Skip to main content
Top
Published in: Molecular Pain 1/2014

Open Access 01-12-2014 | Research

A putative relay circuit providing low-threshold mechanoreceptive input to lamina I projection neurons via vertical cells in lamina II of the rat dorsal horn

Authors: Toshiharu Yasaka, Sheena YX Tiong, Erika Polgár, Masahiko Watanabe, Eiichi Kumamoto, John S Riddell, Andrew J Todd

Published in: Molecular Pain | Issue 1/2014

Login to get access

Abstract

Background

Lamina I projection neurons respond to painful stimuli, and some are also activated by touch or hair movement. Neuropathic pain resulting from peripheral nerve damage is often associated with tactile allodynia (touch-evoked pain), and this may result from increased responsiveness of lamina I projection neurons to non-noxious mechanical stimuli. It is thought that polysynaptic pathways involving excitatory interneurons can transmit tactile inputs to lamina I projection neurons, but that these are normally suppressed by inhibitory interneurons. Vertical cells in lamina II provide a potential route through which tactile stimuli can activate lamina I projection neurons, since their dendrites extend into the region where tactile afferents terminate, while their axons can innervate the projection cells. The aim of this study was to determine whether vertical cell dendrites were contacted by the central terminals of low-threshold mechanoreceptive primary afferents.

Results

We initially demonstrated contacts between dendritic spines of vertical cells that had been recorded in spinal cord slices and axonal boutons containing the vesicular glutamate transporter 1 (VGLUT1), which is expressed by myelinated low-threshold mechanoreceptive afferents. To confirm that the VGLUT1 boutons included primary afferents, we then examined vertical cells recorded in rats that had received injections of cholera toxin B subunit (CTb) into the sciatic nerve. We found that over half of the VGLUT1 boutons contacting the vertical cells were CTb-immunoreactive, indicating that they were of primary afferent origin.

Conclusions

These results show that vertical cell dendritic spines are frequently contacted by the central terminals of myelinated low-threshold mechanoreceptive afferents. Since dendritic spines are associated with excitatory synapses, it is likely that most of these contacts were synaptic. Vertical cells in lamina II are therefore a potential route through which tactile afferents can activate lamina I projection neurons, and this pathway could play a role in tactile allodynia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rexed B: The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 1952, 96: 414–495.PubMed Rexed B: The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 1952, 96: 414–495.PubMed
3.
go back to reference Polgar E, Durrieux C, Hughes DI, Todd AJ: A quantitative study of inhibitory interneurons in laminae I-III of the mouse spinal dorsal horn. PLoS One 2013, 8: e78309. 10.1371/journal.pone.0078309PubMedCentralPubMedCrossRef Polgar E, Durrieux C, Hughes DI, Todd AJ: A quantitative study of inhibitory interneurons in laminae I-III of the mouse spinal dorsal horn. PLoS One 2013, 8: e78309. 10.1371/journal.pone.0078309PubMedCentralPubMedCrossRef
4.
go back to reference Polgár E, Hughes DI, Riddell JS, Maxwell DJ, Puskar Z, Todd AJ: Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain 2003, 104: 229–239. 10.1016/S0304-3959(03)00011-3PubMedCrossRef Polgár E, Hughes DI, Riddell JS, Maxwell DJ, Puskar Z, Todd AJ: Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain 2003, 104: 229–239. 10.1016/S0304-3959(03)00011-3PubMedCrossRef
5.
go back to reference Maxwell DJ, Belle MD, Cheunsuang O, Stewart A, Morris R: Morphology of inhibitory and excitatory interneurons in superficial laminae of the rat dorsal horn. J Physiol 2007, 584: 521–533. 10.1113/jphysiol.2007.140996PubMedCentralPubMedCrossRef Maxwell DJ, Belle MD, Cheunsuang O, Stewart A, Morris R: Morphology of inhibitory and excitatory interneurons in superficial laminae of the rat dorsal horn. J Physiol 2007, 584: 521–533. 10.1113/jphysiol.2007.140996PubMedCentralPubMedCrossRef
6.
go back to reference Yasaka T, Tiong SYX, Hughes DI, Riddell JS, Todd AJ: Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain 2010, 151: 475–488. 10.1016/j.pain.2010.08.008PubMedCentralPubMedCrossRef Yasaka T, Tiong SYX, Hughes DI, Riddell JS, Todd AJ: Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain 2010, 151: 475–488. 10.1016/j.pain.2010.08.008PubMedCentralPubMedCrossRef
7.
go back to reference Yoshimura M, Nishi S: Excitatory amino acid receptors involved in primary afferent-evoked polysynaptic EPSPs of substantia gelatinosa neurons in the adult rat spinal cord slice. Neurosci Lett 1992, 143: 131–134. 10.1016/0304-3940(92)90249-7PubMedCrossRef Yoshimura M, Nishi S: Excitatory amino acid receptors involved in primary afferent-evoked polysynaptic EPSPs of substantia gelatinosa neurons in the adult rat spinal cord slice. Neurosci Lett 1992, 143: 131–134. 10.1016/0304-3940(92)90249-7PubMedCrossRef
8.
go back to reference Graham BA, Brichta AM, Callister RJ: Moving from an averaged to specific view of spinal cord pain processing circuits. J Neurophysiol 2007, 98: 1057–1063. 10.1152/jn.00581.2007PubMedCrossRef Graham BA, Brichta AM, Callister RJ: Moving from an averaged to specific view of spinal cord pain processing circuits. J Neurophysiol 2007, 98: 1057–1063. 10.1152/jn.00581.2007PubMedCrossRef
9.
go back to reference Grudt TJ, Perl ER: Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J Physiol 2002, 540: 189–207. 10.1113/jphysiol.2001.012890PubMedCentralPubMedCrossRef Grudt TJ, Perl ER: Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J Physiol 2002, 540: 189–207. 10.1113/jphysiol.2001.012890PubMedCentralPubMedCrossRef
10.
go back to reference Polgár E, Sardella TCP, Tiong SYX, Locke S, Watanabe M, Todd AJ: Functional differences between neurochemically-defined populations of inhibitory interneurons in the rat spinal cord. Pain 2013, 154: 2606–2615. 10.1016/j.pain.2013.05.001PubMedCentralPubMedCrossRef Polgár E, Sardella TCP, Tiong SYX, Locke S, Watanabe M, Todd AJ: Functional differences between neurochemically-defined populations of inhibitory interneurons in the rat spinal cord. Pain 2013, 154: 2606–2615. 10.1016/j.pain.2013.05.001PubMedCentralPubMedCrossRef
11.
go back to reference Yasaka T, Kato G, Furue H, Rashid MH, Sonohata M, Tamae A, Murata Y, Masuko S, Yoshimura M: Cell-type-specific excitatory and inhibitory circuits involving primary afferents in the substantia gelatinosa of the rat spinal dorsal horn in vitro. J Physiol 2007, 581: 603–618. 10.1113/jphysiol.2006.123919PubMedCentralPubMedCrossRef Yasaka T, Kato G, Furue H, Rashid MH, Sonohata M, Tamae A, Murata Y, Masuko S, Yoshimura M: Cell-type-specific excitatory and inhibitory circuits involving primary afferents in the substantia gelatinosa of the rat spinal dorsal horn in vitro. J Physiol 2007, 581: 603–618. 10.1113/jphysiol.2006.123919PubMedCentralPubMedCrossRef
12.
go back to reference Santos SF, Rebelo S, Derkach VA, Safronov BV: Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat. J Physiol 2007, 581: 241–254. 10.1113/jphysiol.2006.126912PubMedCentralPubMedCrossRef Santos SF, Rebelo S, Derkach VA, Safronov BV: Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat. J Physiol 2007, 581: 241–254. 10.1113/jphysiol.2006.126912PubMedCentralPubMedCrossRef
13.
go back to reference Heinke B, Ruscheweyh R, Forsthuber L, Wunderbaldinger G, Sandkuhler J: Physiological, neurochemical and morphological properties of a subgroup of GABAergic spinal lamina II neurones identified by expression of green fluorescent protein in mice. J Physiol 2004, 560: 249–266. 10.1113/jphysiol.2004.070540PubMedCentralPubMedCrossRef Heinke B, Ruscheweyh R, Forsthuber L, Wunderbaldinger G, Sandkuhler J: Physiological, neurochemical and morphological properties of a subgroup of GABAergic spinal lamina II neurones identified by expression of green fluorescent protein in mice. J Physiol 2004, 560: 249–266. 10.1113/jphysiol.2004.070540PubMedCentralPubMedCrossRef
14.
go back to reference Zeilhofer HU, Wildner H, Yevenes GE: Fast synaptic inhibition in spinal sensory processing and pain control. Physiol Rev 2012, 92: 193–235. 10.1152/physrev.00043.2010PubMedCentralPubMedCrossRef Zeilhofer HU, Wildner H, Yevenes GE: Fast synaptic inhibition in spinal sensory processing and pain control. Physiol Rev 2012, 92: 193–235. 10.1152/physrev.00043.2010PubMedCentralPubMedCrossRef
15.
go back to reference Uta D, Furue H, Pickering AE, Rashid MH, Mizuguchi-Takase H, Katafuchi T, Imoto K, Yoshimura M: TRPA1-expressing primary afferents synapse with a morphologically identified subclass of substantia gelatinosa neurons in the adult rat spinal cord. Eur J Neurosci 2010, 31: 1960–1973. 10.1111/j.1460-9568.2010.07255.xPubMedCentralPubMedCrossRef Uta D, Furue H, Pickering AE, Rashid MH, Mizuguchi-Takase H, Katafuchi T, Imoto K, Yoshimura M: TRPA1-expressing primary afferents synapse with a morphologically identified subclass of substantia gelatinosa neurons in the adult rat spinal cord. Eur J Neurosci 2010, 31: 1960–1973. 10.1111/j.1460-9568.2010.07255.xPubMedCentralPubMedCrossRef
16.
go back to reference Wang H, Zylka MJ: Mrgprd-expressing polymodal nociceptive neurons innervate most known classes of substantia gelatinosa neurons. J Neurosci 2009, 29: 13202–13209. 10.1523/JNEUROSCI.3248-09.2009PubMedCentralPubMedCrossRef Wang H, Zylka MJ: Mrgprd-expressing polymodal nociceptive neurons innervate most known classes of substantia gelatinosa neurons. J Neurosci 2009, 29: 13202–13209. 10.1523/JNEUROSCI.3248-09.2009PubMedCentralPubMedCrossRef
17.
go back to reference Lu Y, Perl ER: Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II). J Neurosci 2005, 25: 3900–3907. 10.1523/JNEUROSCI.0102-05.2005PubMedCrossRef Lu Y, Perl ER: Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II). J Neurosci 2005, 25: 3900–3907. 10.1523/JNEUROSCI.0102-05.2005PubMedCrossRef
18.
go back to reference Zheng J, Lu Y, Perl ER: Inhibitory neurones of the spinal substantia gelatinosa mediate interaction of signals from primary afferents. J Physiol 2010, 588: 2065–2075. 10.1113/jphysiol.2010.188052PubMedCentralPubMedCrossRef Zheng J, Lu Y, Perl ER: Inhibitory neurones of the spinal substantia gelatinosa mediate interaction of signals from primary afferents. J Physiol 2010, 588: 2065–2075. 10.1113/jphysiol.2010.188052PubMedCentralPubMedCrossRef
19.
go back to reference Bennett GJ, Abdelmoumene M, Hayashi H, Dubner R: Physiology and morphology of substantia gelatinosa neurons intracellularly stained with horseradish peroxidase. J Comp Neurol 1980, 194: 809–827. 10.1002/cne.901940407PubMedCrossRef Bennett GJ, Abdelmoumene M, Hayashi H, Dubner R: Physiology and morphology of substantia gelatinosa neurons intracellularly stained with horseradish peroxidase. J Comp Neurol 1980, 194: 809–827. 10.1002/cne.901940407PubMedCrossRef
20.
go back to reference Gobel S: Golgi studies of the neurons in layer II of the dorsal horn of the medulla (trigeminal nucleus caudalis). J Comp Neurol 1978, 180: 395–413. 10.1002/cne.901800213PubMedCrossRef Gobel S: Golgi studies of the neurons in layer II of the dorsal horn of the medulla (trigeminal nucleus caudalis). J Comp Neurol 1978, 180: 395–413. 10.1002/cne.901800213PubMedCrossRef
21.
go back to reference Gobel S, Falls WM, Bennett GJ, Abdelmoumene M, Hayashi H, Humphrey E: An EM analysis of the synaptic connections of horseradish peroxidase-filled stalked cells and islet cells in the substantia gelatinosa of adult cat spinal cord. J Comp Neurol 1980, 194: 781–807. 10.1002/cne.901940406PubMedCrossRef Gobel S, Falls WM, Bennett GJ, Abdelmoumene M, Hayashi H, Humphrey E: An EM analysis of the synaptic connections of horseradish peroxidase-filled stalked cells and islet cells in the substantia gelatinosa of adult cat spinal cord. J Comp Neurol 1980, 194: 781–807. 10.1002/cne.901940406PubMedCrossRef
22.
go back to reference Al-Khater KM, Todd AJ: Collateral projections of neurons in laminae I, III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial area. J Comp Neurol 2009, 515: 629–646. 10.1002/cne.22081PubMedCentralPubMedCrossRef Al-Khater KM, Todd AJ: Collateral projections of neurons in laminae I, III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial area. J Comp Neurol 2009, 515: 629–646. 10.1002/cne.22081PubMedCentralPubMedCrossRef
23.
go back to reference Polgár E, Wright LL, Todd AJ: A quantitative study of brainstem projections from lamina I neurons in the cervical and lumbar enlargement of the rat. Brain Res 2010, 1308: 58–67.PubMedCentralPubMedCrossRef Polgár E, Wright LL, Todd AJ: A quantitative study of brainstem projections from lamina I neurons in the cervical and lumbar enlargement of the rat. Brain Res 2010, 1308: 58–67.PubMedCentralPubMedCrossRef
24.
go back to reference Al Ghamdi KS, Polgar E, Todd AJ: Soma size distinguishes projection neurons from neurokinin 1 receptor-expressing interneurons in lamina I of the rat lumbar spinal dorsal horn. Neuroscience 2009, 164: 1794–1804. 10.1016/j.neuroscience.2009.09.071PubMedCentralPubMedCrossRef Al Ghamdi KS, Polgar E, Todd AJ: Soma size distinguishes projection neurons from neurokinin 1 receptor-expressing interneurons in lamina I of the rat lumbar spinal dorsal horn. Neuroscience 2009, 164: 1794–1804. 10.1016/j.neuroscience.2009.09.071PubMedCentralPubMedCrossRef
25.
go back to reference Spike RC, Puskar Z, Andrew D, Todd AJ: A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur J Neurosci 2003, 18: 2433–2448. 10.1046/j.1460-9568.2003.02981.xPubMedCrossRef Spike RC, Puskar Z, Andrew D, Todd AJ: A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur J Neurosci 2003, 18: 2433–2448. 10.1046/j.1460-9568.2003.02981.xPubMedCrossRef
26.
go back to reference Andrew D: Sensitization of lamina I spinoparabrachial neurons parallels heat hyperalgesia in the chronic constriction injury model of neuropathic pain. J Physiol 2009, 587: 2005–2017. 10.1113/jphysiol.2009.170290PubMedCentralPubMedCrossRef Andrew D: Sensitization of lamina I spinoparabrachial neurons parallels heat hyperalgesia in the chronic constriction injury model of neuropathic pain. J Physiol 2009, 587: 2005–2017. 10.1113/jphysiol.2009.170290PubMedCentralPubMedCrossRef
27.
go back to reference Andrew D: Quantitative characterization of low-threshold mechanoreceptor inputs to lamina I spinoparabrachial neurons in the rat. J Physiol 2010, 588: 117–124. 10.1113/jphysiol.2009.181511PubMedCentralPubMedCrossRef Andrew D: Quantitative characterization of low-threshold mechanoreceptor inputs to lamina I spinoparabrachial neurons in the rat. J Physiol 2010, 588: 117–124. 10.1113/jphysiol.2009.181511PubMedCentralPubMedCrossRef
28.
go back to reference Bester H, Chapman V, Besson JM, Bernard JF: Physiological properties of the lamina I spinoparabrachial neurons in the rat. J Neurophysiol 2000, 83: 2239–2259.PubMed Bester H, Chapman V, Besson JM, Bernard JF: Physiological properties of the lamina I spinoparabrachial neurons in the rat. J Neurophysiol 2000, 83: 2239–2259.PubMed
29.
go back to reference Keller AF, Beggs S, Salter MW, De Koninck Y: Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol Pain 2007, 3: 27. 10.1186/1744-8069-3-27PubMedCentralPubMedCrossRef Keller AF, Beggs S, Salter MW, De Koninck Y: Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol Pain 2007, 3: 27. 10.1186/1744-8069-3-27PubMedCentralPubMedCrossRef
30.
go back to reference Davidson S, Giesler GJ: The multiple pathways for itch and their interactions with pain. Trends Neurosci 2010, 33: 550–558. 10.1016/j.tins.2010.09.002PubMedCentralPubMedCrossRef Davidson S, Giesler GJ: The multiple pathways for itch and their interactions with pain. Trends Neurosci 2010, 33: 550–558. 10.1016/j.tins.2010.09.002PubMedCentralPubMedCrossRef
31.
go back to reference Torsney C, MacDermott AB: Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 2006, 26: 1833–1843. 10.1523/JNEUROSCI.4584-05.2006PubMedCrossRef Torsney C, MacDermott AB: Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 2006, 26: 1833–1843. 10.1523/JNEUROSCI.4584-05.2006PubMedCrossRef
32.
go back to reference Lu Y, Dong H, Gao Y, Gong Y, Ren Y, Gu N, Zhou S, Xia N, Sun YY, Ji RR, Xiong L: A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J Clin Invest 2013, 123: 4050–4062. 10.1172/JCI70026PubMedCentralPubMedCrossRef Lu Y, Dong H, Gao Y, Gong Y, Ren Y, Gu N, Zhou S, Xia N, Sun YY, Ji RR, Xiong L: A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J Clin Invest 2013, 123: 4050–4062. 10.1172/JCI70026PubMedCentralPubMedCrossRef
33.
go back to reference Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ: The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 2003, 17: 13–27. 10.1046/j.1460-9568.2003.02406.xPubMedCrossRef Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ: The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 2003, 17: 13–27. 10.1046/j.1460-9568.2003.02406.xPubMedCrossRef
34.
go back to reference Du Beau A, Shakya Shrestha S, Bannatyne BA, Jalicy SM, Linnen S, Maxwell DJ: Neurotransmitter phenotypes of descending systems in the rat lumbar spinal cord. Neuroscience 2012, 227: 67–79.PubMedCrossRef Du Beau A, Shakya Shrestha S, Bannatyne BA, Jalicy SM, Linnen S, Maxwell DJ: Neurotransmitter phenotypes of descending systems in the rat lumbar spinal cord. Neuroscience 2012, 227: 67–79.PubMedCrossRef
35.
go back to reference Kawamura Y, Fukaya M, Maejima T, Yoshida T, Miura E, Watanabe M, Ohno-Shosaku T, Kano M: The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci 2006, 26: 2991–3001. 10.1523/JNEUROSCI.4872-05.2006PubMedCrossRef Kawamura Y, Fukaya M, Maejima T, Yoshida T, Miura E, Watanabe M, Ohno-Shosaku T, Kano M: The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci 2006, 26: 2991–3001. 10.1523/JNEUROSCI.4872-05.2006PubMedCrossRef
36.
go back to reference Alvarez FJ, Villalba RM, Zerda R, Schneider SP: Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses. J Comp Neurol 2004, 472: 257–280. 10.1002/cne.20012PubMedCrossRef Alvarez FJ, Villalba RM, Zerda R, Schneider SP: Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses. J Comp Neurol 2004, 472: 257–280. 10.1002/cne.20012PubMedCrossRef
37.
go back to reference Naim MM, Shehab SA, Todd AJ: Cells in laminae III and IV of the rat spinal cord which possess the neurokinin-1 receptor receive monosynaptic input from myelinated primary afferents. Eur J Neurosci 1998, 10: 3012–3019. 10.1111/j.1460-9568.1998.00335.xPubMedCrossRef Naim MM, Shehab SA, Todd AJ: Cells in laminae III and IV of the rat spinal cord which possess the neurokinin-1 receptor receive monosynaptic input from myelinated primary afferents. Eur J Neurosci 1998, 10: 3012–3019. 10.1111/j.1460-9568.1998.00335.xPubMedCrossRef
38.
go back to reference Shehab SA, Spike RC, Todd AJ: Evidence against cholera toxin B subunit as a reliable tracer for sprouting of primary afferents following peripheral nerve injury. Brain Res 2003, 964: 218–227. 10.1016/S0006-8993(02)04001-5PubMedCrossRef Shehab SA, Spike RC, Todd AJ: Evidence against cholera toxin B subunit as a reliable tracer for sprouting of primary afferents following peripheral nerve injury. Brain Res 2003, 964: 218–227. 10.1016/S0006-8993(02)04001-5PubMedCrossRef
39.
go back to reference Ruscheweyh R, Ikeda H, Heinke B, Sandkuhler J: Distinctive membrane and discharge properties of rat spinal lamina I projection neurones in vitro. J Physiol 2004, 555: 527–543. 10.1113/jphysiol.2003.054049PubMedCentralPubMedCrossRef Ruscheweyh R, Ikeda H, Heinke B, Sandkuhler J: Distinctive membrane and discharge properties of rat spinal lamina I projection neurones in vitro. J Physiol 2004, 555: 527–543. 10.1113/jphysiol.2003.054049PubMedCentralPubMedCrossRef
40.
go back to reference Ruscheweyh R, Sandkuhler J: Lamina-specific membrane and discharge properties of rat spinal dorsal horn neurones in vitro. J Physiol 2002, 541: 231–244. 10.1113/jphysiol.2002.017756PubMedCentralPubMedCrossRef Ruscheweyh R, Sandkuhler J: Lamina-specific membrane and discharge properties of rat spinal dorsal horn neurones in vitro. J Physiol 2002, 541: 231–244. 10.1113/jphysiol.2002.017756PubMedCentralPubMedCrossRef
41.
go back to reference Graham BA, Brichta AM, Callister RJ: Pinch-current injection defines two discharge profiles in mouse superficial dorsal horn neurones, in vitro. J Physiol 2007, 578: 787–798. 10.1113/jphysiol.2006.123349PubMedCentralPubMedCrossRef Graham BA, Brichta AM, Callister RJ: Pinch-current injection defines two discharge profiles in mouse superficial dorsal horn neurones, in vitro. J Physiol 2007, 578: 787–798. 10.1113/jphysiol.2006.123349PubMedCentralPubMedCrossRef
42.
go back to reference Schneider SP, Walker TM: Morphology and electrophysiological properties of hamster spinal dorsal horn neurons that express VGLUT2 and enkephalin. J Comp Neurol 2007, 501: 790–809. 10.1002/cne.21292PubMedCrossRef Schneider SP, Walker TM: Morphology and electrophysiological properties of hamster spinal dorsal horn neurons that express VGLUT2 and enkephalin. J Comp Neurol 2007, 501: 790–809. 10.1002/cne.21292PubMedCrossRef
43.
go back to reference Takamori S, Rhee JS, Rosenmund C, Jahn R: Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2). J Neurosci 2001, 21: RC182.PubMed Takamori S, Rhee JS, Rosenmund C, Jahn R: Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2). J Neurosci 2001, 21: RC182.PubMed
44.
go back to reference Brumovsky P, Watanabe M, Hokfelt T: Expression of the vesicular glutamate transporters-1 and -2 in adult mouse dorsal root ganglia and spinal cord and their regulation by nerve injury. Neuroscience 2007, 147: 469–490. 10.1016/j.neuroscience.2007.02.068PubMedCrossRef Brumovsky P, Watanabe M, Hokfelt T: Expression of the vesicular glutamate transporters-1 and -2 in adult mouse dorsal root ganglia and spinal cord and their regulation by nerve injury. Neuroscience 2007, 147: 469–490. 10.1016/j.neuroscience.2007.02.068PubMedCrossRef
45.
go back to reference Landry M, Bouali-Benazzouz R, El Mestikawy S, Ravassard P, Nagy F: Expression of vesicular glutamate transporters in rat lumbar spinal cord, with a note on dorsal root ganglia. J Comp Neurol 2004, 468: 380–394. 10.1002/cne.10988PubMedCrossRef Landry M, Bouali-Benazzouz R, El Mestikawy S, Ravassard P, Nagy F: Expression of vesicular glutamate transporters in rat lumbar spinal cord, with a note on dorsal root ganglia. J Comp Neurol 2004, 468: 380–394. 10.1002/cne.10988PubMedCrossRef
46.
go back to reference Llewellyn-Smith IJ, Martin CL, Fenwick NM, Dicarlo SE, Lujan HL, Schreihofer AM: VGLUT1 and VGLUT2 innervation in autonomic regions of intact and transected rat spinal cord. J Comp Neurol 2007, 503: 741–767. 10.1002/cne.21414PubMedCrossRef Llewellyn-Smith IJ, Martin CL, Fenwick NM, Dicarlo SE, Lujan HL, Schreihofer AM: VGLUT1 and VGLUT2 innervation in autonomic regions of intact and transected rat spinal cord. J Comp Neurol 2007, 503: 741–767. 10.1002/cne.21414PubMedCrossRef
47.
go back to reference Oliveira AL, Hydling F, Olsson E, Shi T, Edwards RH, Fujiyama F, Kaneko T, Hokfelt T, Cullheim S, Meister B: Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia. Synapse 2003, 50: 117–129. 10.1002/syn.10249PubMedCrossRef Oliveira AL, Hydling F, Olsson E, Shi T, Edwards RH, Fujiyama F, Kaneko T, Hokfelt T, Cullheim S, Meister B: Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia. Synapse 2003, 50: 117–129. 10.1002/syn.10249PubMedCrossRef
48.
go back to reference Persson S, Boulland JL, Aspling M, Larsson M, Fremeau RT Jr, Edwards RH, Storm-Mathisen J, Chaudhry FA, Broman J: Distribution of vesicular glutamate transporters 1 and 2 in the rat spinal cord, with a note on the spinocervical tract. J Comp Neurol 2006, 497: 683–701. 10.1002/cne.20987PubMedCrossRef Persson S, Boulland JL, Aspling M, Larsson M, Fremeau RT Jr, Edwards RH, Storm-Mathisen J, Chaudhry FA, Broman J: Distribution of vesicular glutamate transporters 1 and 2 in the rat spinal cord, with a note on the spinocervical tract. J Comp Neurol 2006, 497: 683–701. 10.1002/cne.20987PubMedCrossRef
49.
go back to reference Varoqui H, Schafer MK, Zhu H, Weihe E, Erickson JD: Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 2002, 22: 142–155.PubMed Varoqui H, Schafer MK, Zhu H, Weihe E, Erickson JD: Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 2002, 22: 142–155.PubMed
50.
go back to reference Robertson B, Grant G: A comparison between wheat germ agglutinin-and choleragenoid-horseradish peroxidase as anterogradely transported markers in central branches of primary sensory neurones in the rat with some observations in the cat. Neuroscience 1985, 14: 895–905. 10.1016/0306-4522(85)90152-6PubMedCrossRef Robertson B, Grant G: A comparison between wheat germ agglutinin-and choleragenoid-horseradish peroxidase as anterogradely transported markers in central branches of primary sensory neurones in the rat with some observations in the cat. Neuroscience 1985, 14: 895–905. 10.1016/0306-4522(85)90152-6PubMedCrossRef
51.
go back to reference LaMotte CC, Kapadia SE, Shapiro CM: Central projections of the sciatic, saphenous, median, and ulnar nerves of the rat demonstrated by transganglionic transport of choleragenoid-HRP (B-HRP) and wheat germ agglutinin-HRP (WGA-HRP). J Comp Neurol 1991, 311: 546–562. 10.1002/cne.903110409PubMedCrossRef LaMotte CC, Kapadia SE, Shapiro CM: Central projections of the sciatic, saphenous, median, and ulnar nerves of the rat demonstrated by transganglionic transport of choleragenoid-HRP (B-HRP) and wheat germ agglutinin-HRP (WGA-HRP). J Comp Neurol 1991, 311: 546–562. 10.1002/cne.903110409PubMedCrossRef
52.
go back to reference Woolf CJ, Shortland P, Reynolds M, Ridings J, Doubell T, Coggeshall RE: Reorganization of central terminals of myelinated primary afferents in the rat dorsal horn following peripheral axotomy. J Comp Neurol 1995, 360: 121–134. 10.1002/cne.903600109PubMedCrossRef Woolf CJ, Shortland P, Reynolds M, Ridings J, Doubell T, Coggeshall RE: Reorganization of central terminals of myelinated primary afferents in the rat dorsal horn following peripheral axotomy. J Comp Neurol 1995, 360: 121–134. 10.1002/cne.903600109PubMedCrossRef
53.
go back to reference Rivero-Melian C, Grant G: Distribution of lumbar dorsal root fibers in the lower thoracic and lumbosacral spinal cord of the rat studied with choleragenoid horseradish peroxidase conjugate. J Comp Neurol 1990, 299: 470–481. 10.1002/cne.902990407PubMedCrossRef Rivero-Melian C, Grant G: Distribution of lumbar dorsal root fibers in the lower thoracic and lumbosacral spinal cord of the rat studied with choleragenoid horseradish peroxidase conjugate. J Comp Neurol 1990, 299: 470–481. 10.1002/cne.902990407PubMedCrossRef
54.
go back to reference Ribeiro-da-Silva A, Coimbra A: Two types of synaptic glomeruli and their distribution in laminae I-III of the rat spinal cord. J Comp Neurol 1982, 209: 176–186. 10.1002/cne.902090205PubMedCrossRef Ribeiro-da-Silva A, Coimbra A: Two types of synaptic glomeruli and their distribution in laminae I-III of the rat spinal cord. J Comp Neurol 1982, 209: 176–186. 10.1002/cne.902090205PubMedCrossRef
55.
go back to reference Light AR, Perl ER: Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 1979, 186: 133–150. 10.1002/cne.901860203PubMedCrossRef Light AR, Perl ER: Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 1979, 186: 133–150. 10.1002/cne.901860203PubMedCrossRef
56.
go back to reference Woodbury CJ, Koerber HR: Widespread projections from myelinated nociceptors throughout the substantia gelatinosa provide novel insights into neonatal hypersensitivity. J Neurosci 2003, 23: 601–610.PubMed Woodbury CJ, Koerber HR: Widespread projections from myelinated nociceptors throughout the substantia gelatinosa provide novel insights into neonatal hypersensitivity. J Neurosci 2003, 23: 601–610.PubMed
57.
go back to reference Abraira VE, Ginty DD: The sensory neurons of touch. Neuron 2013, 79: 618–639. 10.1016/j.neuron.2013.07.051PubMedCrossRef Abraira VE, Ginty DD: The sensory neurons of touch. Neuron 2013, 79: 618–639. 10.1016/j.neuron.2013.07.051PubMedCrossRef
58.
go back to reference Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S, Jankowski MP, Luo W, Heintz N, Koerber HR, et al.: The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 2011, 147: 1615–1627. 10.1016/j.cell.2011.11.027PubMedCentralPubMedCrossRef Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S, Jankowski MP, Luo W, Heintz N, Koerber HR, et al.: The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 2011, 147: 1615–1627. 10.1016/j.cell.2011.11.027PubMedCentralPubMedCrossRef
59.
go back to reference Ribeiro-da-Silva A, Coimbra A: Capsaicin causes selective damage to type I synaptic glomeruli in rat substantia gelatinosa. Brain Res 1984, 290: 380–383. 10.1016/0006-8993(84)90961-2PubMedCrossRef Ribeiro-da-Silva A, Coimbra A: Capsaicin causes selective damage to type I synaptic glomeruli in rat substantia gelatinosa. Brain Res 1984, 290: 380–383. 10.1016/0006-8993(84)90961-2PubMedCrossRef
60.
61.
go back to reference Shortland P, Woolf CJ: Morphology and somatotopy of the central arborizations of rapidly adapting glabrous skin afferents in the rat lumbar spinal cord. J Comp Neurol 1993, 329: 491–511. 10.1002/cne.903290406PubMedCrossRef Shortland P, Woolf CJ: Morphology and somatotopy of the central arborizations of rapidly adapting glabrous skin afferents in the rat lumbar spinal cord. J Comp Neurol 1993, 329: 491–511. 10.1002/cne.903290406PubMedCrossRef
62.
go back to reference Shortland P, Woolf CJ, Fitzgerald M: Morphology and somatotopic organization of the central terminals of hindlimb hair follicle afferents in the rat lumbar spinal cord. J Comp Neurol 1989, 289: 416–433. 10.1002/cne.902890307PubMedCrossRef Shortland P, Woolf CJ, Fitzgerald M: Morphology and somatotopic organization of the central terminals of hindlimb hair follicle afferents in the rat lumbar spinal cord. J Comp Neurol 1989, 289: 416–433. 10.1002/cne.902890307PubMedCrossRef
63.
go back to reference Hughes DI, Scott DT, Todd AJ, Riddell JS: Lack of evidence for sprouting of Abeta afferents into the superficial laminas of the spinal cord dorsal horn after nerve section. J Neurosci 2003, 23: 9491–9499.PubMed Hughes DI, Scott DT, Todd AJ, Riddell JS: Lack of evidence for sprouting of Abeta afferents into the superficial laminas of the spinal cord dorsal horn after nerve section. J Neurosci 2003, 23: 9491–9499.PubMed
64.
go back to reference Kohno T, Moore KA, Baba H, Woolf CJ: Peripheral nerve injury alters excitatory synaptic transmission in lamina II of the rat dorsal horn. J Physiol 2003, 548: 131–138. 10.1113/jphysiol.2002.036186PubMedCentralPubMedCrossRef Kohno T, Moore KA, Baba H, Woolf CJ: Peripheral nerve injury alters excitatory synaptic transmission in lamina II of the rat dorsal horn. J Physiol 2003, 548: 131–138. 10.1113/jphysiol.2002.036186PubMedCentralPubMedCrossRef
65.
go back to reference Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ: Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 2002, 22: 6724–6731.PubMed Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ: Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 2002, 22: 6724–6731.PubMed
66.
go back to reference Yoshimura M, Jessell TM: Primary afferent-evoked synaptic responses and slow potential generation in rat substantia gelatinosa neurons in vitro. J Neurophysiol 1989, 62: 96–108.PubMed Yoshimura M, Jessell TM: Primary afferent-evoked synaptic responses and slow potential generation in rat substantia gelatinosa neurons in vitro. J Neurophysiol 1989, 62: 96–108.PubMed
67.
go back to reference Nakatsuka T, Ataka T, Kumamoto E, Tamaki T, Yoshimura M: Alteration in synaptic inputs through C-afferent fibers to substantia gelatinosa neurons of the rat spinal dorsal horn during postnatal development. Neuroscience 2000, 99: 549–556. 10.1016/S0306-4522(00)00224-4PubMedCrossRef Nakatsuka T, Ataka T, Kumamoto E, Tamaki T, Yoshimura M: Alteration in synaptic inputs through C-afferent fibers to substantia gelatinosa neurons of the rat spinal dorsal horn during postnatal development. Neuroscience 2000, 99: 549–556. 10.1016/S0306-4522(00)00224-4PubMedCrossRef
68.
go back to reference Bardoni R, Magherini PC, MacDermott AB: NMDA EPSCs at glutamatergic synapses in the spinal cord dorsal horn of the postnatal rat. J Neurosci 1998, 18: 6558–6567.PubMed Bardoni R, Magherini PC, MacDermott AB: NMDA EPSCs at glutamatergic synapses in the spinal cord dorsal horn of the postnatal rat. J Neurosci 1998, 18: 6558–6567.PubMed
69.
go back to reference Li P, Zhuo M: Silent glutamatergic synapses and nociception in mammalian spinal cord. Nature 1998, 393: 695–698. 10.1038/31496PubMedCrossRef Li P, Zhuo M: Silent glutamatergic synapses and nociception in mammalian spinal cord. Nature 1998, 393: 695–698. 10.1038/31496PubMedCrossRef
70.
go back to reference Seal RP, Wang X, Guan Y, Raja SN, Woodbury CJ, Basbaum AI, Edwards RH: Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature 2009, 462: 651–655. 10.1038/nature08505PubMedCentralPubMedCrossRef Seal RP, Wang X, Guan Y, Raja SN, Woodbury CJ, Basbaum AI, Edwards RH: Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature 2009, 462: 651–655. 10.1038/nature08505PubMedCentralPubMedCrossRef
71.
go back to reference Casale EJ, Light AR, Rustioni A: Direct projection of the corticospinal tract to the superficial laminae of the spinal cord in the rat. J Comp Neurol 1988, 278: 275–286. 10.1002/cne.902780210PubMedCrossRef Casale EJ, Light AR, Rustioni A: Direct projection of the corticospinal tract to the superficial laminae of the spinal cord in the rat. J Comp Neurol 1988, 278: 275–286. 10.1002/cne.902780210PubMedCrossRef
72.
go back to reference Cordero-Erausquin M, Allard S, Dolique T, Bachand K, Ribeiro-da-Silva A, De Koninck Y: Dorsal horn neurons presynaptic to lamina I spinoparabrachial neurons revealed by transynaptic labeling. J Comp Neurol 2009, 517: 601–615. 10.1002/cne.22179PubMedCrossRef Cordero-Erausquin M, Allard S, Dolique T, Bachand K, Ribeiro-da-Silva A, De Koninck Y: Dorsal horn neurons presynaptic to lamina I spinoparabrachial neurons revealed by transynaptic labeling. J Comp Neurol 2009, 517: 601–615. 10.1002/cne.22179PubMedCrossRef
73.
go back to reference Lima D, Coimbra A: Morphological types of spinomesencephalic neurons in the marginal zone (lamina I) of the rat spinal cord, as shown after retrograde labelling with cholera toxin subunit B. J Comp Neurol 1989, 279: 327–339. 10.1002/cne.902790212PubMedCrossRef Lima D, Coimbra A: Morphological types of spinomesencephalic neurons in the marginal zone (lamina I) of the rat spinal cord, as shown after retrograde labelling with cholera toxin subunit B. J Comp Neurol 1989, 279: 327–339. 10.1002/cne.902790212PubMedCrossRef
74.
go back to reference Zhang ET, Han ZS, Craig AD: Morphological classes of spinothalamic lamina I neurons in the cat. J Comp Neurol 1996, 367: 537–549. 10.1002/(SICI)1096-9861(19960415)367:4<537::AID-CNE5>3.0.CO;2-5PubMedCrossRef Zhang ET, Han ZS, Craig AD: Morphological classes of spinothalamic lamina I neurons in the cat. J Comp Neurol 1996, 367: 537–549. 10.1002/(SICI)1096-9861(19960415)367:4<537::AID-CNE5>3.0.CO;2-5PubMedCrossRef
75.
go back to reference Almarestani L, Waters SM, Krause JE, Bennett GJ, Ribeiro-da-Silva A: Morphological characterization of spinal cord dorsal horn lamina I neurons projecting to the parabrachial nucleus in the rat. J Comp Neurol 2007, 504: 287–297. 10.1002/cne.21410PubMedCrossRef Almarestani L, Waters SM, Krause JE, Bennett GJ, Ribeiro-da-Silva A: Morphological characterization of spinal cord dorsal horn lamina I neurons projecting to the parabrachial nucleus in the rat. J Comp Neurol 2007, 504: 287–297. 10.1002/cne.21410PubMedCrossRef
76.
go back to reference Todd AJ, Puskar Z, Spike RC, Hughes C, Watt C, Forrest L: Projection neurons in lamina I of rat spinal cord with the neurokinin 1 receptor are selectively innervated by substance P-containing afferents and respond to noxious stimulation. J Neurosci 2002, 22: 4103–4113.PubMed Todd AJ, Puskar Z, Spike RC, Hughes C, Watt C, Forrest L: Projection neurons in lamina I of rat spinal cord with the neurokinin 1 receptor are selectively innervated by substance P-containing afferents and respond to noxious stimulation. J Neurosci 2002, 22: 4103–4113.PubMed
77.
go back to reference Naim M, Spike RC, Watt C, Shehab SA, Todd AJ: Cells in laminae III and IV of the rat spinal cord that possess the neurokinin-1 receptor and have dorsally directed dendrites receive a major synaptic input from tachykinin-containing primary afferents. J Neurosci 1997, 17: 5536–5548.PubMed Naim M, Spike RC, Watt C, Shehab SA, Todd AJ: Cells in laminae III and IV of the rat spinal cord that possess the neurokinin-1 receptor and have dorsally directed dendrites receive a major synaptic input from tachykinin-containing primary afferents. J Neurosci 1997, 17: 5536–5548.PubMed
78.
go back to reference Todd AJ, Spike RC, Polgar E: A quantitative study of neurons which express neurokinin-1 or somatostatin sst2a receptor in rat spinal dorsal horn. Neuroscience 1998, 85: 459–473. 10.1016/S0306-4522(97)00669-6PubMedCrossRef Todd AJ, Spike RC, Polgar E: A quantitative study of neurons which express neurokinin-1 or somatostatin sst2a receptor in rat spinal dorsal horn. Neuroscience 1998, 85: 459–473. 10.1016/S0306-4522(97)00669-6PubMedCrossRef
79.
go back to reference Nakatsuka T, Fujita T, Inoue K, Kumamoto E: Activation of GIRK channels in substantia gelatinosa neurones of the adult rat spinal cord: a possible involvement of somatostatin. J Physiol 2008, 586: 2511–2522. 10.1113/jphysiol.2007.146076PubMedCentralPubMedCrossRef Nakatsuka T, Fujita T, Inoue K, Kumamoto E: Activation of GIRK channels in substantia gelatinosa neurones of the adult rat spinal cord: a possible involvement of somatostatin. J Physiol 2008, 586: 2511–2522. 10.1113/jphysiol.2007.146076PubMedCentralPubMedCrossRef
80.
go back to reference Iwagaki N, Garzillo F, Polgar E, Riddell JS, Todd AJ: Neurochemical characterisation of lamina II inhibitory interneurons that express GFP in the PrP-GFP mouse. Mol Pain 2013, 9: 56. 10.1186/1744-8069-9-56PubMedCentralPubMedCrossRef Iwagaki N, Garzillo F, Polgar E, Riddell JS, Todd AJ: Neurochemical characterisation of lamina II inhibitory interneurons that express GFP in the PrP-GFP mouse. Mol Pain 2013, 9: 56. 10.1186/1744-8069-9-56PubMedCentralPubMedCrossRef
81.
go back to reference Campbell JN, Raja SN, Meyer RA, Mackinnon SE: Myelinated afferents signal the hyperalgesia associated with nerve injury. Pain 1988, 32: 89–94. 10.1016/0304-3959(88)90027-9PubMedCrossRef Campbell JN, Raja SN, Meyer RA, Mackinnon SE: Myelinated afferents signal the hyperalgesia associated with nerve injury. Pain 1988, 32: 89–94. 10.1016/0304-3959(88)90027-9PubMedCrossRef
82.
go back to reference Ochoa JL, Yarnitsky D: Mechanical hyperalgesias in neuropathic pain patients: dynamic and static subtypes. Ann Neurol 1993, 33: 465–472. 10.1002/ana.410330509PubMedCrossRef Ochoa JL, Yarnitsky D: Mechanical hyperalgesias in neuropathic pain patients: dynamic and static subtypes. Ann Neurol 1993, 33: 465–472. 10.1002/ana.410330509PubMedCrossRef
83.
go back to reference Hwang JH, Yaksh TL: The effect of spinal GABA receptor agonists on tactile allodynia in a surgically-induced neuropathic pain model in the rat. Pain 1997, 70: 15–22. 10.1016/S0304-3959(96)03249-6PubMedCrossRef Hwang JH, Yaksh TL: The effect of spinal GABA receptor agonists on tactile allodynia in a surgically-induced neuropathic pain model in the rat. Pain 1997, 70: 15–22. 10.1016/S0304-3959(96)03249-6PubMedCrossRef
84.
go back to reference Malan TP, Mata HP, Porreca F: Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Anesthesiology 2002, 96: 1161–1167. 10.1097/00000542-200205000-00020PubMedCrossRef Malan TP, Mata HP, Porreca F: Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Anesthesiology 2002, 96: 1161–1167. 10.1097/00000542-200205000-00020PubMedCrossRef
85.
go back to reference Sivilotti L, Woolf CJ: The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol 1994, 72: 169–179.PubMed Sivilotti L, Woolf CJ: The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol 1994, 72: 169–179.PubMed
86.
go back to reference Miraucourt LS, Moisset X, Dallel R, Voisin DL: Glycine inhibitory dysfunction induces a selectively dynamic, morphine-resistant, and neurokinin 1 receptor- independent mechanical allodynia. J Neurosci 2009, 29: 2519–2527. 10.1523/JNEUROSCI.3923-08.2009PubMedCrossRef Miraucourt LS, Moisset X, Dallel R, Voisin DL: Glycine inhibitory dysfunction induces a selectively dynamic, morphine-resistant, and neurokinin 1 receptor- independent mechanical allodynia. J Neurosci 2009, 29: 2519–2527. 10.1523/JNEUROSCI.3923-08.2009PubMedCrossRef
87.
go back to reference Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y: BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438: 1017–1021. 10.1038/nature04223PubMedCrossRef Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y: BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438: 1017–1021. 10.1038/nature04223PubMedCrossRef
88.
go back to reference Scholz J, Broom DC, Youn DH, Mills CD, Kohno T, Suter MR, Moore KA, Decosterd I, Coggeshall RE, Woolf CJ: Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci 2005, 25: 7317–7323. 10.1523/JNEUROSCI.1526-05.2005PubMedCrossRef Scholz J, Broom DC, Youn DH, Mills CD, Kohno T, Suter MR, Moore KA, Decosterd I, Coggeshall RE, Woolf CJ: Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci 2005, 25: 7317–7323. 10.1523/JNEUROSCI.1526-05.2005PubMedCrossRef
89.
go back to reference Yowtak J, Wang J, Kim HY, Lu Y, Chung K, Chung JM: Effect of antioxidant treatment on spinal GABA neurons in a neuropathic pain model in the mouse. Pain 2013, 154: 2469–2476. 10.1016/j.pain.2013.07.024PubMedCrossRef Yowtak J, Wang J, Kim HY, Lu Y, Chung K, Chung JM: Effect of antioxidant treatment on spinal GABA neurons in a neuropathic pain model in the mouse. Pain 2013, 154: 2469–2476. 10.1016/j.pain.2013.07.024PubMedCrossRef
90.
go back to reference Ibuki T, Hama AT, Wang XT, Pappas GD, Sagen J: Loss of GABA-immunoreactivity in the spinal dorsal horn of rats with peripheral nerve injury and promotion of recovery by adrenal medullary grafts. Neuroscience 1997, 76: 845–858.PubMedCrossRef Ibuki T, Hama AT, Wang XT, Pappas GD, Sagen J: Loss of GABA-immunoreactivity in the spinal dorsal horn of rats with peripheral nerve injury and promotion of recovery by adrenal medullary grafts. Neuroscience 1997, 76: 845–858.PubMedCrossRef
91.
go back to reference Polgár E, Todd AJ: Tactile allodynia can occur in the spared nerve injury model in the rat without selective loss of GABA or GABA(A) receptors from synapses in laminae I-II of the ipsilateral spinal dorsal horn. Neuroscience 2008, 156: 193–202. 10.1016/j.neuroscience.2008.07.009PubMedCentralPubMedCrossRef Polgár E, Todd AJ: Tactile allodynia can occur in the spared nerve injury model in the rat without selective loss of GABA or GABA(A) receptors from synapses in laminae I-II of the ipsilateral spinal dorsal horn. Neuroscience 2008, 156: 193–202. 10.1016/j.neuroscience.2008.07.009PubMedCentralPubMedCrossRef
92.
go back to reference Schneider SP: Functional properties and axon terminations of interneurons in laminae III-V of the mammalian spinal dorsal horn in vitro. J Neurophysiol 1992, 68: 1746–1759.PubMed Schneider SP: Functional properties and axon terminations of interneurons in laminae III-V of the mammalian spinal dorsal horn in vitro. J Neurophysiol 1992, 68: 1746–1759.PubMed
93.
go back to reference Polgár E, Fowler JH, McGill MM, Todd AJ: The types of neuron which contain protein kinase C gamma in rat spinal cord. Brain Res 1999, 833: 71–80. 10.1016/S0006-8993(99)01500-0PubMedCrossRef Polgár E, Fowler JH, McGill MM, Todd AJ: The types of neuron which contain protein kinase C gamma in rat spinal cord. Brain Res 1999, 833: 71–80. 10.1016/S0006-8993(99)01500-0PubMedCrossRef
94.
go back to reference Kim SH, Chung JM: An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992, 50: 355–363. 10.1016/0304-3959(92)90041-9PubMedCrossRef Kim SH, Chung JM: An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992, 50: 355–363. 10.1016/0304-3959(92)90041-9PubMedCrossRef
95.
go back to reference Todd AJ: How to recognise collateral damage in partial nerve injury models of neuropathic pain. Pain 2012, 153: 11–12. 10.1016/j.pain.2011.10.031PubMedCrossRef Todd AJ: How to recognise collateral damage in partial nerve injury models of neuropathic pain. Pain 2012, 153: 11–12. 10.1016/j.pain.2011.10.031PubMedCrossRef
96.
go back to reference Hughes DI, Sikander S, Kinnon CM, Boyle KA, Watanabe M, Callister RJ, Graham BA: Morphological, neurochemical and electrophysiological features of parvalbumin-expressing cells: a likely source of axo-axonic inputs in the mouse spinal dorsal horn. J Physiol 2012, 590: 3927–3951. 10.1113/jphysiol.2012.235655PubMedCentralPubMedCrossRef Hughes DI, Sikander S, Kinnon CM, Boyle KA, Watanabe M, Callister RJ, Graham BA: Morphological, neurochemical and electrophysiological features of parvalbumin-expressing cells: a likely source of axo-axonic inputs in the mouse spinal dorsal horn. J Physiol 2012, 590: 3927–3951. 10.1113/jphysiol.2012.235655PubMedCentralPubMedCrossRef
Metadata
Title
A putative relay circuit providing low-threshold mechanoreceptive input to lamina I projection neurons via vertical cells in lamina II of the rat dorsal horn
Authors
Toshiharu Yasaka
Sheena YX Tiong
Erika Polgár
Masahiko Watanabe
Eiichi Kumamoto
John S Riddell
Andrew J Todd
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2014
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-10-3

Other articles of this Issue 1/2014

Molecular Pain 1/2014 Go to the issue