Skip to main content
Top
Published in: Nutrition & Metabolism 1/2014

Open Access 01-12-2014 | Research

Metabolic programming of adipose tissue structure and function in male rat offspring by prenatal undernutrition

Authors: Nichola Thompson, Korinna Huber, Mirijam Bedürftig, Kathrin Hansen, Jennifer Miles-Chan, Bernhard H Breier

Published in: Nutrition & Metabolism | Issue 1/2014

Login to get access

Abstract

Background

A number of different pathways to obesity with different metabolic outcomes are recognised. Prenatal undernutrition in rats leads to increased fat deposition in adulthood. However, the form of obesity is metabolically distinct from obesity induced through other pathways (e.g. diet-induced obesity). Previous rat studies have shown that maternal undernutrition during pregnancy led to insulin hyper-secretion and obesity in offspring, but not to systemic insulin resistance. Increased muscle and liver glycogen stores indicated that glucose is taken up efficiently, reflecting an active physiological function of these energy storage tissues. It is increasingly recognised that adipose tissue plays a central role in the regulation of metabolism and pathophysiology of obesity development. The present study investigated the cell size and endocrine responsiveness of subcutaneous and visceral adipose tissue from prenatally undernourished rats. We aimed to identify whether these adipose tissue depots contribute to the altered energy metabolism observed in these offspring.

Methods

Adipocyte size was measured in both subcutaneous (ScAT) and retroperitoneal adipose tissue (RpAT) in male prenatally ad libitum fed (AD) or prenatally undernourished (UN) rat offspring. Metabolic responses were investigated in adipose tissue explants stimulated by insulin and beta3 receptor agonists ex vivo. Expression of markers of insulin signalling was determined by Western blot analyses. Data were analysed by unpaired t-test or Two Way ANOVA followed by Fisher’s PLSD post-hoc test, where appropriate.

Results

Adipocytes in offspring of undernourished mothers were larger, even at a lower body weight, in both RpAT and ScAT. The insulin response of adipose tissue was reduced in ScAT, and statistically absent in RpAT of UN rats compared with control. This lack of RpAT insulin response was associated with reduced expression of insulin signalling pathway proteins. Adrenergic receptor-driven lipolysis was observed in both adipose depots; however insulin failed to express its anti-lipolytic effect in RpAT in both, AD and UN offspring.

Conclusions

Metabolic dysregulation in offspring of undernourished mothers is mediated by increased adipocyte size and reduced insulin responsiveness in both ScAT and especially in RpAT. These functional and morphological changes in adipocytes were accompanied by impaired activity of the insulin signalling cascade highlighting the important role of different adipose tissue depots in the pathogenesis of metabolic disorders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mori M, Higuchi K, Sakurai A, Tabara Y, Miki T, Nose H: Genetic basis of inter-individual variability in the effects of exercise on the alleviation of lifestyle-related diseases. J Physiol. 2009, 587: 5577-5584. 10.1113/jphysiol.2009.179283.CrossRef Mori M, Higuchi K, Sakurai A, Tabara Y, Miki T, Nose H: Genetic basis of inter-individual variability in the effects of exercise on the alleviation of lifestyle-related diseases. J Physiol. 2009, 587: 5577-5584. 10.1113/jphysiol.2009.179283.CrossRef
2.
go back to reference Lee YS: The role of genes in the current obesity epidemic. Ann Acad Med Singapore. 2009, 38: 45-43. Lee YS: The role of genes in the current obesity epidemic. Ann Acad Med Singapore. 2009, 38: 45-43.
3.
go back to reference Symonds ME, Sebert S, Budge H: The obesity epidemic: from the environment to epigenetics - not simply a response to dietary manipulation in a thermoneutral environment. Front Genet. 2011, 2: 24-CrossRef Symonds ME, Sebert S, Budge H: The obesity epidemic: from the environment to epigenetics - not simply a response to dietary manipulation in a thermoneutral environment. Front Genet. 2011, 2: 24-CrossRef
4.
go back to reference Rooney K, Ozanne SE: Maternal over-nutrition and offspring obesity predisposition: targets for preventative interventions. Int J Obes (Lond). 2011, 35: 883-890. 10.1038/ijo.2011.96.CrossRef Rooney K, Ozanne SE: Maternal over-nutrition and offspring obesity predisposition: targets for preventative interventions. Int J Obes (Lond). 2011, 35: 883-890. 10.1038/ijo.2011.96.CrossRef
5.
go back to reference Norman AM, Miles-Chan JL, Thompson NM, Breier BH, Huber K: Postnatal development of metabolic flexibility and enhanced oxidative capacity after prenatal undernutrition. Reprod Sci. 2012, 19: 607-614. 10.1177/1933719111428519.CrossRef Norman AM, Miles-Chan JL, Thompson NM, Breier BH, Huber K: Postnatal development of metabolic flexibility and enhanced oxidative capacity after prenatal undernutrition. Reprod Sci. 2012, 19: 607-614. 10.1177/1933719111428519.CrossRef
6.
go back to reference Thompson NM, Norman AM, Donkin SS, Shankar RR, Vickers MH, Miles JL, Breier BH: Prenatal and postnatal pathways to obesity: different underlying mechanisms, different metabolic outcomes. Endocrinol. 2007, 148: 2345-2354. 10.1210/en.2006-1641.CrossRef Thompson NM, Norman AM, Donkin SS, Shankar RR, Vickers MH, Miles JL, Breier BH: Prenatal and postnatal pathways to obesity: different underlying mechanisms, different metabolic outcomes. Endocrinol. 2007, 148: 2345-2354. 10.1210/en.2006-1641.CrossRef
7.
go back to reference Miles JL, Huber K, Thompson NM, Davison M, Breier BH: Moderate daily exercise activates metabolic flexibility to prevent prenatally induced obesity. Endocrinol. 2009, 150: 179-186. 10.1210/en.2008-1035.CrossRef Miles JL, Huber K, Thompson NM, Davison M, Breier BH: Moderate daily exercise activates metabolic flexibility to prevent prenatally induced obesity. Endocrinol. 2009, 150: 179-186. 10.1210/en.2008-1035.CrossRef
8.
go back to reference Chau YY, Bandiera R, Serrels A, Martinez Estrada OM, Qing W, Lee M, Slight J, Thornburn A, Berry R, McHaffie S, Stimson RH, Walker BR, Chapuli RM, Schedl A, Hastie N: Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol. 2014, 16: 364-375.CrossRef Chau YY, Bandiera R, Serrels A, Martinez Estrada OM, Qing W, Lee M, Slight J, Thornburn A, Berry R, McHaffie S, Stimson RH, Walker BR, Chapuli RM, Schedl A, Hastie N: Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol. 2014, 16: 364-375.CrossRef
9.
go back to reference Puglisi MJ, Hasty AH, Saraswathi V: The role of adipose tissue in mediating the beneficial effects of dietary fish oil. J Nutr Biochem. 2011, 22: 101-108. 10.1016/j.jnutbio.2010.07.003.CrossRef Puglisi MJ, Hasty AH, Saraswathi V: The role of adipose tissue in mediating the beneficial effects of dietary fish oil. J Nutr Biochem. 2011, 22: 101-108. 10.1016/j.jnutbio.2010.07.003.CrossRef
10.
go back to reference Wajchenberg BL: Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000, 21: 697-738. 10.1210/edrv.21.6.0415.CrossRef Wajchenberg BL: Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000, 21: 697-738. 10.1210/edrv.21.6.0415.CrossRef
11.
go back to reference Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nat. 1970, 227: 680-685. 10.1038/227680a0.CrossRef Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nat. 1970, 227: 680-685. 10.1038/227680a0.CrossRef
12.
go back to reference Huber K, Miles JL, Norman AM, Thompson NM, Davison M, Breier BH: Prenatally induced changes in muscle structure and metabolic function facilitate exercise-induced obesity prevention. Endocrinol. 2009, 150: 4135-4144. 10.1210/en.2009-0125.CrossRef Huber K, Miles JL, Norman AM, Thompson NM, Davison M, Breier BH: Prenatally induced changes in muscle structure and metabolic function facilitate exercise-induced obesity prevention. Endocrinol. 2009, 150: 4135-4144. 10.1210/en.2009-0125.CrossRef
13.
go back to reference Gesta S, Tseng YH, Kahn CR: Developmental origin of fat: tracking obesity to its source. Cell. 2007, 131: 242-256. 10.1016/j.cell.2007.10.004.CrossRef Gesta S, Tseng YH, Kahn CR: Developmental origin of fat: tracking obesity to its source. Cell. 2007, 131: 242-256. 10.1016/j.cell.2007.10.004.CrossRef
14.
go back to reference Laplante M, Festuccia WT, Soucy G, Gelinas Y, Lalonde J, Berger JP, Deshaies Y: Mechanisms of the depot specificity of peroxisome proliferator-activated receptor gamma action on adipose tissue metabolism. Diabetes. 2006, 55: 2771-2778. 10.2337/db06-0551.CrossRef Laplante M, Festuccia WT, Soucy G, Gelinas Y, Lalonde J, Berger JP, Deshaies Y: Mechanisms of the depot specificity of peroxisome proliferator-activated receptor gamma action on adipose tissue metabolism. Diabetes. 2006, 55: 2771-2778. 10.2337/db06-0551.CrossRef
15.
go back to reference Maiorana A, Del Bianco C, Cianfarani S: Adipose tissue: a metabolic regulator. Potential implications for the metabolic outcome of subjects born small for gestational Age (SGA). Rev Diabet Stud. 2007, 4: 134-146. 10.1900/RDS.2007.4.134.CrossRef Maiorana A, Del Bianco C, Cianfarani S: Adipose tissue: a metabolic regulator. Potential implications for the metabolic outcome of subjects born small for gestational Age (SGA). Rev Diabet Stud. 2007, 4: 134-146. 10.1900/RDS.2007.4.134.CrossRef
16.
go back to reference Lukaszewski MA, Mayeur S, Fajardy I, Delahaye F, Dutriez-Casteloot I, Montel V, Dickes-Coopman A, Laborie C, Lesage J, Vieau D, Breton C: Maternal prenatal undernutrition programs adipose tissue gene expression in adult male rat offspring under high-fat diet. Am J Physiol Endocrinol Metab. 2011, 301: E548-E559. 10.1152/ajpendo.00011.2011.CrossRef Lukaszewski MA, Mayeur S, Fajardy I, Delahaye F, Dutriez-Casteloot I, Montel V, Dickes-Coopman A, Laborie C, Lesage J, Vieau D, Breton C: Maternal prenatal undernutrition programs adipose tissue gene expression in adult male rat offspring under high-fat diet. Am J Physiol Endocrinol Metab. 2011, 301: E548-E559. 10.1152/ajpendo.00011.2011.CrossRef
17.
go back to reference Muhlhausler B, Smith SR: Early-life origins of metabolic dysfunction: role of the adipocyte. Trends Endocrinol Metab. 2009, 20: 51-57. 10.1016/j.tem.2008.10.006.CrossRef Muhlhausler B, Smith SR: Early-life origins of metabolic dysfunction: role of the adipocyte. Trends Endocrinol Metab. 2009, 20: 51-57. 10.1016/j.tem.2008.10.006.CrossRef
18.
go back to reference Desai M, Ross MG: Fetal programming of adipose tissue: effects of intrauterine growth restriction and maternal obesity/high-fat diet. Semin Reprod Med. 2011, 29: 237-245. 10.1055/s-0031-1275517.CrossRef Desai M, Ross MG: Fetal programming of adipose tissue: effects of intrauterine growth restriction and maternal obesity/high-fat diet. Semin Reprod Med. 2011, 29: 237-245. 10.1055/s-0031-1275517.CrossRef
19.
go back to reference Hales CN, Barker DJ: The thrifty phenotype hypothesis. Br Med Bull. 2001, 60: 5-20. 10.1093/bmb/60.1.5.CrossRef Hales CN, Barker DJ: The thrifty phenotype hypothesis. Br Med Bull. 2001, 60: 5-20. 10.1093/bmb/60.1.5.CrossRef
20.
go back to reference Bidar AW, Ploj K, Lelliott C, Nelander K, Winzell MS, Bottcher G, Oscarsson J, Storlien L, Hockings PD: In vivo imaging of lipid storage and regression in diet-induced obesity during nutrition manipulation. Am J Physiol Endocrinol Metab. 2012, 303: E1287-E1295. 10.1152/ajpendo.00274.2012.CrossRef Bidar AW, Ploj K, Lelliott C, Nelander K, Winzell MS, Bottcher G, Oscarsson J, Storlien L, Hockings PD: In vivo imaging of lipid storage and regression in diet-induced obesity during nutrition manipulation. Am J Physiol Endocrinol Metab. 2012, 303: E1287-E1295. 10.1152/ajpendo.00274.2012.CrossRef
21.
go back to reference Tran TT, Yamamoto Y, Gesta S, Kahn CR: Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 2008, 7: 410-420. 10.1016/j.cmet.2008.04.004.CrossRef Tran TT, Yamamoto Y, Gesta S, Kahn CR: Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 2008, 7: 410-420. 10.1016/j.cmet.2008.04.004.CrossRef
22.
go back to reference Faust IM, Johnson PR, Stern JS, Hirsch J: Diet-induced adipocyte number increase in adult rats: a new model of obesity. Am J Physiol. 1978, 235: E279-E286. Faust IM, Johnson PR, Stern JS, Hirsch J: Diet-induced adipocyte number increase in adult rats: a new model of obesity. Am J Physiol. 1978, 235: E279-E286.
23.
go back to reference Ozanne SE, Jensen CB, Tingey KJ, Martin-Gronert MS, Grunnet L, Brons C, Storgaard H, Vaag AA: Decreased protein levels of key insulin signalling molecules in adipose tissue from young men with a low birthweight: potential link to increased risk of diabetes?. Diabetologia. 2006, 49: 2993-2999. 10.1007/s00125-006-0466-2.CrossRef Ozanne SE, Jensen CB, Tingey KJ, Martin-Gronert MS, Grunnet L, Brons C, Storgaard H, Vaag AA: Decreased protein levels of key insulin signalling molecules in adipose tissue from young men with a low birthweight: potential link to increased risk of diabetes?. Diabetologia. 2006, 49: 2993-2999. 10.1007/s00125-006-0466-2.CrossRef
24.
go back to reference Pessin JE, Saltiel AR: Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest. 2000, 106: 165-169. 10.1172/JCI10582.CrossRef Pessin JE, Saltiel AR: Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest. 2000, 106: 165-169. 10.1172/JCI10582.CrossRef
25.
go back to reference Krebs M, Brunmair B, Brehm A, Artwohl M, Szendroedi J, Nowotny P, Roth E, Furnsinn C, Promintzer M, Anderwald C, Bischof M, Roden M: The Mammalian target of rapamycin pathway regulates nutrient-sensitive glucose uptake in man. Diabetes. 2007, 56: 1600-1607. 10.2337/db06-1016.CrossRef Krebs M, Brunmair B, Brehm A, Artwohl M, Szendroedi J, Nowotny P, Roth E, Furnsinn C, Promintzer M, Anderwald C, Bischof M, Roden M: The Mammalian target of rapamycin pathway regulates nutrient-sensitive glucose uptake in man. Diabetes. 2007, 56: 1600-1607. 10.2337/db06-1016.CrossRef
26.
go back to reference Standaert ML, Galloway L, Karnam P, Bandyopadhyay G, Moscat J, Farese RV: Protein kinase C-zeta as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes. Potential role in glucose transport. J Biol Chem. 1997, 272: 30075-30082. 10.1074/jbc.272.48.30075.CrossRef Standaert ML, Galloway L, Karnam P, Bandyopadhyay G, Moscat J, Farese RV: Protein kinase C-zeta as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes. Potential role in glucose transport. J Biol Chem. 1997, 272: 30075-30082. 10.1074/jbc.272.48.30075.CrossRef
27.
go back to reference Jernas M, Palming J, Sjoholm K, Jennische E, Svensson PA, Gabrielsson BG, Levin M, Sjogren A, Rudemo M, Lystig TC, Carlsson B, Carlsson LM, Lonn M: Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression. FASEB J. 2006, 20: 1540-1542. 10.1096/fj.05-5678fje.CrossRef Jernas M, Palming J, Sjoholm K, Jennische E, Svensson PA, Gabrielsson BG, Levin M, Sjogren A, Rudemo M, Lystig TC, Carlsson B, Carlsson LM, Lonn M: Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression. FASEB J. 2006, 20: 1540-1542. 10.1096/fj.05-5678fje.CrossRef
28.
go back to reference Wueest S, Yang X, Liu J, Schoenle EJ, Konrad D: Inverse regulation of basal lipolysis in perigonadal and mesenteric fat depots in mice. Am J Physiol Endocrinol Metab. 2012, 302: E153-E160. 10.1152/ajpendo.00338.2011.CrossRef Wueest S, Yang X, Liu J, Schoenle EJ, Konrad D: Inverse regulation of basal lipolysis in perigonadal and mesenteric fat depots in mice. Am J Physiol Endocrinol Metab. 2012, 302: E153-E160. 10.1152/ajpendo.00338.2011.CrossRef
29.
go back to reference Pearce J: Fatty acid synthesis in liver and adipose tissue. Proc Nutr Soc. 1983, 42: 263-271. 10.1079/PNS19830031.CrossRef Pearce J: Fatty acid synthesis in liver and adipose tissue. Proc Nutr Soc. 1983, 42: 263-271. 10.1079/PNS19830031.CrossRef
30.
go back to reference Cettour-Rose P, Samec S, Russell AP, Summermatter S, Mainieri D, Carrillo-Theander C, Montani JP, Seydoux J, Rohner-Jeanrenaud F, Dulloo AG: Redistribution of glucose from skeletal muscle to adipose tissue during catch-up fat: a link between catch-up growth and later metabolic syndrome. Diabetes. 2005, 54: 751-756. 10.2337/diabetes.54.3.751.CrossRef Cettour-Rose P, Samec S, Russell AP, Summermatter S, Mainieri D, Carrillo-Theander C, Montani JP, Seydoux J, Rohner-Jeanrenaud F, Dulloo AG: Redistribution of glucose from skeletal muscle to adipose tissue during catch-up fat: a link between catch-up growth and later metabolic syndrome. Diabetes. 2005, 54: 751-756. 10.2337/diabetes.54.3.751.CrossRef
31.
go back to reference Hamer M, Stamatakis E: Metabolically healthy obesity and risk of all-cause and cardiovascular disease mortality. J Clin Endocrinol Metab. 2012, 97: 2482-2488. 10.1210/jc.2011-3475.CrossRef Hamer M, Stamatakis E: Metabolically healthy obesity and risk of all-cause and cardiovascular disease mortality. J Clin Endocrinol Metab. 2012, 97: 2482-2488. 10.1210/jc.2011-3475.CrossRef
Metadata
Title
Metabolic programming of adipose tissue structure and function in male rat offspring by prenatal undernutrition
Authors
Nichola Thompson
Korinna Huber
Mirijam Bedürftig
Kathrin Hansen
Jennifer Miles-Chan
Bernhard H Breier
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Nutrition & Metabolism / Issue 1/2014
Electronic ISSN: 1743-7075
DOI
https://doi.org/10.1186/1743-7075-11-50

Other articles of this Issue 1/2014

Nutrition & Metabolism 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine