Skip to main content
Top
Published in: Nutrition & Metabolism 1/2012

Open Access 01-12-2012 | Research

D-Lactate altered mitochondrial energy production in rat brain and heart but not liver

Authors: Binbing Ling, Fei Peng, Jane Alcorn, Katharina Lohmann, Brian Bandy, Gordon A Zello

Published in: Nutrition & Metabolism | Issue 1/2012

Login to get access

Abstract

Background

Substantially elevated blood D-lactate (DLA) concentrations are associated with neurocardiac toxicity in humans and animals. The neurological symptoms are similar to inherited or acquired abnormalities of pyruvate metabolism. We hypothesized that DLA interferes with mitochondrial utilization of L-lactate and pyruvate in brain and heart.

Methods

Respiration rates in rat brain, heart and liver mitochondria were measured using DLA, LLA and pyruvate independently and in combination.

Results

In brain mitochondria, state 3 respiration was 53% and 75% lower with DLA as substrate when compared with LLA and pyruvate, respectively (p < 0.05). Similarly in heart mitochondria, state 3 respiration was 39% and 86% lower with DLA as substrate when compared with LLA or pyruvate, respectively (p < 0.05). However, state 3 respiration rates were similar between DLA, LLA and pyruvate in liver mitochondria. Combined incubation of DLA with LLA or pyruvate markedly impaired state 3 respiration rates in brain and heart mitochondria (p < 0.05) but not in liver mitochondria. DLA dehydrogenase activities were 61% and 51% lower in brain and heart mitochondria compared to liver, respectively, whereas LLA dehydrogenase activities were similar across all three tissues. An LDH inhibitor blocked state 3 respiration with LLA as substrate in all three tissues. A monocarboxylate transporter inhibitor blocked respiration with all three substrates.

Conclusions

DLA was a poor respiratory substrate in brain and heart mitochondria and inhibited LLA and pyruvate usage in these tissues. Further studies are warranted to evaluate whether these findings support, in part, the possible neurological and cardiac toxicity caused by high DLA levels.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kondoh Y, Kawase M, Kawakami Y, Ohmori S: Concentrations of D-lactate and its related metabolic intermediates in liver, blood, and muscle of diabetic and starved rats. Res Exp Med (Berl). 1992, 192: 407-414.CrossRef Kondoh Y, Kawase M, Kawakami Y, Ohmori S: Concentrations of D-lactate and its related metabolic intermediates in liver, blood, and muscle of diabetic and starved rats. Res Exp Med (Berl). 1992, 192: 407-414.CrossRef
2.
go back to reference Dahhak S, Uhlen S, Mention K, Romond MB, Fontaine M, Gottrand F, Turck D, Michaud L: D-lactic acidosis in a child with short bowel syndrome. Arch Pediatr. 2008, 15: 145-148.CrossRef Dahhak S, Uhlen S, Mention K, Romond MB, Fontaine M, Gottrand F, Turck D, Michaud L: D-lactic acidosis in a child with short bowel syndrome. Arch Pediatr. 2008, 15: 145-148.CrossRef
4.
go back to reference Weizman Z, Houri S, Ben-Ezer Gradus D: Type of acidosis and clinical outcome in infantile gastroenteritis. J Pediatr Gastroenterol Nutr. 1992, 14: 187-191.CrossRef Weizman Z, Houri S, Ben-Ezer Gradus D: Type of acidosis and clinical outcome in infantile gastroenteritis. J Pediatr Gastroenterol Nutr. 1992, 14: 187-191.CrossRef
5.
go back to reference Ewaschuk JB, Naylor JM, Palmer R, Whiting SJ, Zello GA: D-lactate production and excretion in diarrheic calves. J Vet Intern Med. 2004, 18: 744-747.CrossRef Ewaschuk JB, Naylor JM, Palmer R, Whiting SJ, Zello GA: D-lactate production and excretion in diarrheic calves. J Vet Intern Med. 2004, 18: 744-747.CrossRef
6.
go back to reference Lorenz I, Gentile A, Klee W: Investigations of D-lactate metabolism and the clinical signs of D-lactataemia in calves. Vet Rec. 2005, 156: 412-415.CrossRef Lorenz I, Gentile A, Klee W: Investigations of D-lactate metabolism and the clinical signs of D-lactataemia in calves. Vet Rec. 2005, 156: 412-415.CrossRef
7.
go back to reference Abeysekara S, Naylor J, Wassef A, Isak U, Zello G: D-Lactic acid-induced neurotoxicity in a calf model. Am J Physiol Endocrinol Metab. 2007, 293: E558-CrossRef Abeysekara S, Naylor J, Wassef A, Isak U, Zello G: D-Lactic acid-induced neurotoxicity in a calf model. Am J Physiol Endocrinol Metab. 2007, 293: E558-CrossRef
8.
go back to reference Sheedy JR, Wettenhall RE, Scanlon D, Gooley PR, Lewis DP, McGregor N, Stapleton DI, Butt HL, KL DEM: Increased d-lactic Acid intestinal bacteria in patients with chronic fatigue syndrome. In Vivo. 2009, 23: 621-628. Sheedy JR, Wettenhall RE, Scanlon D, Gooley PR, Lewis DP, McGregor N, Stapleton DI, Butt HL, KL DEM: Increased d-lactic Acid intestinal bacteria in patients with chronic fatigue syndrome. In Vivo. 2009, 23: 621-628.
9.
go back to reference Talasniemi JP, Pennanen S, Savolainen H, Niskanen L, Liesivuori J: Analytical investigation: assay of D-lactate in diabetic plasma and urine. Clin Biochem. 2008, 41: 1099-1103.CrossRef Talasniemi JP, Pennanen S, Savolainen H, Niskanen L, Liesivuori J: Analytical investigation: assay of D-lactate in diabetic plasma and urine. Clin Biochem. 2008, 41: 1099-1103.CrossRef
10.
go back to reference Lu J, Zello GA, Randell E, Adeli K, Krahn J, Meng QH: Closing the anion gap: contribution of D-lactate to diabetic ketoacidosis. Clin Chim Acta. 2011, 412: 286-291.CrossRef Lu J, Zello GA, Randell E, Adeli K, Krahn J, Meng QH: Closing the anion gap: contribution of D-lactate to diabetic ketoacidosis. Clin Chim Acta. 2011, 412: 286-291.CrossRef
11.
go back to reference Cross S, Callaway C: D-Lactic acidosis and selected cerebellar ataxias. Mayo Clin Proc. 1984, 59: 202-205.CrossRef Cross S, Callaway C: D-Lactic acidosis and selected cerebellar ataxias. Mayo Clin Proc. 1984, 59: 202-205.CrossRef
12.
go back to reference Bolanos JP, Almeida A, Moncada S: Glycolysis: a bioenergetic or a survival pathway?. Trends Biochem Sci. 2010, 35: 145-149.CrossRef Bolanos JP, Almeida A, Moncada S: Glycolysis: a bioenergetic or a survival pathway?. Trends Biochem Sci. 2010, 35: 145-149.CrossRef
13.
go back to reference Huss JM, Kelly DP: Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest. 2005, 115: 547-555.CrossRef Huss JM, Kelly DP: Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest. 2005, 115: 547-555.CrossRef
14.
go back to reference Beal MF, Hyman BT, Koroshetz W: Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases?. Trends Neurosci. 1993, 16: 125-131.CrossRef Beal MF, Hyman BT, Koroshetz W: Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases?. Trends Neurosci. 1993, 16: 125-131.CrossRef
15.
go back to reference Ereci ska M, Wilson D: Regulation of cellular energy metabolism. J Membr Biol. 1982, 70: 1-14.CrossRef Ereci ska M, Wilson D: Regulation of cellular energy metabolism. J Membr Biol. 1982, 70: 1-14.CrossRef
16.
go back to reference Leverve XM: Mitochondrial function and substrate availability. Crit Care Med. 2007, 35: S454-460.CrossRef Leverve XM: Mitochondrial function and substrate availability. Crit Care Med. 2007, 35: S454-460.CrossRef
17.
go back to reference Brooks GA, Brown MA, Butz CE, Sicurello JP, Dubouchaud H: Cardiac and skeletal muscle mitochondria have a monocarboxylate transporter MCT1. J Appl Physiol. 1999, 87: 1713-1718. Brooks GA, Brown MA, Butz CE, Sicurello JP, Dubouchaud H: Cardiac and skeletal muscle mitochondria have a monocarboxylate transporter MCT1. J Appl Physiol. 1999, 87: 1713-1718.
18.
go back to reference Gladden LB: Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004, 558: 5-30.CrossRef Gladden LB: Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004, 558: 5-30.CrossRef
19.
go back to reference Passarella S, de Bari L, Valenti D, Pizzuto R, Paventi G, Atlante A: Mitochondria and L-lactate metabolism. FEBS lett. 2008, 582: 3569-3576.CrossRef Passarella S, de Bari L, Valenti D, Pizzuto R, Paventi G, Atlante A: Mitochondria and L-lactate metabolism. FEBS lett. 2008, 582: 3569-3576.CrossRef
20.
go back to reference Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA: Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab. 2003, 23: 658-664.CrossRef Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA: Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab. 2003, 23: 658-664.CrossRef
21.
go back to reference Lemire J, Mailloux RJ, Appanna VD: Mitochondrial lactate dehydrogenase is involved in oxidative-energy metabolism in human astrocytoma cells (CCF-STTG1). PLoS One. 2008, 3: e1550-CrossRef Lemire J, Mailloux RJ, Appanna VD: Mitochondrial lactate dehydrogenase is involved in oxidative-energy metabolism in human astrocytoma cells (CCF-STTG1). PLoS One. 2008, 3: e1550-CrossRef
22.
go back to reference Wang Q, Lu Y, Yuan M, Darling IM, Repasky EA, Morris ME: Characterization of monocarboxylate transport in human kidney HK-2 cells. Mol Pharm. 2006, 3: 675-685.CrossRef Wang Q, Lu Y, Yuan M, Darling IM, Repasky EA, Morris ME: Characterization of monocarboxylate transport in human kidney HK-2 cells. Mol Pharm. 2006, 3: 675-685.CrossRef
23.
go back to reference Poole R, Cranmer S, Halestrap A, Levi A: Substrate and inhibitor specificity of monocarboxylate transport into heart cells and erythrocytes. Further evidence for the existence of two distinct carriers. Biochem J. 1990, 269: 827-CrossRef Poole R, Cranmer S, Halestrap A, Levi A: Substrate and inhibitor specificity of monocarboxylate transport into heart cells and erythrocytes. Further evidence for the existence of two distinct carriers. Biochem J. 1990, 269: 827-CrossRef
24.
go back to reference Ros J, Pecinska N, Alessandri B, Landolt H, Fillenz M: Lactate reduces glutamate induced neurotoxicity in rat cortex. J Neurosci Res. 2001, 66: 790-794.CrossRef Ros J, Pecinska N, Alessandri B, Landolt H, Fillenz M: Lactate reduces glutamate induced neurotoxicity in rat cortex. J Neurosci Res. 2001, 66: 790-794.CrossRef
25.
26.
go back to reference Flick MJ, Konieczny SF: Identification of putative mammalian D-lactate dehydrogenase enzymes. Biochem Biophys Res Commun. 2002, 295: 910-916.CrossRef Flick MJ, Konieczny SF: Identification of putative mammalian D-lactate dehydrogenase enzymes. Biochem Biophys Res Commun. 2002, 295: 910-916.CrossRef
27.
go back to reference Tubbs PK: The metabolism of D-alpha-hydroxy acids in animal tissues. Ann N Y Acad Sci. 1965, 119: 920-926.CrossRef Tubbs PK: The metabolism of D-alpha-hydroxy acids in animal tissues. Ann N Y Acad Sci. 1965, 119: 920-926.CrossRef
28.
go back to reference Gibbs ME, Hertz L: Inhibition of astrocytic energy metabolism by D-lactate exposure impairs memory. Neurochem Int. 2008, 52: 1012-1018.CrossRef Gibbs ME, Hertz L: Inhibition of astrocytic energy metabolism by D-lactate exposure impairs memory. Neurochem Int. 2008, 52: 1012-1018.CrossRef
29.
go back to reference Schneider WC: Intracellular distribution of enzymes; the oxidation of octanoic acid by rat liver fractions. J Biol Chem. 1948, 176: 259-266. Schneider WC: Intracellular distribution of enzymes; the oxidation of octanoic acid by rat liver fractions. J Biol Chem. 1948, 176: 259-266.
30.
go back to reference Johnson D, Lardy H: Isolation of liver or kidney mitochondria. Methods Enzymol. 1967, 10: 94-96.CrossRef Johnson D, Lardy H: Isolation of liver or kidney mitochondria. Methods Enzymol. 1967, 10: 94-96.CrossRef
31.
go back to reference Nedergaard J, Cannon B: Overview---Preparation and properties of mitochondria from different sources. Methods Enzymol. 1979, 55: 3-28.CrossRef Nedergaard J, Cannon B: Overview---Preparation and properties of mitochondria from different sources. Methods Enzymol. 1979, 55: 3-28.CrossRef
32.
go back to reference Kowaltowski AJ, Castilho RF, Grijalba MT, Bechara EJH, Vercesi AE: Effect of Inorganic Phosphate Concentration on the Nature of Inner Mitochondrial Membrane Alterations Mediated by Ca Ions. J Biol Chem. 1996, 271: 2929-CrossRef Kowaltowski AJ, Castilho RF, Grijalba MT, Bechara EJH, Vercesi AE: Effect of Inorganic Phosphate Concentration on the Nature of Inner Mitochondrial Membrane Alterations Mediated by Ca Ions. J Biol Chem. 1996, 271: 2929-CrossRef
33.
go back to reference Gornall AG, Bardawill CJ, David MM: Determination of serum proteins by means of the biuret reaction. J biol Chem. 1949, 177: 751-766. Gornall AG, Bardawill CJ, David MM: Determination of serum proteins by means of the biuret reaction. J biol Chem. 1949, 177: 751-766.
34.
go back to reference de Bari L, Atlante A, Guaragnella N, Principato G, Passarella S: D-Lactate transport and metabolism in rat liver mitochondria. Biochem J. 2002, 365: 391-403.CrossRef de Bari L, Atlante A, Guaragnella N, Principato G, Passarella S: D-Lactate transport and metabolism in rat liver mitochondria. Biochem J. 2002, 365: 391-403.CrossRef
35.
go back to reference Cadenas E, Davies K: Mitochondrial free radical generation, oxidative stress, and aging1. Free Radic Biol Med. 2000, 29: 222-230.CrossRef Cadenas E, Davies K: Mitochondrial free radical generation, oxidative stress, and aging1. Free Radic Biol Med. 2000, 29: 222-230.CrossRef
36.
go back to reference Maitra PK, Estabrook RW: Studies of baker's yeast metabolism. II. The role of adenine nucleotides and inorganic phosphate in the control of respiration during alcohol oxidation. Arch Biochem Biophys. 1967, 121: 129-139.CrossRef Maitra PK, Estabrook RW: Studies of baker's yeast metabolism. II. The role of adenine nucleotides and inorganic phosphate in the control of respiration during alcohol oxidation. Arch Biochem Biophys. 1967, 121: 129-139.CrossRef
37.
go back to reference Estabrook RW: Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. Methods Enzymol. 1967, 10: 41-47.CrossRef Estabrook RW: Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. Methods Enzymol. 1967, 10: 41-47.CrossRef
38.
go back to reference Chelstowska A, Liu Z, Jia Y, Amberg D, Butow RA: Signalling between mitochondria and the nucleus regulates the expression of a new D-lactate dehydrogenase activity in yeast. Yeast. 1999, 15: 1377-1391.CrossRef Chelstowska A, Liu Z, Jia Y, Amberg D, Butow RA: Signalling between mitochondria and the nucleus regulates the expression of a new D-lactate dehydrogenase activity in yeast. Yeast. 1999, 15: 1377-1391.CrossRef
39.
go back to reference Oh MS, Uribarri J, Alveranga D, Lazar I, Bazilinski N, Carroll HJ: Metabolic utilization and renal handling of D-lactate in men. Metabolism. 1985, 34: 621-625.CrossRef Oh MS, Uribarri J, Alveranga D, Lazar I, Bazilinski N, Carroll HJ: Metabolic utilization and renal handling of D-lactate in men. Metabolism. 1985, 34: 621-625.CrossRef
40.
go back to reference Christopher MM, Broussard JD, Fallin CW, Drost NJ, Peterson ME: Increased serum D-lactate associated with diabetic ketoacidosis. Metabolism. 1995, 44: 287-290.CrossRef Christopher MM, Broussard JD, Fallin CW, Drost NJ, Peterson ME: Increased serum D-lactate associated with diabetic ketoacidosis. Metabolism. 1995, 44: 287-290.CrossRef
41.
go back to reference Chan L, Slater J, Hasbargen J, Herndon DN, Veech RL, Wolf S: Neurocardiac toxicity of racemic D, L-lactate fluids. Integr Physiol Behav Sci. 1994, 29: 383-394.CrossRef Chan L, Slater J, Hasbargen J, Herndon DN, Veech RL, Wolf S: Neurocardiac toxicity of racemic D, L-lactate fluids. Integr Physiol Behav Sci. 1994, 29: 383-394.CrossRef
42.
go back to reference Hoffmann GF, Zschocke J, Nyhan WL: Inherited metabolic diseases: a clinical approach. 2009, Springer Verlag Hoffmann GF, Zschocke J, Nyhan WL: Inherited metabolic diseases: a clinical approach. 2009, Springer Verlag
43.
go back to reference Lehninger AL: The Mitochondrion. 1964, New York: W. A. Benjamin, 135- Lehninger AL: The Mitochondrion. 1964, New York: W. A. Benjamin, 135-
44.
go back to reference Higgins ES: Factors influencing respiratory control in brain mitochondria. J Neurochem. 1968, 15: 589-596.CrossRef Higgins ES: Factors influencing respiratory control in brain mitochondria. J Neurochem. 1968, 15: 589-596.CrossRef
45.
go back to reference Chang GG, Tong L: Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry. 2003, 42: 12721-12733.CrossRef Chang GG, Tong L: Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry. 2003, 42: 12721-12733.CrossRef
46.
go back to reference Chance B, Williams GR: Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955, 217: 383-393. Chance B, Williams GR: Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955, 217: 383-393.
47.
go back to reference Messer JI, Jackman MR, Willis WT: Pyruvate and citric acid cycle carbon requirements in isolated skeletal muscle mitochondria. Am J Physiol Cell Physiol. 2004, 286: C565-572.CrossRef Messer JI, Jackman MR, Willis WT: Pyruvate and citric acid cycle carbon requirements in isolated skeletal muscle mitochondria. Am J Physiol Cell Physiol. 2004, 286: C565-572.CrossRef
48.
go back to reference Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE: Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci USA. 1999, 96: 1129-1134.CrossRef Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE: Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci USA. 1999, 96: 1129-1134.CrossRef
49.
go back to reference Fleischer S, Rouser G, Fleischer B, Casu A, Kritchevsky G: Lipid composition of mitochondria from bovine heart, liver, and kidney. J Lipid Res. 1967, 8: 170- Fleischer S, Rouser G, Fleischer B, Casu A, Kritchevsky G: Lipid composition of mitochondria from bovine heart, liver, and kidney. J Lipid Res. 1967, 8: 170-
50.
go back to reference Chance B, Williams GR: The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956, 17: 65-134. Chance B, Williams GR: The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956, 17: 65-134.
51.
go back to reference Poole RC, Cranmer SL, Halestrap AP, Levi AJ: Substrate and inhibitor specificity of monocarboxylate transport into heart cells and erythrocytes. Further evidence for the existence of two distinct carriers. Biochem J. 1990, 269: 827-829.CrossRef Poole RC, Cranmer SL, Halestrap AP, Levi AJ: Substrate and inhibitor specificity of monocarboxylate transport into heart cells and erythrocytes. Further evidence for the existence of two distinct carriers. Biochem J. 1990, 269: 827-829.CrossRef
52.
go back to reference Kline ES, Brandt RB, Laux JE, Spainhour SE, Higgins ES, Rogers KS, Tinsley SB, Waters MG: Localization of L-lactate dehydrogenase in mitochondria. Arch Biochem Biophys. 1986, 246: 673-680.CrossRef Kline ES, Brandt RB, Laux JE, Spainhour SE, Higgins ES, Rogers KS, Tinsley SB, Waters MG: Localization of L-lactate dehydrogenase in mitochondria. Arch Biochem Biophys. 1986, 246: 673-680.CrossRef
53.
go back to reference Szczesna-Kaczmarek A: L-lactate oxidation by skeletal muscle mitochondria. Int J Biochem. 1990, 22: 617-620.CrossRef Szczesna-Kaczmarek A: L-lactate oxidation by skeletal muscle mitochondria. Int J Biochem. 1990, 22: 617-620.CrossRef
Metadata
Title
D-Lactate altered mitochondrial energy production in rat brain and heart but not liver
Authors
Binbing Ling
Fei Peng
Jane Alcorn
Katharina Lohmann
Brian Bandy
Gordon A Zello
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Nutrition & Metabolism / Issue 1/2012
Electronic ISSN: 1743-7075
DOI
https://doi.org/10.1186/1743-7075-9-6

Other articles of this Issue 1/2012

Nutrition & Metabolism 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine