii I, Contos JJ, Weiner JA, Chun J: Lysophospholipid receptors. Annu Rev Pharmacol Toxicol 2001, 41: 507–534. 10.1146/annurev.pharmtox.41.1.507PubMedCrossRef Fukushima N, Ishii I, Contos JJ, Weiner JA, Chun J: Lysophospholipid receptors. Annu Rev Pharmacol Toxicol 2001, 41: 507–534. 10.1146/annurev.pharmtox.41.1.507PubMedCrossRef
11.
go back to reference Fukushima N, Ye X, Chun J: Neurobiology of lysophosphatidic acid signaling. Neuroscientist 2002,8(6):540–550. 10.1177/1073858402238513PubMedCrossRef Fukushima N, Ye X, Chun J: Neurobiology of lysophosphatidic acid signaling. Neuroscientist 2002,8(6):540–550. 10.1177/1073858402238513PubMedCrossRef
12.
go back to reference Ishii I, Fukushima N, Ye X, Chun J: Lysophospholipid receptors: signaling and biology. Annu Rev Biochem 2004, 73: 321–354. 10.1146/annurev.biochem.73.011303.073731PubMedCrossRef Ishii I, Fukushima N, Ye X, Chun J: Lysophospholipid receptors: signaling and biology. Annu Rev Biochem 2004, 73: 321–354. 10.1146/annurev.biochem.73.011303.073731PubMedCrossRef
13.
go back to reference Kranenburg O, Poland M, van Horck FP, Drechsel D, Hall A, Moolenaar WH: Activation of RhoA by lysophosphatidic acid and Galpha12/13 subunits in neuronal cells: induction of neurite retraction. Mol Biol Cell 1999,10(6):1851–1857.PubMedCentralPubMedCrossRef Kranenburg O, Poland M, van Horck FP, Drechsel D, Hall A, Moolenaar WH: Activation of RhoA by lysophosphatidic acid and Galpha12/13 subunits in neuronal cells: induction of neurite retraction. Mol Biol Cell 1999,10(6):1851–1857.PubMedCentralPubMedCrossRef
14.
go back to reference Chun J, Rosen H: Lysophospholipid receptors as potential drug targets in tissue transplantation and autoimmune diseases. Curr Pharm Des 2006,12(2):161–171. 10.2174/138161206775193109PubMedCrossRef Chun J, Rosen H: Lysophospholipid receptors as potential drug targets in tissue transplantation and autoimmune diseases. Curr Pharm Des 2006,12(2):161–171. 10.2174/138161206775193109PubMedCrossRef
15.
go back to reference Gardell SE, Dubin AE, Chun J: Emerging medicinal roles for lysophospholipid signaling. Trends Mol Med 2006,12(2):65–75. 10.1016/j.molmed.2005.12.001PubMedCrossRef Gardell SE, Dubin AE, Chun J: Emerging medicinal roles for lysophospholipid signaling. Trends Mol Med 2006,12(2):65–75. 10.1016/j.molmed.2005.12.001PubMedCrossRef
16.
go back to reference Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H: Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med 2004,10(7):712–718. 10.1038/nm1060PubMedCrossRef Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H: Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med 2004,10(7):712–718. 10.1038/nm1060PubMedCrossRef
17.
go back to reference Zimmermann M: Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983,16(2):109–110. 10.1016/0304-3959(83)90201-4PubMedCrossRef Zimmermann M: Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983,16(2):109–110. 10.1016/0304-3959(83)90201-4PubMedCrossRef
18.
go back to reference Rashid MH, Inoue M, Kondo S, Kawashima T, Bakoshi S, Ueda H: Novel expression of vanilloid receptor 1 on capsaicin-insensitive fibers accounts for the analgesic effect of capsaicin cream in neuropathic pain. J Pharmacol Exp Ther 2003,304(3):940–948. 10.1124/jpet.102.046250PubMedCrossRef Rashid MH, Inoue M, Kondo S, Kawashima T, Bakoshi S, Ueda H: Novel expression of vanilloid receptor 1 on capsaicin-insensitive fibers accounts for the analgesic effect of capsaicin cream in neuropathic pain. J Pharmacol Exp Ther 2003,304(3):940–948. 10.1124/jpet.102.046250PubMedCrossRef
19.
go back to reference Inoue M, Rashid MH, Kawashima T, Matsumoto M, Maeda T, Kishioka S, Ueda H: The algogenic-induced nociceptive flexion test in mice: studies on sensitivity of the test and stress on animals. Brain Res Bull 2003,60(3):275–281. 10.1016/S0361-9230(03)00045-5PubMedCrossRef Inoue M, Rashid MH, Kawashima T, Matsumoto M, Maeda T, Kishioka S, Ueda H: The algogenic-induced nociceptive flexion test in mice: studies on sensitivity of the test and stress on animals. Brain Res Bull 2003,60(3):275–281. 10.1016/S0361-9230(03)00045-5PubMedCrossRef
20.
go back to reference Malmberg AB, Basbaum AI: Partial sciatic nerve injury in the mouse as a model of neuropathic pain: behavioral and neuroanatomical correlates. Pain 1998,76(1–2):215–222. 10.1016/S0304-3959(98)00045-1PubMedCrossRef Malmberg AB, Basbaum AI: Partial sciatic nerve injury in the mouse as a model of neuropathic pain: behavioral and neuroanatomical correlates. Pain 1998,76(1–2):215–222. 10.1016/S0304-3959(98)00045-1PubMedCrossRef
21.
go back to reference Rashid MH, Inoue M, Matsumoto M, Ueda H: Switching of bradykinin-mediated nociception following partial sciatic nerve injury in mice. J Pharmacol Exp Ther 2004,308(3):1158–1164. 10.1124/jpet.103.060335PubMedCrossRef Rashid MH, Inoue M, Matsumoto M, Ueda H: Switching of bradykinin-mediated nociception following partial sciatic nerve injury in mice. J Pharmacol Exp Ther 2004,308(3):1158–1164. 10.1124/jpet.103.060335PubMedCrossRef
22.
go back to reference Renback K, Inoue M, Ueda H: Lysophosphatidic acid-induced, pertussis toxin-sensitive nociception through a substance P release from peripheral nerve endings in mice. Neurosci Lett 1999,270(1):59–61. 10.1016/S0304-3940(99)00464-4PubMedCrossRef Renback K, Inoue M, Ueda H: Lysophosphatidic acid-induced, pertussis toxin-sensitive nociception through a substance P release from peripheral nerve endings in mice. Neurosci Lett 1999,270(1):59–61. 10.1016/S0304-3940(99)00464-4PubMedCrossRef
23.
go back to reference Renback K, Inoue M, Yoshida A, Nyberg F, Ueda H: Vzg-1/lysophosphatidic acid-receptor involved in peripheral pain transmission. Brain Res Mol Brain Res 2000,75(2):350–354. 10.1016/S0169-328X(99)00333-2PubMedCrossRef Renback K, Inoue M, Yoshida A, Nyberg F, Ueda H: Vzg-1/lysophosphatidic acid-receptor involved in peripheral pain transmission. Brain Res Mol Brain Res 2000,75(2):350–354. 10.1016/S0169-328X(99)00333-2PubMedCrossRef
Metadata
Title
Loss of spinal substance P pain transmission under the condition of LPA1 receptor-mediated neuropathic pain
Authors
Makoto Inoue
Asuka Yamaguchi
Megumi Kawakami
Jerold Chun
Hiroshi Ueda
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2006
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-2-25

Other articles of this Issue 1/2006

Molecular Pain 1/2006 Go to the issue