Skip to main content
Top
Published in: Virology Journal 1/2009

Open Access 01-12-2009 | Research

Expression of Ebolavirus glycoprotein on the target cells enhances viral entry

Authors: Balaji Manicassamy, Lijun Rong

Published in: Virology Journal | Issue 1/2009

Login to get access

Abstract

Background

Entry of Ebolavirus to the target cells is mediated by the viral glycoprotein GP. The native GP exists as a homotrimer on the virions and contains two subunits, a surface subunit (GP1) that is involved in receptor binding and a transmembrane subunit (GP2) that mediates the virus-host membrane fusion. Previously we showed that over-expression of GP on the target cells blocks GP-mediated viral entry, which is mostly likely due to receptor interference by GP1.

Results

In this study, using a tetracycline inducible system, we report that low levels of GP expression on the target cells, instead of interfering, specifically enhance GP mediated viral entry. Detailed mapping analysis strongly suggests that the fusion subunit GP2 is primarily responsible for this novel phenomenon, here referred to as trans enhancement.

Conclusion

Our data suggests that GP2 mediated trans enhancement of virus fusion occurs via a mechanism analogous to eukaryotic membrane fusion processes involving specific trans oligomerization and cooperative interaction of fusion mediators. These findings have important implications in our current understanding of virus entry and superinfection interference.
Appendix
Available only for authorised users
Literature
2.
go back to reference Eckert DM, Kim PS: Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 2001, 70: 777-810.CrossRefPubMed Eckert DM, Kim PS: Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 2001, 70: 777-810.CrossRefPubMed
3.
go back to reference Skehel JJ, Wiley DC: Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 2000, 69: 531-569.CrossRefPubMed Skehel JJ, Wiley DC: Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 2000, 69: 531-569.CrossRefPubMed
4.
go back to reference Kielian M, Rey FA: Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 2006, 4: 67-76.CrossRefPubMed Kielian M, Rey FA: Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 2006, 4: 67-76.CrossRefPubMed
6.
go back to reference Earp LJ, Delos SE, Park HE, White JM: The many mechanisms of viral membrane fusion proteins. Curr Top Microbiol Immunol 2005, 285: 25-66.PubMed Earp LJ, Delos SE, Park HE, White JM: The many mechanisms of viral membrane fusion proteins. Curr Top Microbiol Immunol 2005, 285: 25-66.PubMed
7.
go back to reference Colman PM, Lawrence MC: The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol 2003, 4: 309-319.CrossRefPubMed Colman PM, Lawrence MC: The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol 2003, 4: 309-319.CrossRefPubMed
8.
go back to reference Yin HS, Paterson RG, Wen X, Lamb RA, Jardetzky TS: Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc Natl Acad Sci USA 2005, 102: 9288-9293.PubMedCentralCrossRefPubMed Yin HS, Paterson RG, Wen X, Lamb RA, Jardetzky TS: Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc Natl Acad Sci USA 2005, 102: 9288-9293.PubMedCentralCrossRefPubMed
9.
go back to reference Yin HS, Wen X, Paterson RG, Lamb RA, Jardetzky TS: Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature 2006, 439: 38-44.CrossRefPubMed Yin HS, Wen X, Paterson RG, Lamb RA, Jardetzky TS: Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature 2006, 439: 38-44.CrossRefPubMed
10.
go back to reference Sanchez A, Khan AS, Zaki SR, Nabel GJ, Ksiazek TG, Peters CG: Filoviridae: Marburg and Ebola Viruses. In Fields Virology. Volume 1. 4th edition. Edited by: Knipe DM, Howley PM. Philadelphia, PA: Lippicott Williams & Wilkins; 2001:1279-1304. Sanchez A, Khan AS, Zaki SR, Nabel GJ, Ksiazek TG, Peters CG: Filoviridae: Marburg and Ebola Viruses. In Fields Virology. Volume 1. 4th edition. Edited by: Knipe DM, Howley PM. Philadelphia, PA: Lippicott Williams & Wilkins; 2001:1279-1304.
11.
go back to reference Feldmann H, Volchkov VE, Volchkova VA, Stroher U, Klenk HD: Biosynthesis and role of filoviral glycoproteins. J Gen Virol 2001, 82: 2839-2848.CrossRefPubMed Feldmann H, Volchkov VE, Volchkova VA, Stroher U, Klenk HD: Biosynthesis and role of filoviral glycoproteins. J Gen Virol 2001, 82: 2839-2848.CrossRefPubMed
13.
go back to reference Volchkov VE, Feldmann H, Volchkova VA, Klenk HD: Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci USA 1998, 95: 5762-5767.PubMedCentralCrossRefPubMed Volchkov VE, Feldmann H, Volchkova VA, Klenk HD: Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci USA 1998, 95: 5762-5767.PubMedCentralCrossRefPubMed
14.
go back to reference Wool-Lewis RJ, Bates P: Endoproteolytic processing of the ebola virus envelope glycoprotein: cleavage is not required for function. J Virol 1999, 73: 1419-1426.PubMedCentralPubMed Wool-Lewis RJ, Bates P: Endoproteolytic processing of the ebola virus envelope glycoprotein: cleavage is not required for function. J Virol 1999, 73: 1419-1426.PubMedCentralPubMed
15.
go back to reference Sanchez A, Yang ZY, Xu L, Nabel GJ, Crews T, Peters CJ: Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. J Virol 1998, 72: 6442-6447.PubMedCentralPubMed Sanchez A, Yang ZY, Xu L, Nabel GJ, Crews T, Peters CJ: Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. J Virol 1998, 72: 6442-6447.PubMedCentralPubMed
17.
go back to reference Kuhn JH, Radoshitzky SR, Guth AC, Warfield KL, Li W, Vincent MJ, Towner JS, Nichol ST, Bavari S, Choe H, et al.: Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J Biol Chem 2006, 281: 15951-15958.CrossRefPubMed Kuhn JH, Radoshitzky SR, Guth AC, Warfield KL, Li W, Vincent MJ, Towner JS, Nichol ST, Bavari S, Choe H, et al.: Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J Biol Chem 2006, 281: 15951-15958.CrossRefPubMed
18.
go back to reference Brindley MA, Hughes L, Ruiz A, McCray PB Jr, Sanchez A, Sanders DA, Maury W: Ebola virus glycoprotein 1: identification of residues important for binding and postbinding events. J Virol 2007, 81: 7702-7709.PubMedCentralCrossRefPubMed Brindley MA, Hughes L, Ruiz A, McCray PB Jr, Sanchez A, Sanders DA, Maury W: Ebola virus glycoprotein 1: identification of residues important for binding and postbinding events. J Virol 2007, 81: 7702-7709.PubMedCentralCrossRefPubMed
19.
go back to reference Malashkevich VN, Schneider BJ, McNally ML, Milhollen MA, Pang JX, Kim PS: Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution. Proc Natl Acad Sci USA 1999, 96: 2662-2667.PubMedCentralCrossRefPubMed Malashkevich VN, Schneider BJ, McNally ML, Milhollen MA, Pang JX, Kim PS: Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution. Proc Natl Acad Sci USA 1999, 96: 2662-2667.PubMedCentralCrossRefPubMed
20.
go back to reference Weissenhorn W, Calder LJ, Wharton SA, Skehel JJ, Wiley DC: The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil. Proc Natl Acad Sci USA 1998, 95: 6032-6036.PubMedCentralCrossRefPubMed Weissenhorn W, Calder LJ, Wharton SA, Skehel JJ, Wiley DC: The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil. Proc Natl Acad Sci USA 1998, 95: 6032-6036.PubMedCentralCrossRefPubMed
21.
go back to reference Alvarez CP, Lasala F, Carrillo J, Muniz O, Corbi AL, Delgado R: C-Type Lectins DC-SIGN and L-SIGN Mediate Cellular Entry by Ebola Virus in cis and in trans. J Virol 2002, 76: 6841-6844.PubMedCentralCrossRefPubMed Alvarez CP, Lasala F, Carrillo J, Muniz O, Corbi AL, Delgado R: C-Type Lectins DC-SIGN and L-SIGN Mediate Cellular Entry by Ebola Virus in cis and in trans. J Virol 2002, 76: 6841-6844.PubMedCentralCrossRefPubMed
22.
go back to reference Chan SY, Empig CJ, Welte FJ, Speck RF, Schmaljohn A, Kreisberg JF, Goldsmith MA: Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses. Cell 2001, 106: 117-126.CrossRefPubMed Chan SY, Empig CJ, Welte FJ, Speck RF, Schmaljohn A, Kreisberg JF, Goldsmith MA: Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses. Cell 2001, 106: 117-126.CrossRefPubMed
23.
go back to reference Lin G, Simmons G, Pohlmann S, Baribaud F, Ni H, Leslie GJ, Haggarty BS, Bates P, Weissman D, Hoxie JA, Doms RW: Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J Virol 2003, 77: 1337-1346.PubMedCentralCrossRefPubMed Lin G, Simmons G, Pohlmann S, Baribaud F, Ni H, Leslie GJ, Haggarty BS, Bates P, Weissman D, Hoxie JA, Doms RW: Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J Virol 2003, 77: 1337-1346.PubMedCentralCrossRefPubMed
24.
go back to reference Simmons G, Rennekamp AJ, Chai N, Vandenberghe LH, Riley JL, Bates P: Folate receptor alpha and caveolae are not required for Ebola virus glycoprotein-mediated viral infection. J Virol 2003, 77: 13433-13438.PubMedCentralCrossRefPubMed Simmons G, Rennekamp AJ, Chai N, Vandenberghe LH, Riley JL, Bates P: Folate receptor alpha and caveolae are not required for Ebola virus glycoprotein-mediated viral infection. J Virol 2003, 77: 13433-13438.PubMedCentralCrossRefPubMed
25.
go back to reference Takada A, Fujioka K, Tsuiji M, Morikawa A, Higashi N, Ebihara H, Kobasa D, Feldmann H, Irimura T, Kawaoka Y: Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J Virol 2004, 78: 2943-2947.PubMedCentralCrossRefPubMed Takada A, Fujioka K, Tsuiji M, Morikawa A, Higashi N, Ebihara H, Kobasa D, Feldmann H, Irimura T, Kawaoka Y: Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J Virol 2004, 78: 2943-2947.PubMedCentralCrossRefPubMed
26.
go back to reference Shimojima M, Takada A, Ebihara H, Neumann G, Fujioka K, Irimura T, Jones S, Feldmann H, Kawaoka Y: Tyro3 family-mediated cell entry of ebola and marburg viruses. J Virol 2006, 80: 10109-10116.PubMedCentralCrossRefPubMed Shimojima M, Takada A, Ebihara H, Neumann G, Fujioka K, Irimura T, Jones S, Feldmann H, Kawaoka Y: Tyro3 family-mediated cell entry of ebola and marburg viruses. J Virol 2006, 80: 10109-10116.PubMedCentralCrossRefPubMed
27.
go back to reference Chandran K, Sullivan NJ, Felbor U, Whelan SP, Cunningham JM: Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 2005, 308: 1643-1645.CrossRefPubMed Chandran K, Sullivan NJ, Felbor U, Whelan SP, Cunningham JM: Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 2005, 308: 1643-1645.CrossRefPubMed
28.
go back to reference Schornberg K, Matsuyama S, Kabsch K, Delos S, Bouton A, White J: Role of endosomal cathepsins in entry mediated by the ebola virus glycoprotein. J Virol 2006, 80: 4174-4178.PubMedCentralCrossRefPubMed Schornberg K, Matsuyama S, Kabsch K, Delos S, Bouton A, White J: Role of endosomal cathepsins in entry mediated by the ebola virus glycoprotein. J Virol 2006, 80: 4174-4178.PubMedCentralCrossRefPubMed
29.
go back to reference Sanchez A, Kiley MP, Holloway BP, Auperin DD: Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res 1993, 29: 215-240.CrossRefPubMed Sanchez A, Kiley MP, Holloway BP, Auperin DD: Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res 1993, 29: 215-240.CrossRefPubMed
30.
go back to reference Manicassamy B, Wang J, Rumschlag E, Tymen S, Volchkova V, Volchkov V, Rong L: Characterization of Marburg virus glycoprotein in viral entry. Virology 2007, 358: 79-88.CrossRefPubMed Manicassamy B, Wang J, Rumschlag E, Tymen S, Volchkova V, Volchkov V, Rong L: Characterization of Marburg virus glycoprotein in viral entry. Virology 2007, 358: 79-88.CrossRefPubMed
31.
go back to reference Hunter E, Swanstrom R: Retrovirus envelope glycoproteins. Cur Topic Microbiol Immun 1990, 157: 187-253. Hunter E, Swanstrom R: Retrovirus envelope glycoproteins. Cur Topic Microbiol Immun 1990, 157: 187-253.
32.
go back to reference Watanabe S, Watanabe T, Noda T, Takada A, Feldmann H, Jasenosky LD, Kawaoka Y: Production of novel ebola virus-like particles from cDNAs: an alternative to ebola virus generation by reverse genetics. J Virol 2004, 78: 999-1005.PubMedCentralCrossRefPubMed Watanabe S, Watanabe T, Noda T, Takada A, Feldmann H, Jasenosky LD, Kawaoka Y: Production of novel ebola virus-like particles from cDNAs: an alternative to ebola virus generation by reverse genetics. J Virol 2004, 78: 999-1005.PubMedCentralCrossRefPubMed
33.
go back to reference Bates P, Young JAT, Varmus HE: A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell 1993, 74: 1043-1051.CrossRefPubMed Bates P, Young JAT, Varmus HE: A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell 1993, 74: 1043-1051.CrossRefPubMed
34.
go back to reference Rong L, Edinger A, Bates P: Role of basic residues in the subgroup-determining region of the subgroup A avian sarcoma and leukosis virus envelope in receptor binding and infection. J Virol 1997, 71: 3458-3465.PubMedCentralPubMed Rong L, Edinger A, Bates P: Role of basic residues in the subgroup-determining region of the subgroup A avian sarcoma and leukosis virus envelope in receptor binding and infection. J Virol 1997, 71: 3458-3465.PubMedCentralPubMed
36.
go back to reference Podbilewicz B, Leikina E, Sapir A, Valansi C, Suissa M, Shemer G, Chernomordik LV: The C. elegans developmental fusogen EFF-1 mediates homotypic fusion in heterologous cells and in vivo. Dev Cell 2006, 11: 471-481.CrossRefPubMed Podbilewicz B, Leikina E, Sapir A, Valansi C, Suissa M, Shemer G, Chernomordik LV: The C. elegans developmental fusogen EFF-1 mediates homotypic fusion in heterologous cells and in vivo. Dev Cell 2006, 11: 471-481.CrossRefPubMed
37.
go back to reference Shemer G, Suissa M, Kolotuev I, Nguyen KC, Hall DH, Podbilewicz B: EFF-1 is sufficient to initiate and execute tissue-specific cell fusion in C. elegans. Curr Biol 2004, 14: 1587-1591.CrossRefPubMed Shemer G, Suissa M, Kolotuev I, Nguyen KC, Hall DH, Podbilewicz B: EFF-1 is sufficient to initiate and execute tissue-specific cell fusion in C. elegans. Curr Biol 2004, 14: 1587-1591.CrossRefPubMed
38.
go back to reference Sutton RB, Fasshauer D, Jahn R, Brunger AT: Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 1998, 395: 347-353.CrossRefPubMed Sutton RB, Fasshauer D, Jahn R, Brunger AT: Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 1998, 395: 347-353.CrossRefPubMed
40.
go back to reference Boulay F, Doms RW, Webster RG, Helenius A: Posttranslational oligomerization and cooperative acid activation of mixed influenza hemagglutinin trimers. J Cell Biol 1988, 106: 629-639.CrossRefPubMed Boulay F, Doms RW, Webster RG, Helenius A: Posttranslational oligomerization and cooperative acid activation of mixed influenza hemagglutinin trimers. J Cell Biol 1988, 106: 629-639.CrossRefPubMed
41.
go back to reference McNew JA, Parlati F, Fukuda R, Johnston RJ, Paz K, Paumet F, Sollner TH, Rothman JE: Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 2000, 407: 153-159.CrossRefPubMed McNew JA, Parlati F, Fukuda R, Johnston RJ, Paz K, Paumet F, Sollner TH, Rothman JE: Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 2000, 407: 153-159.CrossRefPubMed
42.
go back to reference Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996, 272: 263-267.CrossRefPubMed Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996, 272: 263-267.CrossRefPubMed
Metadata
Title
Expression of Ebolavirus glycoprotein on the target cells enhances viral entry
Authors
Balaji Manicassamy
Lijun Rong
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2009
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-6-75

Other articles of this Issue 1/2009

Virology Journal 1/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine