Skip to main content
Top
Published in: Molecular Pain 1/2005

Open Access 01-12-2005 | Review

Role of spinal cord glutamate transporter during normal sensory transmission and pathological pain states

Authors: Yuan-Xiang Tao, Jianguo Gu, Robert L Stephens Jr

Published in: Molecular Pain | Issue 1/2005

Login to get access

Abstract

Glutamate is a neurotransmitter critical for spinal excitatory synaptic transmission and for generation and maintenance of spinal states of pain hypersensitivity via activation of glutamate receptors. Understanding the regulation of synaptically and non-synaptically released glutamate associated with pathological pain is important in exploring novel molecular mechanisms and developing therapeutic strategies of pathological pain. The glutamate transporter system is the primary mechanism for the inactivation of synaptically released glutamate and the maintenance of glutamate homeostasis. Recent studies demonstrated that spinal glutamate transporter inhibition relieved pathological pain, suggesting that the spinal glutamate transporter might serve as a therapeutic target for treatment of pathological pain. However, the exact function of glutamate transporter in pathological pain is not completely understood. This report will review the evidence for the role of the spinal glutamate transporter during normal sensory transmission and pathological pain conditions and discuss potential mechanisms by which spinal glutamate transporter is involved in pathological pain.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mayer BL, Westbrook GL: The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 1987, 28: 197–276. 10.1016/0301-0082(87)90011-6PubMedCrossRef Mayer BL, Westbrook GL: The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 1987, 28: 197–276. 10.1016/0301-0082(87)90011-6PubMedCrossRef
3.
4.
go back to reference Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW: Localization of neuronal and glial glutamate transporter. Neurons 1994, 13: 713–725. 10.1016/0896-6273(94)90038-8CrossRef Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW: Localization of neuronal and glial glutamate transporter. Neurons 1994, 13: 713–725. 10.1016/0896-6273(94)90038-8CrossRef
5.
go back to reference Kugler P, Schmitt A: Glutamate transporter EAAC1 is expressed in neurons and glial cells in the rat nervous system. Glia 1999, 27: 129–142. 10.1002/(SICI)1098-1136(199908)27:2<129::AID-GLIA3>3.0.CO;2-YPubMedCrossRef Kugler P, Schmitt A: Glutamate transporter EAAC1 is expressed in neurons and glial cells in the rat nervous system. Glia 1999, 27: 129–142. 10.1002/(SICI)1098-1136(199908)27:2<129::AID-GLIA3>3.0.CO;2-YPubMedCrossRef
6.
go back to reference Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Nanbolt NC: The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapses in parts of the dendritic membrane facing astroglia. J Neurosci 1998, 18: 3606–3619.PubMed Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Nanbolt NC: The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapses in parts of the dendritic membrane facing astroglia. J Neurosci 1998, 18: 3606–3619.PubMed
7.
go back to reference Arriza JL, Eliasof S, Kavanaugh MP, Amara SG: Excitatory amino acid 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Sci USA 1997, 94: 4155–4160. 10.1073/pnas.94.8.4155CrossRef Arriza JL, Eliasof S, Kavanaugh MP, Amara SG: Excitatory amino acid 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Sci USA 1997, 94: 4155–4160. 10.1073/pnas.94.8.4155CrossRef
8.
go back to reference Liaw WJ, Stephens RL Jr, Binns BC, Chu Y, Sepkuty JP, Johns RA, Rothstein JD, Tao Y-X: Spinal glutamate uptake is critical for maintaining normal sensory transmission in rat spinal cord. Pain 2005, 115: 60–70. 10.1016/j.pain.2005.02.006PubMedCrossRef Liaw WJ, Stephens RL Jr, Binns BC, Chu Y, Sepkuty JP, Johns RA, Rothstein JD, Tao Y-X: Spinal glutamate uptake is critical for maintaining normal sensory transmission in rat spinal cord. Pain 2005, 115: 60–70. 10.1016/j.pain.2005.02.006PubMedCrossRef
9.
go back to reference Minami T, Matsumura S, Okuda-Ashitaka E, Shimamoto K, Sakimura K, Mishina M, Mori H, Ito S: Characterization of the glutamatergic system for induction and maintenance of allodynia. Brain Res 2001, 895: 178–85. 10.1016/S0006-8993(01)02069-8PubMedCrossRef Minami T, Matsumura S, Okuda-Ashitaka E, Shimamoto K, Sakimura K, Mishina M, Mori H, Ito S: Characterization of the glutamatergic system for induction and maintenance of allodynia. Brain Res 2001, 895: 178–85. 10.1016/S0006-8993(01)02069-8PubMedCrossRef
10.
go back to reference Niederberger E, Schmidtko A, Rothstein JD, Geisslinger G, Tegeder I: Modulation of spinal nociceptive processing through the glutamate transporter GLT-1. Neurosci 2003, 116: 81–87. 10.1016/S0306-4522(02)00547-XCrossRef Niederberger E, Schmidtko A, Rothstein JD, Geisslinger G, Tegeder I: Modulation of spinal nociceptive processing through the glutamate transporter GLT-1. Neurosci 2003, 116: 81–87. 10.1016/S0306-4522(02)00547-XCrossRef
11.
go back to reference Tao Y-X, Tao F, Liaw WJ, Zhang B, Yaster M, Rothstein JD, Johns RA: Evidence for the involvement of spinal cord glutamate transporters in the development of chronic inflammatory pain. ASA 2003 Annual Meeting. San Francisco, CA, USA Oct. 12–16, 2003 Tao Y-X, Tao F, Liaw WJ, Zhang B, Yaster M, Rothstein JD, Johns RA: Evidence for the involvement of spinal cord glutamate transporters in the development of chronic inflammatory pain. ASA 2003 Annual Meeting. San Francisco, CA, USA Oct. 12–16, 2003
12.
go back to reference Tao F, Liaw WJ, Zhang B, Yaster M, Rothstein JD, Johns RA, Tao Y-X: Evidence of neuronal excitatory amino acid carrier 1 expression in rat dorsal root ganglion neurons and their central terminals. Neuroscience 2004, 123: 1045–51. 10.1016/j.neuroscience.2003.11.026PubMedCrossRef Tao F, Liaw WJ, Zhang B, Yaster M, Rothstein JD, Johns RA, Tao Y-X: Evidence of neuronal excitatory amino acid carrier 1 expression in rat dorsal root ganglion neurons and their central terminals. Neuroscience 2004, 123: 1045–51. 10.1016/j.neuroscience.2003.11.026PubMedCrossRef
13.
go back to reference Tao Y-X, Petralia RS, Liaw W-J, Zhang B, Johns RA, Rothstein JD: Expression and distribution of glutamate transporters in the spinal cord and dorsal root ganglion. Soc Neurosci Abstract 2004. Program No. 484.5 Tao Y-X, Petralia RS, Liaw W-J, Zhang B, Johns RA, Rothstein JD: Expression and distribution of glutamate transporters in the spinal cord and dorsal root ganglion. Soc Neurosci Abstract 2004. Program No. 484.5
14.
go back to reference Aanonsen LM, Wilcox GL: Nociceptive action of excitatory amino acids in the mouse: effects of spinally administered opioids, phencyclidine and sigma agonists. J Pharmcol Exp Ther 1987, 243: 9–19. Aanonsen LM, Wilcox GL: Nociceptive action of excitatory amino acids in the mouse: effects of spinally administered opioids, phencyclidine and sigma agonists. J Pharmcol Exp Ther 1987, 243: 9–19.
15.
go back to reference Brambilla A, Prudentino A, Grippa N, Borsini F: Pharmacological characterization of AMPA-induced biting behaviour in mice. Europ J Pharmacol 1996, 305: 115–7. 10.1016/0014-2999(96)00145-8CrossRef Brambilla A, Prudentino A, Grippa N, Borsini F: Pharmacological characterization of AMPA-induced biting behaviour in mice. Europ J Pharmacol 1996, 305: 115–7. 10.1016/0014-2999(96)00145-8CrossRef
16.
go back to reference Kontinen VK, Meert TF: Vocalization responses after intrathecal administration of ionotropic glutamate receptor agonists in rats. Anesth Analg 2002, 95: 997–1001. 10.1097/00000539-200210000-00038PubMed Kontinen VK, Meert TF: Vocalization responses after intrathecal administration of ionotropic glutamate receptor agonists in rats. Anesth Analg 2002, 95: 997–1001. 10.1097/00000539-200210000-00038PubMed
17.
go back to reference Weng H, Cata J, Dougherty P: Glutamate transporters play a key role in sensory transmission of the spinal dorsal horn. J Pain 2004, (Suppl 5):5. 10.1016/j.jpain.2004.02.557 Weng H, Cata J, Dougherty P: Glutamate transporters play a key role in sensory transmission of the spinal dorsal horn. J Pain 2004, (Suppl 5):5. 10.1016/j.jpain.2004.02.557
18.
go back to reference Weng H, Chen J, Cata J, Dougherty P: Inhibition of glutamate transporters increases hind paw withdrawal frequencies and dorsal horn neurons responses to peripheral stimuli in rats. Soc Neurosci Abstr 2004. Program No 291.6 Weng H, Chen J, Cata J, Dougherty P: Inhibition of glutamate transporters increases hind paw withdrawal frequencies and dorsal horn neurons responses to peripheral stimuli in rats. Soc Neurosci Abstr 2004. Program No 291.6
19.
go back to reference Shimamoto K, Lebrun B, Yasuda-Kamatani Y, Sakaitani M, Shigeri Y, Yumoto N, Nakajima T: DL-TBOA, a potent blocker of excitatory amino acid transporters. Mol Pharmacol 1998, 53: 195–201.PubMed Shimamoto K, Lebrun B, Yasuda-Kamatani Y, Sakaitani M, Shigeri Y, Yumoto N, Nakajima T: DL-TBOA, a potent blocker of excitatory amino acid transporters. Mol Pharmacol 1998, 53: 195–201.PubMed
20.
go back to reference Phillis JW, Ren J, O'Regan MH: Transporter reversal as a mechanism of glutamate release from the ischemic rat cerebral cortex: studies with DL-TBOA. Brain Res 2000, 868: 105–12. 10.1016/S0006-8993(00)02303-9PubMedCrossRef Phillis JW, Ren J, O'Regan MH: Transporter reversal as a mechanism of glutamate release from the ischemic rat cerebral cortex: studies with DL-TBOA. Brain Res 2000, 868: 105–12. 10.1016/S0006-8993(00)02303-9PubMedCrossRef
21.
go back to reference Sung B, Lim G, Mao J: Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J Neurosci 2003, 23: 2899–910.PubMed Sung B, Lim G, Mao J: Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J Neurosci 2003, 23: 2899–910.PubMed
22.
go back to reference Binns BC, Huang Y, Goettl VM, Hackshaw KV, Stephens RL Jr: Glutamate uptake is attenuated in spinal deep dorsal and ventral horn in the rat spinal nerve ligation model. Brain Res 2005, 1041: 38–47. 10.1016/j.brainres.2005.01.088PubMedCrossRef Binns BC, Huang Y, Goettl VM, Hackshaw KV, Stephens RL Jr: Glutamate uptake is attenuated in spinal deep dorsal and ventral horn in the rat spinal nerve ligation model. Brain Res 2005, 1041: 38–47. 10.1016/j.brainres.2005.01.088PubMedCrossRef
23.
go back to reference Umemura K, Gemba T, Mizuno A, Nakashima M: Inhibitory effect of MS-153 on elevated brain glutamate level induced by rat middle cerebral artery occlusion. Stroke 1996, 27: 1624–8.PubMedCrossRef Umemura K, Gemba T, Mizuno A, Nakashima M: Inhibitory effect of MS-153 on elevated brain glutamate level induced by rat middle cerebral artery occlusion. Stroke 1996, 27: 1624–8.PubMedCrossRef
24.
go back to reference Shimada F, Shiga Y, Morikawa M, Kawazura H, Morikawa O, Matsuoka T, Nishizaki T, Saito N: The neuroprotective agent MS-153 stimulates glutamate uptake. Eur J Pharmacol 1999, 386: 263–70. 10.1016/S0014-2999(99)00735-9PubMedCrossRef Shimada F, Shiga Y, Morikawa M, Kawazura H, Morikawa O, Matsuoka T, Nishizaki T, Saito N: The neuroprotective agent MS-153 stimulates glutamate uptake. Eur J Pharmacol 1999, 386: 263–70. 10.1016/S0014-2999(99)00735-9PubMedCrossRef
25.
go back to reference Abekawa T, Honda M, Ito K, Inoue T, Koyama T: Effect of MS-153 on the development of behavioral sensitization to locomotion- and ataxia-inducing effects of phencyclidine. Psychopharmacology (Berl) 2002, 160: 122–31. 10.1007/s00213-001-0958-1CrossRef Abekawa T, Honda M, Ito K, Inoue T, Koyama T: Effect of MS-153 on the development of behavioral sensitization to locomotion- and ataxia-inducing effects of phencyclidine. Psychopharmacology (Berl) 2002, 160: 122–31. 10.1007/s00213-001-0958-1CrossRef
26.
go back to reference Abekawa T, Honda M, Ito K, Inoue T, Koyama T: Effect of MS-153 on the development of behavioral sensitization to stereotypy-inducing effect of phencyclidine. Brain Res 2002, 926: 176–80. 10.1016/S0006-8993(01)03164-XPubMedCrossRef Abekawa T, Honda M, Ito K, Inoue T, Koyama T: Effect of MS-153 on the development of behavioral sensitization to stereotypy-inducing effect of phencyclidine. Brain Res 2002, 926: 176–80. 10.1016/S0006-8993(01)03164-XPubMedCrossRef
27.
go back to reference Galer BS, Twilling LL, Harle J, Cluff RS, Friedman E, Rowbotham MC: Lack of efficacy of riluzole in the treatment of peripheral neuropathic pain conditions. Neurology 2000, 55: 971–5.PubMedCrossRef Galer BS, Twilling LL, Harle J, Cluff RS, Friedman E, Rowbotham MC: Lack of efficacy of riluzole in the treatment of peripheral neuropathic pain conditions. Neurology 2000, 55: 971–5.PubMedCrossRef
28.
go back to reference Kretschmer BD, Kratzer U, Schmidt WJ: Riluzole, a glutamate release inhibitor, and motor behavior. Naunyn Schmiedebergs Arch Pharmacol 1998, 358: 181–90.PubMedCrossRef Kretschmer BD, Kratzer U, Schmidt WJ: Riluzole, a glutamate release inhibitor, and motor behavior. Naunyn Schmiedebergs Arch Pharmacol 1998, 358: 181–90.PubMedCrossRef
29.
go back to reference Hebert T, Drapeau P, Pradier L, Dunn RJ: Block of the rat brain IIA sodium channel alpha subunit by the neuroprotective drug riluzole. Mol Pharmacol 1994, 45: 1055–60.PubMed Hebert T, Drapeau P, Pradier L, Dunn RJ: Block of the rat brain IIA sodium channel alpha subunit by the neuroprotective drug riluzole. Mol Pharmacol 1994, 45: 1055–60.PubMed
31.
go back to reference Azbill RD, Mu X, Springer JE: Riluzole increases high-affinity glutamate uptake in rat spinal cord synaptosomes. Brain Res 2000, 871: 175–80. 10.1016/S0006-8993(00)02430-6PubMedCrossRef Azbill RD, Mu X, Springer JE: Riluzole increases high-affinity glutamate uptake in rat spinal cord synaptosomes. Brain Res 2000, 871: 175–80. 10.1016/S0006-8993(00)02430-6PubMedCrossRef
32.
go back to reference Mathews GC, Diamond JS: Neuronal glutamate uptake contributes to GABA synthesis and inhibitory synaptic strength. J Neurosci 2003, 23: 040–8. Mathews GC, Diamond JS: Neuronal glutamate uptake contributes to GABA synthesis and inhibitory synaptic strength. J Neurosci 2003, 23: 040–8.
33.
go back to reference Rae C, Hare N, Bubb WA, McEwan SR, Broer A, McQuillan JA, Balcar VJ, Conigrave AD, Broer S: Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation. J Neurochem 2003, 85: 503–14.PubMedCrossRef Rae C, Hare N, Bubb WA, McEwan SR, Broer A, McQuillan JA, Balcar VJ, Conigrave AD, Broer S: Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation. J Neurochem 2003, 85: 503–14.PubMedCrossRef
34.
go back to reference Ottersen OP, Laake JH, Reichelt W, Haug FM, Torp R: Ischemic disruption of glutamate homeostasis in brain: quantitative immunocytochemical analysis. J Chem Neuroanat 1996, 12: 1–14. 10.1016/S0891-0618(96)00178-0PubMedCrossRef Ottersen OP, Laake JH, Reichelt W, Haug FM, Torp R: Ischemic disruption of glutamate homeostasis in brain: quantitative immunocytochemical analysis. J Chem Neuroanat 1996, 12: 1–14. 10.1016/S0891-0618(96)00178-0PubMedCrossRef
35.
go back to reference Storm-Mathisen J, Zhang N, Ottersen OP: Electron microscopic localization of glutamate, glutamine and GABA at putative glutamatergic and GABAergic synapses. Mol Neuropharmacol 1992, 2: 7–13. Storm-Mathisen J, Zhang N, Ottersen OP: Electron microscopic localization of glutamate, glutamine and GABA at putative glutamatergic and GABAergic synapses. Mol Neuropharmacol 1992, 2: 7–13.
36.
go back to reference Broman J, Hassel B, Rinvik E, Ottersen OP: Biochemistry and anatomy of transmitter glutamate. In Glutamate. Edited by: Ottensen OP, Storm-Mathisen J. Elsevier, Amsterdam; 2000:1–44.CrossRef Broman J, Hassel B, Rinvik E, Ottersen OP: Biochemistry and anatomy of transmitter glutamate. In Glutamate. Edited by: Ottensen OP, Storm-Mathisen J. Elsevier, Amsterdam; 2000:1–44.CrossRef
37.
go back to reference Hassel B, Brathe A: Cerebral metabolism of lactate in vivo: evidence for neuronal pyruvate carboxylation. J Cereb Blood Flow Metab 2000, 20: 327–336. 10.1097/00004647-200002000-00014PubMedCrossRef Hassel B, Brathe A: Cerebral metabolism of lactate in vivo: evidence for neuronal pyruvate carboxylation. J Cereb Blood Flow Metab 2000, 20: 327–336. 10.1097/00004647-200002000-00014PubMedCrossRef
38.
go back to reference Hassel B, Brathe A: Neuronal pyruvate carboxylation supports formation of transmitter glutamate. J Neurosci 2000, 20: 1342–1347.PubMed Hassel B, Brathe A: Neuronal pyruvate carboxylation supports formation of transmitter glutamate. J Neurosci 2000, 20: 1342–1347.PubMed
39.
go back to reference Scanziani M, Salin PA, Vogt KE, Malenka RC, Nicoll RA: Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors. Nature 1997, 385: 630–4. 10.1038/385630a0PubMedCrossRef Scanziani M, Salin PA, Vogt KE, Malenka RC, Nicoll RA: Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors. Nature 1997, 385: 630–4. 10.1038/385630a0PubMedCrossRef
40.
go back to reference Maki R, Robinson MB, Dichter MA: The glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylate depresses excitatory synaptic transmission via a presynaptic mechanism in cultured hippocampal neurons. J Neurosci 1994, 14: 6754–6762.PubMed Maki R, Robinson MB, Dichter MA: The glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylate depresses excitatory synaptic transmission via a presynaptic mechanism in cultured hippocampal neurons. J Neurosci 1994, 14: 6754–6762.PubMed
41.
go back to reference Dube GR, Marshall KC: Activity-dependent activation of presynaptic metabotropic glutamate receptors in locus coeruleus. J Neurophysiol 2000, 83: 1141–1149.PubMed Dube GR, Marshall KC: Activity-dependent activation of presynaptic metabotropic glutamate receptors in locus coeruleus. J Neurophysiol 2000, 83: 1141–1149.PubMed
42.
go back to reference Nicholls D, Attwell D: The release and uptake of excitatory amino acids. Trends Pharmacol Sci 1990, 11: 462–8. 10.1016/0165-6147(90)90129-VPubMedCrossRef Nicholls D, Attwell D: The release and uptake of excitatory amino acids. Trends Pharmacol Sci 1990, 11: 462–8. 10.1016/0165-6147(90)90129-VPubMedCrossRef
43.
go back to reference Erecinska M: Stimulation of the Na+/K+ pump activity during electrogenic uptake of acidic amino acid transmitters by rat brain synaptosomes. J Neurochem 1989, 52: 135–9.PubMedCrossRef Erecinska M: Stimulation of the Na+/K+ pump activity during electrogenic uptake of acidic amino acid transmitters by rat brain synaptosomes. J Neurochem 1989, 52: 135–9.PubMedCrossRef
44.
go back to reference Sarantis M, Attwell D: Glutamate uptake in mammalian retinal glia is voltage- and potassium-dependent. Brain Res 1990, 516: 322–5. 10.1016/0006-8993(90)90935-5PubMedCrossRef Sarantis M, Attwell D: Glutamate uptake in mammalian retinal glia is voltage- and potassium-dependent. Brain Res 1990, 516: 322–5. 10.1016/0006-8993(90)90935-5PubMedCrossRef
45.
go back to reference Vikman KS, Duggan AW, Siddall PJ: Increased ability to induce long-term potentiation of spinal dorsal horn neurones in monoarthritic rats. Brain Res 2003, 990: 51–7. 10.1016/S0006-8993(03)03385-7PubMedCrossRef Vikman KS, Duggan AW, Siddall PJ: Increased ability to induce long-term potentiation of spinal dorsal horn neurones in monoarthritic rats. Brain Res 2003, 990: 51–7. 10.1016/S0006-8993(03)03385-7PubMedCrossRef
46.
go back to reference Wieseler-Frank J, Maier SF, Watkins LR: Glial activation and pathological pain. Neurochem Int 2004, 45: 389–95. 10.1016/j.neuint.2003.09.009PubMedCrossRef Wieseler-Frank J, Maier SF, Watkins LR: Glial activation and pathological pain. Neurochem Int 2004, 45: 389–95. 10.1016/j.neuint.2003.09.009PubMedCrossRef
47.
go back to reference Schadrack J, Neto FL, Ableitner A, Castro-Lopes JM, Willoch F, Bartenstein P, Zieglgansberger W, Tolle TR: Metabolic activity changes in the rat spinal cord during adjuvant monoarthritis. Neuroscience 1999, 94: 595–605. 10.1016/S0306-4522(99)00186-4PubMedCrossRef Schadrack J, Neto FL, Ableitner A, Castro-Lopes JM, Willoch F, Bartenstein P, Zieglgansberger W, Tolle TR: Metabolic activity changes in the rat spinal cord during adjuvant monoarthritis. Neuroscience 1999, 94: 595–605. 10.1016/S0306-4522(99)00186-4PubMedCrossRef
48.
go back to reference Benani A, Vol C, Heurtaux T, Asensio C, Dauca M, Lapicque F, Netter P, Minn A: Up-regulation of fatty acid metabolizing-enzymes mRNA in rat spinal cord during persistent peripheral local inflammation. Eur J Neurosci 2003, 18: 1904–14. 10.1046/j.1460-9568.2003.02930.xPubMedCrossRef Benani A, Vol C, Heurtaux T, Asensio C, Dauca M, Lapicque F, Netter P, Minn A: Up-regulation of fatty acid metabolizing-enzymes mRNA in rat spinal cord during persistent peripheral local inflammation. Eur J Neurosci 2003, 18: 1904–14. 10.1046/j.1460-9568.2003.02930.xPubMedCrossRef
Metadata
Title
Role of spinal cord glutamate transporter during normal sensory transmission and pathological pain states
Authors
Yuan-Xiang Tao
Jianguo Gu
Robert L Stephens Jr
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2005
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-1-30

Other articles of this Issue 1/2005

Molecular Pain 1/2005 Go to the issue