Skip to main content
Top
Published in: Virology Journal 1/2005

Open Access 01-12-2005 | Research

Development of an in vitro cleavage assay system to examine vaccinia virus I7L cysteine proteinase activity

Authors: Chelsea M Byrd, Dennis E Hruby

Published in: Virology Journal | Issue 1/2005

Login to get access

Abstract

Through the use of transient expression assays and directed genetics, the vaccinia virus (VV) I7L gene product has been implicated as the major maturational proteinase required for viral core protein cleavage to occur during virion assembly. To confirm this hypothesis and to enable a biochemical examination of the I7L cysteine proteinase, an in vitro cleavage assay was developed. Using extracts of VV infected cells as the source of enzyme, reaction conditions were developed which allowed accurate and efficient cleavage of exogenously added core protein precursors (P4a, P4b and P25K). The cleavage reaction proceeded in a time-dependent manner and was optimal when incubated at 25°C. I7L-mediated cleavage was not affected by selected inhibitors of metalloproteinases, aspartic acid proteinases or serine proteinases (EDTA, pepstatin, and PMSF, respectively), but was sensitive to several general cysteine proteinase inhibitors (E-64, EST, Iodoacetic acid, and NEM) as well as the I7L active site inhibitor TTP-6171 [C. Byrd et al., J. Virol. 78:12147–12156 (2004)]. Finally, in antibody pull down experiments, it could be demonstrated that monospecific αI7L serum depleted the enzyme activity whereas control sera including αG1L, directed against the VV metalloproteinase, did not. Taken together, these data provide biochemical evidence that I7L is a cysteine proteinase which is directly involved in VV core protein cleavage. Furthermore, establishment of this I7L-mediated in vitro cleavage assay should enable future studies into the enzymology and co-factor requirements of the proteolysis reaction, and facilitate antiviral drug development against this essential target.
Appendix
Available only for authorised users
Literature
1.
go back to reference Moss B, Rosenblum EN: Protein cleavage and poxvirus morphogenesis: tryptic peptide analysis of core precursors accumulated by blocking assembly with rifampicin. J Mol Biol 1973, 81: 267-269. 10.1016/0022-2836(73)90195-2CrossRefPubMed Moss B, Rosenblum EN: Protein cleavage and poxvirus morphogenesis: tryptic peptide analysis of core precursors accumulated by blocking assembly with rifampicin. J Mol Biol 1973, 81: 267-269. 10.1016/0022-2836(73)90195-2CrossRefPubMed
2.
go back to reference Silver M, Dales S: Biogenesis of vaccinia: interrelationship between post-translational cleavage, virus assembly, and maturation. Virology 1982, 117: 341-356. 10.1016/0042-6822(82)90474-3CrossRefPubMed Silver M, Dales S: Biogenesis of vaccinia: interrelationship between post-translational cleavage, virus assembly, and maturation. Virology 1982, 117: 341-356. 10.1016/0042-6822(82)90474-3CrossRefPubMed
3.
go back to reference VanSlyke JK, Franke CA, Hruby DE: Proteolytic maturation of vaccinia virus core proteins: identification of a conserved motif at the N termini of the 4b and 25K virion proteins. J Gen Virol 1991, 72: 411-416.CrossRefPubMed VanSlyke JK, Franke CA, Hruby DE: Proteolytic maturation of vaccinia virus core proteins: identification of a conserved motif at the N termini of the 4b and 25K virion proteins. J Gen Virol 1991, 72: 411-416.CrossRefPubMed
4.
go back to reference VanSlyke JK, Whitehead SS, Wilson EM, Hruby DE: The multistep proteolytic maturation pathway utilized by vaccinia virus P4a protein: a degenerate conserved cleavage motif within core proteins. Virology 1991, 183: 467-478. 10.1016/0042-6822(91)90976-ICrossRefPubMed VanSlyke JK, Whitehead SS, Wilson EM, Hruby DE: The multistep proteolytic maturation pathway utilized by vaccinia virus P4a protein: a degenerate conserved cleavage motif within core proteins. Virology 1991, 183: 467-478. 10.1016/0042-6822(91)90976-ICrossRefPubMed
5.
go back to reference Byrd CM, Bolken TC, Hruby DE: The vaccinia virus I7L gene product is the core protein proteinase. J Virol 2002, 76: 8973-6. 10.1128/JVI.76.17.8973-8976.2002PubMedCentralCrossRefPubMed Byrd CM, Bolken TC, Hruby DE: The vaccinia virus I7L gene product is the core protein proteinase. J Virol 2002, 76: 8973-6. 10.1128/JVI.76.17.8973-8976.2002PubMedCentralCrossRefPubMed
6.
go back to reference Byrd CM, Bolken TC, Hruby DE: Molecular dissection of the vaccinia virus I7L core protein proteinase. J Virol 2003, 77: 11279-11283. 10.1128/JVI.77.20.11279-11283.2003PubMedCentralCrossRefPubMed Byrd CM, Bolken TC, Hruby DE: Molecular dissection of the vaccinia virus I7L core protein proteinase. J Virol 2003, 77: 11279-11283. 10.1128/JVI.77.20.11279-11283.2003PubMedCentralCrossRefPubMed
7.
go back to reference Ericsson M, Cudmore S, Shuman S, Condit RC, Griffiths G, Locker JK: Characterization of ts 16, a temperature-sensitive mutant of vaccinia virus. J Virol 1995, 69: 7072-7086.PubMedCentralPubMed Ericsson M, Cudmore S, Shuman S, Condit RC, Griffiths G, Locker JK: Characterization of ts 16, a temperature-sensitive mutant of vaccinia virus. J Virol 1995, 69: 7072-7086.PubMedCentralPubMed
8.
go back to reference Kane EM, Shuman S: Vaccinia virus morphogenesis is blocked by a temperature-sensitive mutation in the I7 gene that encodes a virion component. J Virol 1993, 67: 2689-2698.PubMedCentralPubMed Kane EM, Shuman S: Vaccinia virus morphogenesis is blocked by a temperature-sensitive mutation in the I7 gene that encodes a virion component. J Virol 1993, 67: 2689-2698.PubMedCentralPubMed
9.
go back to reference Ansarah-Sobrinho C, Moss B: Role of the I7 protein in proteolytic processing of vaccinia virus membrane and core components. J Virol 2004, 78: 6335-6343. 10.1128/JVI.78.12.6335-6343.2004PubMedCentralCrossRefPubMed Ansarah-Sobrinho C, Moss B: Role of the I7 protein in proteolytic processing of vaccinia virus membrane and core components. J Virol 2004, 78: 6335-6343. 10.1128/JVI.78.12.6335-6343.2004PubMedCentralCrossRefPubMed
10.
go back to reference Byrd CM, Hruby DE: A conditional-lethal vaccinia virus mutant demonstrates that the I7L gene product is required for virion morphogenesis. Virol J 2005, 2: 4. 10.1186/1743-422X-2-4PubMedCentralCrossRefPubMed Byrd CM, Hruby DE: A conditional-lethal vaccinia virus mutant demonstrates that the I7L gene product is required for virion morphogenesis. Virol J 2005, 2: 4. 10.1186/1743-422X-2-4PubMedCentralCrossRefPubMed
11.
go back to reference Webster A, Russell S, Talbot P, Russell WC, Kemp GD: Characterization of the adenovirus proteinase: substrate specificity. J Gen Virol 1989, 70: 3225-3234.CrossRefPubMed Webster A, Russell S, Talbot P, Russell WC, Kemp GD: Characterization of the adenovirus proteinase: substrate specificity. J Gen Virol 1989, 70: 3225-3234.CrossRefPubMed
12.
go back to reference Andres G, Alejo A, Simon-Mateo C, Salas ML: African swine fever virus protease, a new viral member of the SUMO-1-specific protease family. J Biol Chem 2001, 276: 780-787. 10.1074/jbc.M006844200CrossRefPubMed Andres G, Alejo A, Simon-Mateo C, Salas ML: African swine fever virus protease, a new viral member of the SUMO-1-specific protease family. J Biol Chem 2001, 276: 780-787. 10.1074/jbc.M006844200CrossRefPubMed
13.
go back to reference Li SJ, Hochstrasser M: A new protease required for cell-cycle progression in yeast. Nature 1999, 398: 246-51. 10.1038/18457CrossRefPubMed Li SJ, Hochstrasser M: A new protease required for cell-cycle progression in yeast. Nature 1999, 398: 246-51. 10.1038/18457CrossRefPubMed
14.
go back to reference Byrd CM, Bolken TC, Mjalli AM, Arimilli MN, Andrews RC, Rothlein R, Andrea T, Rao M, Owens KL, Hruby DE: New class of orthopoxvirus antiviral drugs that block viral maturation. J Virol 2004, 78: 12147-12156. 10.1128/JVI.78.22.12147-12156.2004PubMedCentralCrossRefPubMed Byrd CM, Bolken TC, Mjalli AM, Arimilli MN, Andrews RC, Rothlein R, Andrea T, Rao M, Owens KL, Hruby DE: New class of orthopoxvirus antiviral drugs that block viral maturation. J Virol 2004, 78: 12147-12156. 10.1128/JVI.78.22.12147-12156.2004PubMedCentralCrossRefPubMed
15.
go back to reference Webster A, Hay RT, Kemp GD: The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell 1993, 72: 97-104. 10.1016/0092-8674(93)90053-SCrossRefPubMed Webster A, Hay RT, Kemp GD: The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell 1993, 72: 97-104. 10.1016/0092-8674(93)90053-SCrossRefPubMed
16.
go back to reference Webster A, Russell WC, Kemp GD: Characterization of the adenovirus proteinase: development and use of a specific peptide assay. J Gen Virol 1989, 70: 3215-3223.CrossRefPubMed Webster A, Russell WC, Kemp GD: Characterization of the adenovirus proteinase: development and use of a specific peptide assay. J Gen Virol 1989, 70: 3215-3223.CrossRefPubMed
17.
go back to reference Rubio D, Alejo A, Rodriguez I, Salas ML: Polyprotein processing protease of African swine fever virus: purification and biochemical characterization. J Virol 2003, 77: 4444-4448. 10.1128/JVI.77.7.4444-4448.2003PubMedCentralCrossRefPubMed Rubio D, Alejo A, Rodriguez I, Salas ML: Polyprotein processing protease of African swine fever virus: purification and biochemical characterization. J Virol 2003, 77: 4444-4448. 10.1128/JVI.77.7.4444-4448.2003PubMedCentralCrossRefPubMed
18.
go back to reference Raczynski P, Condit RC: Specific inhibition of vaccinia virus growth by 2'-O-methyladenosine: isolation of a drug-resistant virus mutant. Virology 1983, 128: 458-62. 10.1016/0042-6822(83)90270-2CrossRefPubMed Raczynski P, Condit RC: Specific inhibition of vaccinia virus growth by 2'-O-methyladenosine: isolation of a drug-resistant virus mutant. Virology 1983, 128: 458-62. 10.1016/0042-6822(83)90270-2CrossRefPubMed
19.
go back to reference Hruby DE, Guarino LA, Kates JR: Vaccinia virus replication. I. Requirement for the host-cell nucleus. J Virol 1979, 29: 705-15.PubMedCentralPubMed Hruby DE, Guarino LA, Kates JR: Vaccinia virus replication. I. Requirement for the host-cell nucleus. J Virol 1979, 29: 705-15.PubMedCentralPubMed
Metadata
Title
Development of an in vitro cleavage assay system to examine vaccinia virus I7L cysteine proteinase activity
Authors
Chelsea M Byrd
Dennis E Hruby
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2005
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-2-63

Other articles of this Issue 1/2005

Virology Journal 1/2005 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine