Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2009

Open Access 01-12-2009 | Research

Intraventricular infusion of hyperosmolar dextran induces hydrocephalus: a novel animal model of hydrocephalus

Authors: Satish Krishnamurthy, Jie Li, Lonni Schultz, James P McAllister II

Published in: Fluids and Barriers of the CNS | Issue 1/2009

Login to get access

Abstract

Background

Popular circulation theory of hydrocephalus assumes that the brain is impermeable to cerebrospinal fluid (CSF), and is therefore incapable of absorbing the CSF accumulating within the ventricles. However, the brain parenchyma is permeable to water due to the presence of specific ion channels as well as aquaporin channels. Thus, the movement of water into and out of the ventricles may be determined by the osmotic load of the CSF. If osmotic load determines the aqueous content of CSF in this manner, it is reasonable to hypothesize that hydrocephalus may be precipitated by pathologies and/or insults that produce sustained elevations of osmotic content within the ventricles.

Methods

We investigated this hypothesis by manipulating the osmotic content of CSF and assaying the development of hydrocephalus in the rat brain. This was achieved by continuously infusing artificial CSF (negative control; group I), fibroblast growth factor (FGF2) solution (positive control; group II) and hyperosmotic dextran solutions (10 KD and 40 KD as experimental solutions: groups III and IV) for 12 days at 0.5 μL/h. The osmolality of the fluid infused was 307, 664, 337 and 328 mOsm/L in Groups I, II, III and IV, respectively. Magnetic resonance imaging (MRI) was used to evaluate the ventricular volumes. Analysis of variance (ANOVA) with pairwise group comparisons was done to assess the differences in ventricular volumes among the four groups.

Results

Group I had no hydrocephalus. Group II, group III and group IV animals exhibited significant enlargement of the ventricles (hydrocephalus) compared to group I. There was no statistically significant difference in the size of the ventricles between groups II, III and IV. None of the animals with hydrocephalus had obstruction of the aqueduct or other parts of CSF pathways on MRI.

Conclusion

Infusing hyperosmolar solutions of dextran, or FGF into the ventricles chronically, resulted in ventricular enlargement. These solutions increase the osmotic load in the ventricles. Water influx (through the choroid plexus CSF secretion and/or through the brain) into the ventricles to normalize this osmotic gradient results in hydrocephalus. We need to revise the popular theory of how fluid accumulates in the ventricles at least in some forms of hydrocephalus.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sainte-Rose C: Hydrocephalus in childhood. Neurological Surgery. Edited by: Youmans JR. 1996, Philadelphia: WB Saunders, 890-922. 4 Sainte-Rose C: Hydrocephalus in childhood. Neurological Surgery. Edited by: Youmans JR. 1996, Philadelphia: WB Saunders, 890-922. 4
2.
go back to reference Simon TD, Riva-Cambrin J, Srivastava R, Bratton SL, Dean JM, Kestle JRW: Hospital care for children with hydrocephalus in the United States: utilization, charges, comorbidities, and deaths. J Neurosurg - Pediatr. 2008, 1: 131-137. 10.3171/PED/2008/1/2/131.CrossRefPubMed Simon TD, Riva-Cambrin J, Srivastava R, Bratton SL, Dean JM, Kestle JRW: Hospital care for children with hydrocephalus in the United States: utilization, charges, comorbidities, and deaths. J Neurosurg - Pediatr. 2008, 1: 131-137. 10.3171/PED/2008/1/2/131.CrossRefPubMed
3.
go back to reference Rekate HL: Hydrocephalus in children. Neurological Surgery. Edited by: Youmans JR. 2004, Philadelphia: WB Saunders, 3387-3404. 5 Rekate HL: Hydrocephalus in children. Neurological Surgery. Edited by: Youmans JR. 2004, Philadelphia: WB Saunders, 3387-3404. 5
4.
go back to reference McAllister JP, Chovan P: Neonatal hydrocephalus: mechanisms and consequences. Neurosurg Clin N America, Neurosurgery of the Neonate. Edited by: Frim DM, Madsen JR. 1998, Philadelphia: W.B. Saunders, 73-93. McAllister JP, Chovan P: Neonatal hydrocephalus: mechanisms and consequences. Neurosurg Clin N America, Neurosurgery of the Neonate. Edited by: Frim DM, Madsen JR. 1998, Philadelphia: W.B. Saunders, 73-93.
5.
go back to reference Del Bigio MR, McAllister JP: Pathophysiology of hydrocephalus. Pediatric Neurosurgery. Edited by: Choux M, DiRocco CE, Hockley AD, Walker ML. 1999, London: Churchill Livingstone, 217-236. Del Bigio MR, McAllister JP: Pathophysiology of hydrocephalus. Pediatric Neurosurgery. Edited by: Choux M, DiRocco CE, Hockley AD, Walker ML. 1999, London: Churchill Livingstone, 217-236.
6.
go back to reference Johnston M, Papaiconomou C: Cerebrospinal fluid transport: a lymphatic perspective. News Physiol Sci. 2002, 17: 227-230.PubMed Johnston M, Papaiconomou C: Cerebrospinal fluid transport: a lymphatic perspective. News Physiol Sci. 2002, 17: 227-230.PubMed
7.
go back to reference Bloch J, Vernet O, Aube M, Villemure JG: Non-obstructive hydrocephalus associated with intracranial schwannomas: hyperproteinorrhachia as an etiopathological factor?. Acta Neurochir (Wien. 2003, 145: 73-78. 10.1007/s00701-002-1021-7.CrossRef Bloch J, Vernet O, Aube M, Villemure JG: Non-obstructive hydrocephalus associated with intracranial schwannomas: hyperproteinorrhachia as an etiopathological factor?. Acta Neurochir (Wien. 2003, 145: 73-78. 10.1007/s00701-002-1021-7.CrossRef
8.
go back to reference Crivelli G, Fachinetti P: Lumbar neurinoma associated with hydrocephalus. Case report. J Neurol Sci. 1993, 37: 179-182. Crivelli G, Fachinetti P: Lumbar neurinoma associated with hydrocephalus. Case report. J Neurol Sci. 1993, 37: 179-182.
9.
go back to reference Ohta K, Gotoh F, Amando T, Obary K: Normal pressure hydrocephalus associated with cauda equina neurinoma. Ann Neurol. 1990, 27: 441-443. 10.1002/ana.410270414.CrossRefPubMed Ohta K, Gotoh F, Amando T, Obary K: Normal pressure hydrocephalus associated with cauda equina neurinoma. Ann Neurol. 1990, 27: 441-443. 10.1002/ana.410270414.CrossRefPubMed
10.
go back to reference Ersahin Y, Mutler S, Yurtseven T: Hydrocephalus in Guillain-Barre' syndrome. Clin Neurol Neurosurg. 1995, 97: 253-255. 10.1016/0303-8467(95)00041-H.CrossRefPubMed Ersahin Y, Mutler S, Yurtseven T: Hydrocephalus in Guillain-Barre' syndrome. Clin Neurol Neurosurg. 1995, 97: 253-255. 10.1016/0303-8467(95)00041-H.CrossRefPubMed
11.
go back to reference Ropper AH, Marmarou A: Mechanism of pseudotumor in Guillain-Barre' syndrome. Arch Neurol. 1984, 41: 259-261.CrossRefPubMed Ropper AH, Marmarou A: Mechanism of pseudotumor in Guillain-Barre' syndrome. Arch Neurol. 1984, 41: 259-261.CrossRefPubMed
12.
go back to reference Gato A, Moro JA, Alonso MI, Pastor JF, Represa JJ, Barbosa E: Chondroitin sulfate proteoglycan and embryonic brain enlargement in the chick. Anat Embryol. 1993, 188: 101-106. 10.1007/BF00191455.CrossRefPubMed Gato A, Moro JA, Alonso MI, Pastor JF, Represa JJ, Barbosa E: Chondroitin sulfate proteoglycan and embryonic brain enlargement in the chick. Anat Embryol. 1993, 188: 101-106. 10.1007/BF00191455.CrossRefPubMed
13.
14.
go back to reference Agre P, Nielsen S, Ottersen OP: Towards a molecular understanding of water homeostasis in the brain. Neuroscience. 2004, 12: 849-850. 10.1016/j.neuroscience.2004.10.001.CrossRef Agre P, Nielsen S, Ottersen OP: Towards a molecular understanding of water homeostasis in the brain. Neuroscience. 2004, 12: 849-850. 10.1016/j.neuroscience.2004.10.001.CrossRef
15.
go back to reference Johanson CE, Szmydynger-Chobodska J, Chobodski A, Baird A, McMillan P, Stopa EG: Altered formation and bulk absorption of cerebrospinal fluid in FGF-2 induced hydrocephalus. Am J Physiol. 1999, 277: R263-R271.PubMed Johanson CE, Szmydynger-Chobodska J, Chobodski A, Baird A, McMillan P, Stopa EG: Altered formation and bulk absorption of cerebrospinal fluid in FGF-2 induced hydrocephalus. Am J Physiol. 1999, 277: R263-R271.PubMed
16.
go back to reference Chodobski A, Segal MB: In vivo techniques used in Blood-CSF barrier research: Measurement of CSF formation. The Blood-Cerebrospinal Fluid Barrier. Edited by: Zheng W, Chodobska A. 2005, Boca Raton: Chapman and Hall, 598-599.CrossRef Chodobski A, Segal MB: In vivo techniques used in Blood-CSF barrier research: Measurement of CSF formation. The Blood-Cerebrospinal Fluid Barrier. Edited by: Zheng W, Chodobska A. 2005, Boca Raton: Chapman and Hall, 598-599.CrossRef
17.
go back to reference Caviness VS, Lange NT, Makris N, Herbert MR, Kennedy DN: MRI based brain volumetrics: emergence of a developmental brain science. Brain Dev. 1999, 21: 289-295. 10.1016/S0387-7604(99)00022-4.CrossRefPubMed Caviness VS, Lange NT, Makris N, Herbert MR, Kennedy DN: MRI based brain volumetrics: emergence of a developmental brain science. Brain Dev. 1999, 21: 289-295. 10.1016/S0387-7604(99)00022-4.CrossRefPubMed
18.
go back to reference Jacobsen LK, Geidd JN, Berquin PC, Krain AL, Hamburger SD, Kumra S, Rappaport JL: Quantitative morphology of the cerebellum and fourth ventricle in childhood-onset schizophrenia. Am J Psychiatry. 1997, 154: 1663-1669.CrossRefPubMed Jacobsen LK, Geidd JN, Berquin PC, Krain AL, Hamburger SD, Kumra S, Rappaport JL: Quantitative morphology of the cerebellum and fourth ventricle in childhood-onset schizophrenia. Am J Psychiatry. 1997, 154: 1663-1669.CrossRefPubMed
19.
go back to reference Maurizi CP: A cycle of cerebrospinal fluid: supporting evidence and theoretical considerations. Med Hypoth. 2000, 54: 417-422. 10.1054/mehy.1999.0863.CrossRef Maurizi CP: A cycle of cerebrospinal fluid: supporting evidence and theoretical considerations. Med Hypoth. 2000, 54: 417-422. 10.1054/mehy.1999.0863.CrossRef
20.
go back to reference Greitz D: Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl. 1993, 386: 1-23.PubMed Greitz D: Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl. 1993, 386: 1-23.PubMed
21.
go back to reference Czosnyka M, Czosnyka Z, Momjian S, Pickard JD: Cerebrospinal fluid dynamics. Topical Review. Physiol Meas. 2004, 25: R51-R76. 10.1088/0967-3334/25/5/R01.CrossRefPubMed Czosnyka M, Czosnyka Z, Momjian S, Pickard JD: Cerebrospinal fluid dynamics. Topical Review. Physiol Meas. 2004, 25: R51-R76. 10.1088/0967-3334/25/5/R01.CrossRefPubMed
22.
go back to reference Ghersi-Egea JF, Finnegan W, Chen JL, Fenstermacher JD: Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience. 1996, 75: 1271-1288. 10.1016/0306-4522(96)00281-3.CrossRefPubMed Ghersi-Egea JF, Finnegan W, Chen JL, Fenstermacher JD: Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience. 1996, 75: 1271-1288. 10.1016/0306-4522(96)00281-3.CrossRefPubMed
23.
go back to reference Davson H: Formation and drainage of the cerebrospinal fluid. Hydrocephalus. Edited by: Shapiro K, Marmarou A, Portnoy HD. 1984, New York: Raven Press, 3-40. Davson H: Formation and drainage of the cerebrospinal fluid. Hydrocephalus. Edited by: Shapiro K, Marmarou A, Portnoy HD. 1984, New York: Raven Press, 3-40.
24.
go back to reference Uno M, Takano T, Yamano T, Shimada M: Age-dependent susceptibility in mumps associated hydrocephalus: neuropathologic features and brain barriers. Acta Neuropathol. 1997, 94: 207-215. 10.1007/s004010050695.CrossRefPubMed Uno M, Takano T, Yamano T, Shimada M: Age-dependent susceptibility in mumps associated hydrocephalus: neuropathologic features and brain barriers. Acta Neuropathol. 1997, 94: 207-215. 10.1007/s004010050695.CrossRefPubMed
25.
go back to reference Jacobson EE, Fletcher DF, Morgan MK, Johnston IH: Fluid dynamics of cerebral aqueduct. Pediatr Neurosurg. 1996, 24: 229-236. 10.1159/000121044.CrossRefPubMed Jacobson EE, Fletcher DF, Morgan MK, Johnston IH: Fluid dynamics of cerebral aqueduct. Pediatr Neurosurg. 1996, 24: 229-236. 10.1159/000121044.CrossRefPubMed
26.
go back to reference Shapiro K, Kohn IJ, Takei F, Zee C: Progressive ventricular enlargement in cats in the absence of transmantle pressure gradients. J Neurosurg. 1987, 67: 88-92. 10.3171/jns.1987.67.1.0088.CrossRefPubMed Shapiro K, Kohn IJ, Takei F, Zee C: Progressive ventricular enlargement in cats in the absence of transmantle pressure gradients. J Neurosurg. 1987, 67: 88-92. 10.3171/jns.1987.67.1.0088.CrossRefPubMed
27.
go back to reference Penn RD, Lee MC, Linninger AA, Miesel K, Lu SN, Stylos L: Pressure gradients in the brain in an experimental model of hydrocephalus. J Neurosurg. 2005, 102: 1069-1075. 10.3171/jns.2005.102.6.1069.CrossRefPubMed Penn RD, Lee MC, Linninger AA, Miesel K, Lu SN, Stylos L: Pressure gradients in the brain in an experimental model of hydrocephalus. J Neurosurg. 2005, 102: 1069-1075. 10.3171/jns.2005.102.6.1069.CrossRefPubMed
28.
go back to reference Barnes NP, Jones SJ, Hayward RD, Harkness WJ, Thompson D: Ventriculoperitoneal shunt block: what are the best predictive clinical indicators?. Arch Dis Child. 2002, 87: 198-201. 10.1136/adc.87.3.198.PubMedCentralCrossRefPubMed Barnes NP, Jones SJ, Hayward RD, Harkness WJ, Thompson D: Ventriculoperitoneal shunt block: what are the best predictive clinical indicators?. Arch Dis Child. 2002, 87: 198-201. 10.1136/adc.87.3.198.PubMedCentralCrossRefPubMed
29.
go back to reference Tans JT, Poortvliet DC: Intracranial volume-pressure relationship in man. Part 1: Calculation of the pressure-volume index. J Neurosurg. 1982, 56: 524-528. 10.3171/jns.1982.56.4.0524.CrossRefPubMed Tans JT, Poortvliet DC: Intracranial volume-pressure relationship in man. Part 1: Calculation of the pressure-volume index. J Neurosurg. 1982, 56: 524-528. 10.3171/jns.1982.56.4.0524.CrossRefPubMed
30.
go back to reference Tans JT, Poortvliet DC: Intracranial volume-pressure relationship in man. Part 2: Clinical significance of the pressure volume index. J Neurosurg. 1983, 59: 810-816. 10.3171/jns.1983.59.5.0810.CrossRefPubMed Tans JT, Poortvliet DC: Intracranial volume-pressure relationship in man. Part 2: Clinical significance of the pressure volume index. J Neurosurg. 1983, 59: 810-816. 10.3171/jns.1983.59.5.0810.CrossRefPubMed
31.
go back to reference Eide PK: Quantitative analysis of continuous intracranial pressure recordings in symptomatic patients with extracranial shunts. J Neurol Neurosurg Psychiat. 2003, 74: 231-237. 10.1136/jnnp.74.2.231.PubMedCentralCrossRefPubMed Eide PK: Quantitative analysis of continuous intracranial pressure recordings in symptomatic patients with extracranial shunts. J Neurol Neurosurg Psychiat. 2003, 74: 231-237. 10.1136/jnnp.74.2.231.PubMedCentralCrossRefPubMed
32.
go back to reference Hebb AO, Cusimano MD: Idiopathic normal pressure hydrocephalus: A systematic review of diagnosis and outcome. Neurosurgery. 2001, 49: 1166-1186. 10.1097/00006123-200111000-00028.PubMed Hebb AO, Cusimano MD: Idiopathic normal pressure hydrocephalus: A systematic review of diagnosis and outcome. Neurosurgery. 2001, 49: 1166-1186. 10.1097/00006123-200111000-00028.PubMed
33.
go back to reference Trinh-Trang-Tan MM, Cartron JP, Bankir L: Molecular basis for the dialysis disequilibrium syndrome: altered aquaporin and urea transporter expression in the brain. Nephrol Dial Transplant. 2005, 20: 1984-1988. 10.1093/ndt/gfh877.CrossRefPubMed Trinh-Trang-Tan MM, Cartron JP, Bankir L: Molecular basis for the dialysis disequilibrium syndrome: altered aquaporin and urea transporter expression in the brain. Nephrol Dial Transplant. 2005, 20: 1984-1988. 10.1093/ndt/gfh877.CrossRefPubMed
34.
go back to reference Reinhold A, Zhang J, Gessner R, Felderhoff-Mueser U, Obladen M, Dame C: High thrombopoietin concentrations in the cerebrospinal fluid of neonates with sepsis and intraventricular hemorrhage may contribute to brain damage. J Interferon Cytokine Res. 2007, 27: 137-145. 10.1089/jir.2006.0096.CrossRefPubMed Reinhold A, Zhang J, Gessner R, Felderhoff-Mueser U, Obladen M, Dame C: High thrombopoietin concentrations in the cerebrospinal fluid of neonates with sepsis and intraventricular hemorrhage may contribute to brain damage. J Interferon Cytokine Res. 2007, 27: 137-145. 10.1089/jir.2006.0096.CrossRefPubMed
35.
go back to reference Suzuki H, Muramatsu M, Tanaka K, Fujiwara H, Kojima T, Taki W: Cerebrospinal fluid ferritin in chronic hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurol. 2006, 253: 1170-1176. 10.1007/s00415-006-0184-1.CrossRefPubMed Suzuki H, Muramatsu M, Tanaka K, Fujiwara H, Kojima T, Taki W: Cerebrospinal fluid ferritin in chronic hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurol. 2006, 253: 1170-1176. 10.1007/s00415-006-0184-1.CrossRefPubMed
36.
go back to reference Mashayekhi F, Salehi Z: Expression of nerve growth factor in cerebrospinal fluid of congenital hydrocephalic and normal children. Eur J Neurol. 2005, 12: 632-637. 10.1111/j.1468-1331.2005.01044.x.CrossRefPubMed Mashayekhi F, Salehi Z: Expression of nerve growth factor in cerebrospinal fluid of congenital hydrocephalic and normal children. Eur J Neurol. 2005, 12: 632-637. 10.1111/j.1468-1331.2005.01044.x.CrossRefPubMed
37.
go back to reference Chow LC, Soliman A, Zandian M, Danielpour M, Krueger RC: Accumulation of transforming growth factor-beta2 and nitrated chondroitin sulfate proteoglycans in cerebrospinal fluid correlates with poor neurologic outcome in preterm hydrocephalus. Biol Neonate. 2005, 88: 1-11. 10.1159/000083945.CrossRefPubMed Chow LC, Soliman A, Zandian M, Danielpour M, Krueger RC: Accumulation of transforming growth factor-beta2 and nitrated chondroitin sulfate proteoglycans in cerebrospinal fluid correlates with poor neurologic outcome in preterm hydrocephalus. Biol Neonate. 2005, 88: 1-11. 10.1159/000083945.CrossRefPubMed
38.
go back to reference Flood C, Akinwunmi J, Lagord C, Daniel M, Berry M, Jackowski A, Logan A: TGF β1 in the CSF of patients with subarachnoid hemorrhage: titers derived from exogenous and endogenous sources. J Cereb Blood Flow Metab. 2001, 21: 157-162. 10.1097/00004647-200102000-00007.CrossRefPubMed Flood C, Akinwunmi J, Lagord C, Daniel M, Berry M, Jackowski A, Logan A: TGF β1 in the CSF of patients with subarachnoid hemorrhage: titers derived from exogenous and endogenous sources. J Cereb Blood Flow Metab. 2001, 21: 157-162. 10.1097/00004647-200102000-00007.CrossRefPubMed
39.
go back to reference Whitelaw A, Christie S, Pople I: TGF β1: a possible signal molecule for posthemorrhagic hydrocephalus?. Pediatr Res. 1999, 46: 576-580. 10.1203/00006450-199911000-00014.CrossRefPubMed Whitelaw A, Christie S, Pople I: TGF β1: a possible signal molecule for posthemorrhagic hydrocephalus?. Pediatr Res. 1999, 46: 576-580. 10.1203/00006450-199911000-00014.CrossRefPubMed
40.
go back to reference Beems T, Simons KS, van Geel WJA, de Reus HPM, Vos PE, Verbeek MM: Serum and CSF-concentrations of brain specific proteins in hydrocephalus. Acta Neurochir (Wien). 2003, 145: 37-43. 10.1007/s00701-002-1019-1.CrossRef Beems T, Simons KS, van Geel WJA, de Reus HPM, Vos PE, Verbeek MM: Serum and CSF-concentrations of brain specific proteins in hydrocephalus. Acta Neurochir (Wien). 2003, 145: 37-43. 10.1007/s00701-002-1019-1.CrossRef
41.
go back to reference Sendrowski K, Sobaniec W, Sobaniec-Lotowska ME, Lewczuk PS: S-100 protein as marker of the blood-brain barrier disruption in children with internal hydrocephalus and epilepsy--a preliminary study. Roczniki Akademii Medycznej W Bialymstoku. 2004, 49 (Suppl 1): 236-238.PubMed Sendrowski K, Sobaniec W, Sobaniec-Lotowska ME, Lewczuk PS: S-100 protein as marker of the blood-brain barrier disruption in children with internal hydrocephalus and epilepsy--a preliminary study. Roczniki Akademii Medycznej W Bialymstoku. 2004, 49 (Suppl 1): 236-238.PubMed
42.
go back to reference Heep A, Stoffel-Wagner B, Bartmann P, Benseler S, Schaller C, Groneck P, Obladen M, Felderhoff-Mueser U: Vascular endothelial growth factor and transforming growth factor-beta1 are highly expressed in the cerebrospinal fluid of premature infants with posthemorrhagic hydrocephalus. Pediatric Res. 2004, 56: 768-774. 10.1203/01.PDR.0000141524.32142.53.CrossRef Heep A, Stoffel-Wagner B, Bartmann P, Benseler S, Schaller C, Groneck P, Obladen M, Felderhoff-Mueser U: Vascular endothelial growth factor and transforming growth factor-beta1 are highly expressed in the cerebrospinal fluid of premature infants with posthemorrhagic hydrocephalus. Pediatric Res. 2004, 56: 768-774. 10.1203/01.PDR.0000141524.32142.53.CrossRef
43.
44.
go back to reference Nooijen PT, Schoonderwaldt HC, Wevers RA, Hommes OR, Lamers KJ: Neuronspecific enolase, S-100 protein, myelin basic protein and lactate in CSF in dementia. Dement Geriatr Cogn Disord. 1997, 8: 169-173. 10.1159/000106627.CrossRefPubMed Nooijen PT, Schoonderwaldt HC, Wevers RA, Hommes OR, Lamers KJ: Neuronspecific enolase, S-100 protein, myelin basic protein and lactate in CSF in dementia. Dement Geriatr Cogn Disord. 1997, 8: 169-173. 10.1159/000106627.CrossRefPubMed
45.
go back to reference Nussinovitch M, Volovitz B, Finkelstein Y, Amir J, Harel D: Lactic dehydrogenase isoenzymes in cerebrospinal fluid associated with hydrocephalus. Acta Paediatr. 2001, 90: 972-974. 10.1080/080352501316978020.CrossRefPubMed Nussinovitch M, Volovitz B, Finkelstein Y, Amir J, Harel D: Lactic dehydrogenase isoenzymes in cerebrospinal fluid associated with hydrocephalus. Acta Paediatr. 2001, 90: 972-974. 10.1080/080352501316978020.CrossRefPubMed
46.
go back to reference Cerda M, Manterola A, Ponce S, Basauri L: Electrolyte levels in the CSF of children with non-tumoral hydrocephalus. Childs Nerv Syst. 1985, 6: 306-311. 10.1007/BF00270813.CrossRef Cerda M, Manterola A, Ponce S, Basauri L: Electrolyte levels in the CSF of children with non-tumoral hydrocephalus. Childs Nerv Syst. 1985, 6: 306-311. 10.1007/BF00270813.CrossRef
47.
go back to reference Del Bigio MR: Hydrocephalus-induced changes in the composition of cerebrospinal fluid. Neurosurgery. 1989, 25: 416-423. 10.1097/00006123-198909000-00016.CrossRefPubMed Del Bigio MR: Hydrocephalus-induced changes in the composition of cerebrospinal fluid. Neurosurgery. 1989, 25: 416-423. 10.1097/00006123-198909000-00016.CrossRefPubMed
48.
go back to reference Whitelaw A, Pople I, Cherian S, Evans D, Thoresen M: Phase I trial of prevention of hydrocephalus after intraventricular hemorrhage in newborn infants by drainage, irrigation and fibrinolytic therapy. Pediatrics. 2003, 111: 759-765. 10.1542/peds.111.4.759.CrossRefPubMed Whitelaw A, Pople I, Cherian S, Evans D, Thoresen M: Phase I trial of prevention of hydrocephalus after intraventricular hemorrhage in newborn infants by drainage, irrigation and fibrinolytic therapy. Pediatrics. 2003, 111: 759-765. 10.1542/peds.111.4.759.CrossRefPubMed
49.
go back to reference Perrata P, Regazzi P, Carlino CF, Gaglini P, Cinalli G: The role of Ommaya reservoir and endoscopic third ventriculostomy in the management of post hemorrhagic hydrocephalus in prematurity. Childs Nerv Syst. 2007, 23: 765-771. 10.1007/s00381-006-0291-4.CrossRef Perrata P, Regazzi P, Carlino CF, Gaglini P, Cinalli G: The role of Ommaya reservoir and endoscopic third ventriculostomy in the management of post hemorrhagic hydrocephalus in prematurity. Childs Nerv Syst. 2007, 23: 765-771. 10.1007/s00381-006-0291-4.CrossRef
50.
go back to reference Brinker T, Seifert V, Dietz H: Subacute hydrocephalus after experimental subarachnoid hemorrhage: its prevention by intrathecal fibrinolysis with recombinant tissue plasminogen activator. Neurosurgery. 1992, 31: 306-311. 10.1097/00006123-199208000-00016.CrossRefPubMed Brinker T, Seifert V, Dietz H: Subacute hydrocephalus after experimental subarachnoid hemorrhage: its prevention by intrathecal fibrinolysis with recombinant tissue plasminogen activator. Neurosurgery. 1992, 31: 306-311. 10.1097/00006123-199208000-00016.CrossRefPubMed
51.
go back to reference Wald A, Hochwald GM, Malhan C: The effects of ventricular fluid osmolality on bulk flow of nascent fluid into the cerebral ventricles of cats. Exp Brain Res. 1976, 25: 157-167. 10.1007/BF00234900.CrossRefPubMed Wald A, Hochwald GM, Malhan C: The effects of ventricular fluid osmolality on bulk flow of nascent fluid into the cerebral ventricles of cats. Exp Brain Res. 1976, 25: 157-167. 10.1007/BF00234900.CrossRefPubMed
52.
go back to reference DiMattio J, Hochwald GM, Malhan C, Wald A: Effects of changes in serum osmolality on bulk flow of fluid into cerebral ventricles and on brain water content. Pflugers Arch. 1975, 359: 253-264. 10.1007/BF00587383.CrossRefPubMed DiMattio J, Hochwald GM, Malhan C, Wald A: Effects of changes in serum osmolality on bulk flow of fluid into cerebral ventricles and on brain water content. Pflugers Arch. 1975, 359: 253-264. 10.1007/BF00587383.CrossRefPubMed
53.
go back to reference Alonso MI, Gato A, Moro JA, Barbosa E: Disruption of proteoglycans in neural tube fluid by β-D xyloside alters brain enlargement in chick embryos. Anat Rec. 1998, 252: 499-508. 10.1002/(SICI)1097-0185(199812)252:4<499::AID-AR1>3.0.CO;2-1.CrossRefPubMed Alonso MI, Gato A, Moro JA, Barbosa E: Disruption of proteoglycans in neural tube fluid by β-D xyloside alters brain enlargement in chick embryos. Anat Rec. 1998, 252: 499-508. 10.1002/(SICI)1097-0185(199812)252:4<499::AID-AR1>3.0.CO;2-1.CrossRefPubMed
54.
go back to reference Lowery LA, Sive H: Initial formation of zebrafish ventricles occurs independently of circulation and requires nagie oko and snakehead/atp1a1a.1 gene products. Development. 2005, 132: 2057-2067. 10.1242/dev.01791.CrossRefPubMed Lowery LA, Sive H: Initial formation of zebrafish ventricles occurs independently of circulation and requires nagie oko and snakehead/atp1a1a.1 gene products. Development. 2005, 132: 2057-2067. 10.1242/dev.01791.CrossRefPubMed
Metadata
Title
Intraventricular infusion of hyperosmolar dextran induces hydrocephalus: a novel animal model of hydrocephalus
Authors
Satish Krishnamurthy
Jie Li
Lonni Schultz
James P McAllister II
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2009
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/1743-8454-6-16

Other articles of this Issue 1/2009

Fluids and Barriers of the CNS 1/2009 Go to the issue