Skip to main content
Top
Published in: Virology Journal 1/2012

Open Access 01-12-2012 | Research

Deciphering the differential response of two human fibroblast cell lines following Chikungunya virus infection

Authors: Vincent G Thon-Hon, Melanie Denizot, Ghislaine Li-Pat-Yuen, Claude Giry, Marie-Christine Jaffar-Bandjee, Philippe Gasque

Published in: Virology Journal | Issue 1/2012

Login to get access

Abstract

Background

Chikungunya virus (CHIKV) is an arthritogenic member of the Alphavirus genus (family Togaviridae) transmitted by Aedes mosquitoes. CHIKV is now known to target non hematopoietic cells such as epithelial, endothelial cells, fibroblasts and to less extent monocytes/macrophages. The type I interferon (IFN) response is an early innate immune mechanism that protects cells against viral infection. Cells express different pattern recognition receptors (including TLR7 and RIG-I) to sense viruses and to induce production of type I IFNs which in turn will bind to their receptor. This should result in the phosphorylation and translocation of STAT molecules into the nucleus to promote the transcription of IFN-stimulated antiviral genes (ISGs). We herein tested the capacity of CHIKV clinical isolate to infect two different human fibroblast cell lines HS 633T and HT-1080 and we analyzed the resulting type I IFN innate immune response.

Methods

Indirect immunofluorescence and quantitative RT-PCR were used to test for the susceptibility of both fibroblast cell lines to CHIKV.

Results

Interestingly, the two fibroblast cell lines HS 633T and HT-1080 were differently susceptible to CHIKV infection and the former producing at least 30-fold higher viral load at 48 h post-infection (PI). We found that the expression of antiviral genes (RIG-I, IFN-β, ISG54 and ISG56) was more robust in the more susceptible cell line HS 633T at 48 h PI. Moreover, CHIKV was shown to similarly interfere with the nuclear translocation of pSTAT1 in both cell lines.

Conclusion

Critically, CHIKV can control the IFN response by preventing the nuclear translocation of pSTAT1 in both fibroblast cell lines. Counter-intuitively, the relative resistance of HT-1080 cells to CHIKV infection could not be attributed to more robust innate IFN- and ISG-dependent antiviral responses. These cell lines may prove to be valuable models to screen for novel mechanisms mobilized differentially by fibroblasts to control CHIKV infection, replication and spreading from cell to cell.
Appendix
Available only for authorised users
Literature
1.
go back to reference Strauss JH, Strauss EG: The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994, 58 (3): 491-562.PubMedPubMedCentral Strauss JH, Strauss EG: The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994, 58 (3): 491-562.PubMedPubMedCentral
2.
go back to reference Borgherini G, Poubeau P, et al: Persistent arthralgia associated with chikungunya virus: a study of 88 adult patients on reunion island. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2008, 47 (4): 469-475. 10.1086/590003.CrossRef Borgherini G, Poubeau P, et al: Persistent arthralgia associated with chikungunya virus: a study of 88 adult patients on reunion island. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2008, 47 (4): 469-475. 10.1086/590003.CrossRef
3.
go back to reference Staples JE, Breiman RF, et al: Chikungunya fever: an epidemiological review of a re-emerging infectious disease. Clin Infect Dis. 2009, 49 (6): 942-948. 10.1086/605496.PubMedCrossRef Staples JE, Breiman RF, et al: Chikungunya fever: an epidemiological review of a re-emerging infectious disease. Clin Infect Dis. 2009, 49 (6): 942-948. 10.1086/605496.PubMedCrossRef
4.
go back to reference Robinson MC: An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–53. I. Clinical features. Trans R Soc Trop Med Hyg. 1955, 49 (1): 28-32. 10.1016/0035-9203(55)90080-8.PubMedCrossRef Robinson MC: An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–53. I. Clinical features. Trans R Soc Trop Med Hyg. 1955, 49 (1): 28-32. 10.1016/0035-9203(55)90080-8.PubMedCrossRef
5.
go back to reference Couderc T, Chretien F, et al: A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 2008, 4 (2): e29-10.1371/journal.ppat.0040029.PubMedPubMedCentralCrossRef Couderc T, Chretien F, et al: A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 2008, 4 (2): e29-10.1371/journal.ppat.0040029.PubMedPubMedCentralCrossRef
6.
go back to reference Das T, Jaffar-Bandjee MC, et al: Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus. Prog Neurobiol. 2010, 91 (2): 121-129. 10.1016/j.pneurobio.2009.12.006.PubMedCrossRef Das T, Jaffar-Bandjee MC, et al: Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus. Prog Neurobiol. 2010, 91 (2): 121-129. 10.1016/j.pneurobio.2009.12.006.PubMedCrossRef
7.
go back to reference Her Z, Malleret B, et al: Active infection of human blood monocytes by Chikungunya virus triggers an innate immune response. J Immunol. 2010, 184 (10): 5903-5913. 10.4049/jimmunol.0904181.PubMedCrossRef Her Z, Malleret B, et al: Active infection of human blood monocytes by Chikungunya virus triggers an innate immune response. J Immunol. 2010, 184 (10): 5903-5913. 10.4049/jimmunol.0904181.PubMedCrossRef
8.
go back to reference Krejbich-Trotot P, Denizot M, et al: Chikungunya virus mobilizes the apoptotic machinery to invade host cell defenses. FASEB J. 2010, 25 (1): 314-325.PubMedCrossRef Krejbich-Trotot P, Denizot M, et al: Chikungunya virus mobilizes the apoptotic machinery to invade host cell defenses. FASEB J. 2010, 25 (1): 314-325.PubMedCrossRef
9.
go back to reference Schilte C, Couderc T, et al: Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. J Exp Med. 2010, 207 (2): 429-442. 10.1084/jem.20090851.PubMedPubMedCentralCrossRef Schilte C, Couderc T, et al: Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. J Exp Med. 2010, 207 (2): 429-442. 10.1084/jem.20090851.PubMedPubMedCentralCrossRef
10.
11.
go back to reference Khan AH, Morita K, et al: Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J Gen Virol. 2002, 83 (Pt 12): 3075-3084.PubMedCrossRef Khan AH, Morita K, et al: Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J Gen Virol. 2002, 83 (Pt 12): 3075-3084.PubMedCrossRef
12.
go back to reference Strauss EG, Strauss JH: Structure and replication of the alphavirus genome. 1986, New York: Plenum Plubishing CorporationCrossRef Strauss EG, Strauss JH: Structure and replication of the alphavirus genome. 1986, New York: Plenum Plubishing CorporationCrossRef
13.
go back to reference Faragher SG, Meek AD, et al: Genome sequences of a mouse-avirulent and a mouse-virulent strain of Ross River virus. Virology. 1988, 163 (2): 509-526. 10.1016/0042-6822(88)90292-9.PubMedCrossRef Faragher SG, Meek AD, et al: Genome sequences of a mouse-avirulent and a mouse-virulent strain of Ross River virus. Virology. 1988, 163 (2): 509-526. 10.1016/0042-6822(88)90292-9.PubMedCrossRef
14.
go back to reference Strauss JH, Strauss EG: Evolution of RNA viruses. Annu Rev Microbiol. 1988, 42: 657-683. 10.1146/annurev.mi.42.100188.003301.PubMedCrossRef Strauss JH, Strauss EG: Evolution of RNA viruses. Annu Rev Microbiol. 1988, 42: 657-683. 10.1146/annurev.mi.42.100188.003301.PubMedCrossRef
15.
go back to reference Ito T, Amakawa R, et al: Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med. 2002, 195 (11): 1507-1512. 10.1084/jem.20020207.PubMedPubMedCentralCrossRef Ito T, Amakawa R, et al: Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med. 2002, 195 (11): 1507-1512. 10.1084/jem.20020207.PubMedPubMedCentralCrossRef
16.
go back to reference Iwasaki A, Medzhitov R: Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004, 5 (10): 987-995. 10.1038/ni1112.PubMedCrossRef Iwasaki A, Medzhitov R: Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004, 5 (10): 987-995. 10.1038/ni1112.PubMedCrossRef
17.
go back to reference Kato H, Sato S, et al: Cell type-specific involvement of RIG-I in antiviral response. Immunity. 2005, 23 (1): 19-28. 10.1016/j.immuni.2005.04.010.PubMedCrossRef Kato H, Sato S, et al: Cell type-specific involvement of RIG-I in antiviral response. Immunity. 2005, 23 (1): 19-28. 10.1016/j.immuni.2005.04.010.PubMedCrossRef
18.
go back to reference Kawai T, Takahashi K, et al: IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol. 2005, 6 (10): 981-988. 10.1038/ni1243.PubMedCrossRef Kawai T, Takahashi K, et al: IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol. 2005, 6 (10): 981-988. 10.1038/ni1243.PubMedCrossRef
19.
go back to reference Diebold SS, Kaisho T, et al: Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004, 303 (5663): 1529-1531. 10.1126/science.1093616.PubMedCrossRef Diebold SS, Kaisho T, et al: Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004, 303 (5663): 1529-1531. 10.1126/science.1093616.PubMedCrossRef
20.
go back to reference Heil F, Hemmi H, et al: Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004, 303 (5663): 1526-1529. 10.1126/science.1093620.PubMedCrossRef Heil F, Hemmi H, et al: Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004, 303 (5663): 1526-1529. 10.1126/science.1093620.PubMedCrossRef
21.
go back to reference Lund JM, Alexopoulou L, et al: Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA. 2004, 101 (15): 5598-5603. 10.1073/pnas.0400937101.PubMedPubMedCentralCrossRef Lund JM, Alexopoulou L, et al: Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA. 2004, 101 (15): 5598-5603. 10.1073/pnas.0400937101.PubMedPubMedCentralCrossRef
22.
go back to reference Rehwinkel J, Reis e Sousa C: RIGorous detection: exposing virus through RNA sensing. Science. 2010, 327 (5963): 284-286. 10.1126/science.1185068.PubMedCrossRef Rehwinkel J, Reis e Sousa C: RIGorous detection: exposing virus through RNA sensing. Science. 2010, 327 (5963): 284-286. 10.1126/science.1185068.PubMedCrossRef
23.
go back to reference Mori M, Yoneyama M, et al: Identification of Ser-386 of interferon regulatory factor 3 as critical target for inducible phosphorylation that determines activation. J Biol Chem. 2004, 279 (11): 9698-9702.PubMedCrossRef Mori M, Yoneyama M, et al: Identification of Ser-386 of interferon regulatory factor 3 as critical target for inducible phosphorylation that determines activation. J Biol Chem. 2004, 279 (11): 9698-9702.PubMedCrossRef
24.
go back to reference Yoneyama M, Suhara W, et al: Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J. 1998, 17 (4): 1087-1095. 10.1093/emboj/17.4.1087.PubMedPubMedCentralCrossRef Yoneyama M, Suhara W, et al: Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J. 1998, 17 (4): 1087-1095. 10.1093/emboj/17.4.1087.PubMedPubMedCentralCrossRef
25.
go back to reference Yoneyama M, Suhara W, et al: Control of IRF-3 activation by phosphorylation. J Interferon Cytokine Res. 2002, 22 (1): 73-76. 10.1089/107999002753452674.PubMedCrossRef Yoneyama M, Suhara W, et al: Control of IRF-3 activation by phosphorylation. J Interferon Cytokine Res. 2002, 22 (1): 73-76. 10.1089/107999002753452674.PubMedCrossRef
26.
go back to reference Malmgaard L: Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res. 2004, 24 (8): 439-454. 10.1089/1079990041689665.PubMedCrossRef Malmgaard L: Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res. 2004, 24 (8): 439-454. 10.1089/1079990041689665.PubMedCrossRef
27.
go back to reference Taniguchi T, Takaoka A: The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol. 2002, 14 (1): 111-116. 10.1016/S0952-7915(01)00305-3.PubMedCrossRef Taniguchi T, Takaoka A: The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol. 2002, 14 (1): 111-116. 10.1016/S0952-7915(01)00305-3.PubMedCrossRef
28.
go back to reference Randall RE, Goodbourn S: Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol. 2008, 89 (Pt 1): 1-47.PubMedCrossRef Randall RE, Goodbourn S: Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol. 2008, 89 (Pt 1): 1-47.PubMedCrossRef
29.
go back to reference Clemens MJ: PKR–a protein kinase regulated by double-stranded RNA. Int J Biochem Cell Biol. 1997, 29 (7): 945-949. 10.1016/S1357-2725(96)00169-0.PubMedCrossRef Clemens MJ: PKR–a protein kinase regulated by double-stranded RNA. Int J Biochem Cell Biol. 1997, 29 (7): 945-949. 10.1016/S1357-2725(96)00169-0.PubMedCrossRef
30.
go back to reference Samuel CE: Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology. 1991, 183 (1): 1-11. 10.1016/0042-6822(91)90112-O.PubMedCrossRef Samuel CE: Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology. 1991, 183 (1): 1-11. 10.1016/0042-6822(91)90112-O.PubMedCrossRef
31.
go back to reference White LK, Sali T, et al: Chikungunya virus induces IPS-1-dependent innate immune activation and protein kinase R-independent translational shutoff. J Virol. 2011, 85 (1): 606-620. 10.1128/JVI.00767-10.PubMedPubMedCentralCrossRef White LK, Sali T, et al: Chikungunya virus induces IPS-1-dependent innate immune activation and protein kinase R-independent translational shutoff. J Virol. 2011, 85 (1): 606-620. 10.1128/JVI.00767-10.PubMedPubMedCentralCrossRef
32.
go back to reference Hoarau JJ, Jaffar Bandjee MC, et al: Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol. 2010, 184 (10): 5914-5927. 10.4049/jimmunol.0900255.PubMedCrossRef Hoarau JJ, Jaffar Bandjee MC, et al: Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol. 2010, 184 (10): 5914-5927. 10.4049/jimmunol.0900255.PubMedCrossRef
33.
go back to reference Fros JJ, Liu WJ, et al: Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. J Virol. 2010, 84 (20): 10877-10887. 10.1128/JVI.00949-10.PubMedPubMedCentralCrossRef Fros JJ, Liu WJ, et al: Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. J Virol. 2010, 84 (20): 10877-10887. 10.1128/JVI.00949-10.PubMedPubMedCentralCrossRef
34.
go back to reference Breakwell L, Dosenovic P, et al: Semliki Forest virus nonstructural protein 2 is involved in suppression of the type I interferon response. J Virol. 2007, 81 (16): 8677-8684. 10.1128/JVI.02411-06.PubMedPubMedCentralCrossRef Breakwell L, Dosenovic P, et al: Semliki Forest virus nonstructural protein 2 is involved in suppression of the type I interferon response. J Virol. 2007, 81 (16): 8677-8684. 10.1128/JVI.02411-06.PubMedPubMedCentralCrossRef
35.
go back to reference Lidbury BA, Rulli NE, et al: Identification and characterization of a ross river virus variant that grows persistently in macrophages, shows altered disease kinetics in a mouse model, and exhibits resistance to type I interferon. J Virol. 2011, 85 (11): 5651-5663. 10.1128/JVI.01189-10.PubMedPubMedCentralCrossRef Lidbury BA, Rulli NE, et al: Identification and characterization of a ross river virus variant that grows persistently in macrophages, shows altered disease kinetics in a mouse model, and exhibits resistance to type I interferon. J Virol. 2011, 85 (11): 5651-5663. 10.1128/JVI.01189-10.PubMedPubMedCentralCrossRef
36.
Metadata
Title
Deciphering the differential response of two human fibroblast cell lines following Chikungunya virus infection
Authors
Vincent G Thon-Hon
Melanie Denizot
Ghislaine Li-Pat-Yuen
Claude Giry
Marie-Christine Jaffar-Bandjee
Philippe Gasque
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2012
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-9-213

Other articles of this Issue 1/2012

Virology Journal 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine